
......................................

Autoconstructive Evolution:
Push, PushGP, and Pushpop

 Lee Spector
 Cognitive Science
 Hampshire College
 Amherst, MA 01002

 lspector@hampshire.edu
 http://hampshire.edu/lspector

......................................

Overview
......................................

Autoconstructive Evolution ,
self-construction of the evolutionary
process

The Push programming language for
evolutionary computation

PushGP, a genetic programming system
that evolves Push programs

Pushpop , an autoconstructive
evolution system that evolves Push
programs

Results Potential (?)
------- -------------

Push * *

PushGP * *

Pushpop * *

Autoconstructive Evolution
......................................

Individuals make their own children.

The machinery of reproduction and
diversification (and thereby the
machinery of evolution) evolves.

Radical self-adaptation.

Making a living,
Making babies

......................................

Individuals, like natural organisms,
must both make a living in the world
and produce offspring.

......................................

Making a living = performing well on a
environment/problem-specific fitness
test.

Producing offspring = generating code.

Children
......................................

Produced as output from parents’ code.

Problem-solving and child-producing
code may be integrated and
interdependent.

May use arbitrary computational
processes built in an expressive,
Turing-complete programming language.

Hypotheses
......................................

Autoconstructive evolution systems can
be valuable sources of data on the
nature of life and evolution.

Autoconstructive evolution systems can
out-perform traditional evolutionary
computation systems by adapting their
reproductive mechanisms to their
representations and problem
environments.

Advance praise for the Push
programming language

......................................

Multiple data types with no
constraints on code generation or
manipulation! (Compare to Strongly Typed Genetic
Programming [Montana].)

Arbitrary modularity with no
constraints on code generation or
manipulation! (Compare to Automatically
Defined Functions [Koza] or Automatically Defined Macros
[Spector].)

You'll never need to pre-specify the
module architecture! No extra
machinery required for architecture
evolution! (Compare to Architecture-Altering
Operations [Koza].)

Explicit and arbitrary recursion? No
problem! (in principle) (Compare to the work of Yu
and others)

Ontogenetic development, evolved
adaptivity, and diversifying self-
replication? Push makes it easy!
(in principle) (Compare to Ontogenetic Programming

[Spector], TIERRA [Ray], Avida [Adami].)

The Push programming language
for evolutionary computation

......................................

Goals:

• multiple data types
• modularity
• Turing completeness
• recursion
• code manipulation
• uniform syntax

Push
......................................

Stack-based, like Forth or Postscript

Multiple stacks, one for each type

Types are hierarchical

Type constants on a type stack/bottom

Missing argument? NOOP

Code type/stack -> advanced features

Runtime resource limits

Push architecture
......................................

integer
stack

float
stack

Boolean
stack

code
stack

type
stack

name
stack

URL
stack

more stacks as needed

possibly nested program of stack-manipulating instructions

Push examples
......................................

(integer 2 3 +)

(integer 2 3 + float 2.72 3.14 +)

(2 3 2.72 3.14 integer + float +)

(2.72 integer 2 3.14 3 + float +)

((integer) (2 (3)) +)

(code quote (integer 2 3 +) do)

Factorial in Push
......................................

 (quote (pop 1)
 quote (code dup
 integer dup
 1 - do *)
 integer dup 2 < if)

Factorial with Names
......................................

(code
 quote (quote (pop 1)
 quote (integer dup 1 -
 code factorial get do
 *)
 integer dup 2 < if)
 factorial set
 factorial get do)

The Push type hierarchy
......................................
- push-base-type: dup, pop, swap, rep, =[boolean],
 set[name], get[name], convert[type],
 pull[integer], noop
 - number: +, -, *, /, >[boolean], <[boolean]
 - integer: rand, pull, /
 - float: rand
 - boolean: not, and, or, nand, nor, rand
 - expression: quote, car, cdr, cons, list, append, subst,
 container, length[integer], size[integer],
 atom[boolean], null[boolean], nth[integer],
 nthcdr[integer], member[boolean],
 position[integer], contains[boolean],
 insert[integer], extract[integer],
 instructions[type], perturb[integer],
 other[integer], other-tag[float],
 elder[integer], neighbor[integer],
 rand[integer]
 - code: do, do*, if[boolean], map
 - child:
 - type: rand
 - name: rand

Inheritance, multi-stack access, subsets

PushGP: GP for Push programs
......................................

