Multi-type, Self-Adaptive Genetic Programming
as an Agent Creation Tool

Lee Spector, Hampshire College
Alan Robinson, Hampshire College/UCSD
Ispector@hampshire.edu, http://hampshire.edu/lspector

Thanks also to Jon Klein.
- i

Overview
Goals

Technologies: Push, PushGP, Pushpop, Breve (by Jon Klein)

Results:
PushGP:
Evolved transport network agents
Evolved “Opera” agents
Confirmed/extended Van Belle/Ackley effect
Pushpop:
Reliable auto-diversification
Breve:
Evolved goal-directed 3D swarms [DEMO]

Future

Goals

1. Provide technologies for the automated production of
agents for complex, dynamic environments.

2. Develop self-adaptive (self-configuring) evolutionary
computation systems in the service of Goal #1.

3. Investigate general properties of self-adaptive evolutionary
systems using the technologies developed for Goal #2.

The Push Programming Language for
Evolutionary Computation

Designed for the expression of evolving programs within an
evolutionary computation system.

Simplifies the evolution of agents that may use:
e multiple data types
 subroutines (any architecture)
* recursion
 evolved control structures
e evolved evolutionary mechanisms

Push supports all of this using simple, mostly standard GP
technigues.

Stack-based language with one stack per type; types include
Integer, float, Boolean, code, child, type, name.

Push

Stack-based, like Forth or Postscript
Multiple stacks, one for each type
Types are hierarchical

Type constants on a type stack/bottom
Missing argument? NOOP

Code type/stack -> advanced features

Runtime resource limits

Push Architecture

possibly nested program of stack-manipulating instructions

v
integer float Boolean code type URL name
stack stack stack stack stack stack stack

more stacks as needed

Push Examples

(integer 2 3 +)

(integer 2 3 + float 2.72 3.14 +)
(2 3 2.72 3.14 integer + float +)
(2.72 integer 2 3.14 3 + float +)
((integer) (2 (3)) +)

(code guote (integer 2 3 +) do)

Factorial in Push

(quote (pop 1)

guote (code dup
Integer dup
1-do?¥*)

Integer dup 2 < If)

Factorial with Names

(code
guote (quote (pop 1)
guote (integer dup 1 -
code factorial get do
iInteger dup 2 < if)
factorial set
factorial get do)

The Push Type Hierarchy

- push-base-type: dup, pop, swap, rep, =[boolean],
set[name], get[name], convert[type],
pull[integer], noop

- number: +, -, *, /, >[boolean], <[boolean]

- integer: rand, pull, /
- float: rand
- boolean: not, and, or, nand, nor, rand
- expression: quote, car, cdr, cons, list, append, subst,
container, length[integer], size[integer],
atom[boolean], null[boolean], nth[integer],
nthcdr[integer], member[boolean],
position[integer], contains[boolean],
insert[integer], extract[integer],
instructions[type], perturb[integer],
other[integer], other-tag[float],
elder[integer], neighbor[integer],
rand[integer]
- code: do, do*, if[boolean], map
- child:
- type: rand
- name: rand

Inheritance, multi-stack access, subsets

PushGP

Evolves Push programs / /
using (mostly) standard GP.

test problem-salving

fitness

Multiple types handled without
syntactic constraints.

Evolves modules and
control structures automatically.

/ evaluated programs /

conduct fitness tournaments
and apply genetic operatars

aTe
to winners to produce children

Size Control via Size-Fair Genetic Operators

With Raphael Crawford-Marks, proceedings of GECCO 2002.

Table 3: Results for 6-Bit Multiplexor, sorted by computational effort.

Crossover | Muatation | Successtul | Average Average Average Computational
Method Method Huns Solution Size Limit Size Limit Fffort
S1ze Replications | Replications
(Gen. 25] (Gen. 49)

Fair Fair 30 /100 10,50 0,46 28.56 | RTO000
Fair Node Sel 36,/100 27.58 71.41 428 67 | 525000
Nalve Fair 32/100 27.53 | 27.00 410,52 20=20000)
Nalve Node Sel 26,100 30,96 a8 41 740,47 2520000
Falr Nalve 26,100 32.27 H23.75 | 355,20 2635000
Node Sel Nalve 23/100 3757 1 375.40 1 725.20 2835000
Node Sel Fair 26,100 27.96 325.13 (H7.3.92 3120000
Nalve Nalve 26,/100 a7.92 07208 519,534 3200000
Node Sel | Node Sel 1= /100 31.11 HOT.06 1014, 76 4320000

Evolved Transport Network Agents

North

Agent

West East

South

Collaboration with Selfridge/Feurzeig/Benyo (MIT/BBN).
Four linked flow corridors per intersection.

“N/S/E/W” arbitrary; nothing rectilinear/2D in underlying
network transit simulation.

BBN Transport Network Simulator

[Agent View | Traffic Grid |
Inad 2 oad 3

Evolved TNASs: Control/Metrics

Agent controls “green time” in one direction.

Metrics available to agent:

e Green time

* Average windowed walit
e Per corridor
e “Global”

e Maximum walit
e Per corridor
e “Global”

Evolved TNASsS: Fithess/Cases

Minimize global wait time.

Average over many different flow
density/variability configurations.

