
Multi-type, Self-Adaptive Genetic Programming
as an Agent Creation Tool

Lee Spector, Hampshire College
Alan Robinson, Hampshire College/UCSD
lspector@hampshire.edu, http://hampshire.edu/lspector

Thanks also to Jon Klein.

Overview

Goals

Technologies: Push, PushGP, Pushpop, Breve (by Jon Klein)

Results:
PushGP:

Evolved transport network agents
Evolved “Opera” agents
Confirmed/extended Van Belle/Ackley effect

Pushpop:
Reliable auto-diversification

Breve:
Evolved goal-directed 3D swarms [DEMO]

Future

Goals

1. Provide technologies for the automated production of
agents for complex, dynamic environments.

2. Develop self-adaptive (self-configuring) evolutionary
computation systems in the service of Goal #1.

3. Investigate general properties of self-adaptive evolutionary
systems using the technologies developed for Goal #2.

The Push Programming Language for
Evolutionary Computation

Designed for the expression of evolving programs within an
evolutionary computation system.

Simplifies the evolution of agents that may use:
• multiple data types
• subroutines (any architecture)
• recursion
• evolved control structures
• evolved evolutionary mechanisms

Push supports all of this using simple, mostly standard GP
techniques.

Stack-based language with one stack per type; types include
integer, float, Boolean, code , child, type, name.

Push

Stack-based, like Forth or Postscript

Multiple stacks, one for each type

Types are hierarchical

Type constants on a type stack/bottom

Missing argument? NOOP

Code type/stack -> advanced features

Runtime resource limits

Push Architecture

integer
stack

float
stack

Boolean
stack

code
stack

type
stack

name
stack

URL
stack

more stacks as needed

possibly nested program of stack-manipulating instructions

Push Examples

(integer 2 3 +)

(integer 2 3 + float 2.72 3.14 +)

(2 3 2.72 3.14 integer + float +)

(2.72 integer 2 3.14 3 + float +)

((integer) (2 (3)) +)

(code quote (integer 2 3 +) do)

Factorial in Push

 (quote (pop 1)
 quote (code dup
 integer dup
 1 - do *)
 integer dup 2 < if)

Factorial with Names

(code
 quote (quote (pop 1)
 quote (integer dup 1 -
 code factorial get do
 *)
 integer dup 2 < if)
 factorial set
 factorial get do)

The Push Type Hierarchy
- push-base-type: dup, pop, swap, rep, =[boolean],
 set[name], get[name], convert[type],
 pull[integer], noop
 - number: +, -, *, /, >[boolean], <[boolean]
 - integer: rand, pull, /
 - float: rand
 - boolean: not, and, or, nand, nor, rand
 - expression: quote, car, cdr, cons, list, append, subst,
 container, length[integer], size[integer],
 atom[boolean], null[boolean], nth[integer],
 nthcdr[integer], member[boolean],
 position[integer], contains[boolean],
 insert[integer], extract[integer],
 instructions[type], perturb[integer],
 other[integer], other-tag[float],
 elder[integer], neighbor[integer],
 rand[integer]
 - code: do, do*, if[boolean], map
 - child:
 - type: rand
 - name: rand

Inheritance, multi-stack access, subsets

PushGP

Evolves Push programs
using (mostly) standard GP.

Multiple types handled without
syntactic constraints.

Evolves modules and
control structures automatically.

Size Control via Size-Fair Genetic Operators

With Raphael Crawford-Marks, proceedings of GECCO 2002.

Evolved Transport Network Agents

South

North

EastWest

Agent

Collaboration with Selfridge/Feurzeig/Benyo (MIT/BBN).

Four linked flow corridors per intersection.

“N/S/E/W” arbitrary; nothing rectilinear/2D in underlying
network transit simulation.

BBN Transport Network Simulator

Evolved TNAs: Control/Metrics

Agent controls “green time” in one direction.

Metrics available to agent:
• Green time
• Average windowed wait

• Per corridor
• “Global”

• Maximum wait
• Per corridor
• “Global”

Evolved TNAs: Fitness/Cases

Minimize global wait time.

Average over many different flow
density/variability configurations.

Evolved TNAs: Agent

NewTimeGreen = OldTimeGreen
+ WindowedAverageWait(northCorridor)
+ WindowedAverageWait(southCorridor)
+ WindowedAverageWait(eastCorridor)
+ WindowedAverageWait(westCorridor)
+ MaxWait(southCorridor)
+ MaxWait(westCorridor)
- MaxWait(northCorridor)

Evolved TNAs: Performance

Discontinuous/Uniform Evolutionary
Environments

3

3.5

4

4.5

5

5.5

fitness on 500
discontinuous

t r ia ls

fitness on 500
uniform trials

fitness on 500
uniform trials

fitness on 500
discontinuous

t r ia ls

Programs evolved in
discontinuous trials

Programs evolved in
uniform trials

4 programs of
equal fitness

Programs evolved in uniformly variable environments were
more immediately reactive to changes in their environments.

Evolved “Opera” Agents

Collaboration with Crespi/Cybenko/Russ/Santini (Dartmouth).

Evolve decentralized and coordinated 3D navigation.

Addition of “vector” data type improves performance.

With Alan Robinson, to appear in Late-Breaking Papers of
GECCO 2002.

Confirmation/Extension of
Van Belle/Ackley Effect

Collaboration with Van Belle/Ackley (UNM).

Evolution in a dynamically changing environment (A*sin(A*x),
with randomly changing A). Modularity allows adaptation via
isolation of constant/variable features of the environment.

Van Belle/Ackley Effect Parameters

Van Belle/Ackley Effect Results

Autoconstructive Evolution: Pushpop

Individuals make their own children.

The machinery of reproduction
and diversification (and thereby the
machinery of evolution) evolves.

Radical self-adaptation.

Adaptive Populations of Pushpop Programs
are Reliably Diverse

Partial explanation for emergence of diversifying reproduction in biology.

Breve: a 3D Environment for the Simulation
of Decentralized Systems and Artificial Life

Written by Jon Klein, http://www.spiderland.org/breve

Simplifies the rapid construction of complex 3D simulations.

Object-oriented scripting language with rich pre-defined class
hierarchy.

OpenGL 3D graphics with lighting, shadows, and reflection.

Rigid body simulation, collision detection/response,
articulated body simulation.

Runge-Kutta 4th order integrator or Runge-Kutta-Fehlman
integrator with adaptive step-size control.

Breve Swarm

By Jon Klein, after Craig Reynolds.

acceleration = p1*[away from crowding others vector]
+ p2*[towards world center vector]
+ p3*[average neighbor velocity vector]
+ p4*[towards neighbor center vector]
+ p5*[random vector]

On-Line Evolution of Goal-Directed Swarms

Changes to Breve/swarm:

Multiple species
p6*[away from crowding other species vector]

Randomly moving energy sources:
p7*[towards closest energy source vector].

Energy costs:
• Colliding with one another
• Being outnumbered (by species) in neighborhood
• Giving birth
• Surviving (per simulation cycle)

Upon death (energy = 0), parameters replaced
with mutated version of fittest of species

Fitness metric = age * energy

Evolving Goal-Directed Swarms Demo

[“flock nicely” presets, randomize and evolve]

Future

Enhance complexity/realism of environments for agent
evolution.

Build capability for evolution of arbitrary (Push) agent
programs into 3D Breve environment.

Integrate MIT/BBN elementary adaptive modules into agent
evolution system.