≈ Standard Koza-style GP but evolves
Push programs

Uniform code generation

Crossover: expression swapping or
uniform crossover on terminals

Mutation: replacement, perturbation

Tournament selection.

Networked on a 16-node cluster.

PushGP: symbolic regression
[Robinson, 2001]

......................................

Cases 50 from x 6-2x 4+x2

Popsize 4000
Max Gens 51
Max Length 50 points
Instr Set + - * / dup ERC
Operators 90% xover, 10% duplication
Input x value on integer stack
Fitness Sum of error for all cases
Termination error for each case < 0.01

One result:
 (dup (dup dup * (*) - /) dup *)

PushGP: multiple data types
and the ODD problem

......................................

The ODD problem: Is a given integer
odd? (integer->Boolean)

An odd solution:

 ((nth) atom (insert) pull)

Uses its own code as an auxiliary data
structure.

Multiple data types can sometimes be
used to synergistic advantage.

PushGP: PARITY and modularity
......................................

The EVEN PARITY problem: Is the number
of "on" bits in the input even?
(Boolean->Boolean)

EVEN PARITY can be decomposed into
smaller parity problems; ADFs provide
advantages [Koza].

PushGP: solution (simplified)
to EVEN 4-PARITY

......................................
(quote
 (x x (x ((x) x)))
 (list
 (x)
 ((x) (x quote (dup nand) if) nil)
 (x x)
 ((quote) ((x) x x) x (map nor))))

Modular?

 Recursive (via map)

 Heavy code re-use (but not
 "human-style"!)

PushGP results, continued
......................................

Initial data on PushGP and larger
parity problems: scaling of difficulty
compares favorably with ADFs.

EVEN N-PARITY for bounded (but not yet
unbounded) N.

Data/variants/comparisons to
literature: Alan Robinson’s thesis
[Robinson, 2001]; also [Spector and
Robinson, in preparation].

Real interest lies in application to
new kinds of problems.

PushGP: current work
......................................

Unbounded recursion (e.g. factorial)

Seek human-competitive results in:

 quantum computation

 integer sequence induction

 agents in virtual worlds

Pushpop: autoconstructive
evolution of Push programs

......................................

Children: at the end of each program
execution the top of the “child” stack
is a potential child.

Selection: The children of the better
parents are more likely to survive.

Sex: Access to code of other programs,
for execution and/or reproduction.
Access based on geography, fitness,
and/or genetics. Any number of
"genders" is possible.

Pushpop: Diversity management
......................................

Extreme measures are required.

Syntactic diversity: no clones

Semantic diversity:

 Limit number of children from
 identically-performing parents

 Vary fitness components
 geographically

Reproductive competence

Pushpop: Results
......................................
Reproductive competence is easily
achieved.

Fitnesses generally improve.

Simple problems can be solved.

Evolutionary mechanisms evolve.

Some emergent features resemble those
of natural and/or engineered self-
adaptive systems, for example in the
dynamics of reproductive strategies

Fitness-improvement often stagnates.

What is necessary for
the emergence of robust,

fitness-progressive
evolution?

......................................

Hypotheses under exploration:

 Spatial irregularity (neighbors,
 local climate, local problems)

 Environmental dynamism (comets,
 seasons, climate change, cooling
 of the universe)

 Thermodynamic constraints
 (information budgets)

Relations to TIERRA/Avida
......................................

Problem-solving orientation

Higher-level language

Fully endogenous diversification

Summary/Conclusions
......................................

Push supports novel evolutionary
computation paradigms.

PushGP evolves Push programs to solve
many types of problems. Modularity and
other advanced programming features
arise naturally.

Pushpop is an autoconstructive
evolution system in which Push
programs solve problems while
constructing their own children and
thereby their own evolutionary
mechanisms.

Cliffhangers
......................................

Can Pushpop fulfill the hypothesized
promise of autoconstructive evolution
systems to out-perform traditional
evolutionary computation systems by
adapting their reproductive mechanisms
to their representations and
problem environments?

Can Pushpop fulfill the hypothesized
promise of autoconstructive evolution
systems to provide useful data on the
nature of life and evolution?

Come to GECCO-2002 (New York) to find
out! (or maybe GECCO-2003 or 4 or...)