Filess Horth Somh East West

Cazx Bouml Booml Booml Bouoml

1 25 £2 22 22
& 1 1 9 g
3 1 1 g g
4 1 1 X 7
2 1 1 L]]
= 1 1 A a
7 1 1 A4 4
g 1 1 3 3
9 1 1 & &
10 1 1 1 1
11 A A 1 1
12 g A 1 1
13 A N 1 1
14 B L 1 1
15 k=] A 1 1
16 A4 4 1 1
17 3 3 1 1
15 £ & 1 1
19 1 1 1 1
2l A A 1 1
21 3 3 A a
e g 01 01 01

Evolved TNAs: Agent

NewTimeGreen = OldTimeGreen

+ WIno
+ WINo
+ WINo

+ Wind

owecd
owec
owec

owec

AverageWait(northCorridor)
AverageWait(southCorridor)
AverageWait(eastCorridor)
AverageWait(westCorridor)

+ MaxWait(southCorridor)
+ MaxWait(westCorridor)
- MaxWait(northCorridor)

Evolved TNAs: Performance

Eehasvior Fitne zs (awmumed average wrait walues
ac 038 all fitness cases)

Esvolved agent 13

Constant ime-greenof 0.5 3.1

Constant ime-green of 0.2 3.0

Cronstant ime-green of 0.5 2.4

Discontinuous/Uniform Evolutionary
Environments

5.5 1
Programs evolved in Programs evolved in
discontinuous trials uniform trials
5
4 programs of /
M equal fithess
4.5 / q
4 < :
3.5 .//.
3
fitness on 500 fitness on 500 fitness on 500 fitness on 500
discontinuous uniform trials uniform trials discontinuous
trials trials

Programs evolved in uniformly variable environments were
more immediately reactive to changes in their environments.

Evolved “Opera” Agents

¥
]
ﬁ‘*
o

T

Collaboration with Crespi/Cybenko/Russ/Santini (Dartmouth).
Evolve decentralized and coordinated 3D navigation.
Addition of “vector” data type improves performance.

With Alan Robinson, to appear in Late-Breaking Papers of
GECCO 2002.

Confirmation/Extension of
Van Belle/Ackley Effect

Collaboration with Van Belle/Ackley (UNM).

Evolution in a dynamically changing environment (A*sin(A*Xx),
with randomly changing A). Modularity allows adaptation via
Isolation of constant/variable features of the environment.

Van Belle/Ackley Effect Parameters

PARAMETER VALUE
Population size 1000
Tournament size 51

Max generations 200
Fitness cases hil
Mutation % 45
Crossover % 15
Reproduction % 10

Mutation operators
Crossover operators

Instruction set

standard, fair (0.25),
perturb (50)

standard, fair (0.25),
nniform
ephemeral-random-integer,
ephemeral-random-Hoat,
ephemeral-random-boolean.,
ephemeral-random-syimbaol.
convert, =, rep, SWap. pop.
dup, max, min, =, <, /, =,
—. +. pulldnp, pull. exp,
log, cos, 8in, not, or. and,
nth, list, cons, edr, car, quote,
map, if. do®, do. integer,
Hoat, boolean, type, code

Average hits of best-cf-generation program

Van Belle/Ackley Effect Results

15

g

12.5 - ¢ {}Q o
?‘? *;:“::5 ¢,<:'¢-

o8
&

—{J— c¢poch=tan

=
L=
|

S S— epochend

| | | |
= = = = =
—_ - o -

50

Autoconstructive Evolution: Pushpop

generated organisms

Individuals make their own children. / /

The machinery of reproduction
and diversification (and thereby the

machinery of evolution) evolves. / /

conduct fitness tournaments
ATONE mat hers, Proppagate
children of winners

Radical self-adaptation.

add randomly generated
organisms if too few

{nol r-::|l1'\-:--:]||-:'| i-.-'-::|:,-' competent j]

7/ child population /

Adaptive Populations of Pushpop Programs
are Reliably Diverse

Partial explanation for emergence of diversifying reproduction in biology.

a0

| | | | | | | | | |
reproductively competent, unsclved phases: adaptive 4
reprochictively competent, wneclved phases: non-adaptive M
reproductively incompetent phases B |
solved phases @

=
T

8
1
I

4

s
=
£
d
T
=
E Ba
4|:|— —
E B X X &
B X +
EI.— M L) -
e
x X + t+e
E\E'D- X o X + -
x +++#
: _ * 4 * -
10 x] » s @
¥ X
0]]] |]
0 10 20 £ 40 B0 0 70

average count of diameter-1€6 species

Breve: a 3D Environment for the Simulation
of Decentralized Systems and Artificial Life

Written by Jon Klein, http://www.spiderland.org/breve
Simplifies the rapid construction of complex 3D simulations.

Object-oriented scripting language with rich pre-defined class
hierarchy.

OpenGL 3D graphics with lighting, shadows, and reflection.

Rigid body simulation, collision detection/response,
articulated body simulation.

Runge-Kutta 4th order integrator or Runge-Kutta-Fehlman
Integrator with adaptive step-size control.

Breve Swarm

By Jon Klein, after Craig Reynolds.

acceleration = p,*[away from crowding others vector]
+ p,*[towards world center vector]
+ p,*[average neighbor velocity vector]
+ p,*[towards neighbor center vector]
+ p.*[random vector]

On-Line Evolution of Goal-Directed Swarms

Changes to Breve/swarm:

Multiple species
ps*[away from crowding other species vector]

Randomly moving energy sources:
p-*[towards closest energy source vector].

Energy costs:
 Colliding with one another
* Being outnumbered (by species) in neighborhood
 Giving birth
e Surviving (per simulation cycle)

Upon death (energy = 0), parameters replaced
with mutated version of fittest of species

Fithess metric = age * energy

Evolving Goal-Directed Swarms Demo

Future

Enhance complexity/realism of environments for agent
evolution.

Build capabillity for evolution of arbitrary (Push) agent
programs into 3D Breve environment.

Integrate MIT/BBN elementary adaptive modules into agent
evolution system.

