Multi-type, Self-Adaptive Genetic Programming as an Agent Creation Tool

Lee Spector, Hampshire College Alan Robinson, Hampshire College/UCSD Ispector@hampshire.edu, http://hampshire.edu/Ispector

Thanks also to Jon Klein.

Overview

Goals

Technologies: Push, PushGP, Pushpop, Breve (by Jon Klein)

Results:

PushGP: Evolved transport network agents Evolved "Opera" agents Confirmed/extended Van Belle/Ackley effect Pushpop: Reliable auto-diversification

Reliable auto-diversification

Breve:

Evolved goal-directed 3D swarms [DEMO]

Future

Goals

- 1. Provide technologies for the automated production of agents for complex, dynamic environments.
- 2. Develop self-adaptive (self-configuring) evolutionary computation systems in the service of Goal #1.
- 3. Investigate general properties of self-adaptive evolutionary systems using the technologies developed for Goal #2.

The Push Programming Language for Evolutionary Computation

- Designed for the expression of evolving programs within an evolutionary computation system.
- Simplifies the evolution of agents that may use:
 - multiple data types
 - subroutines (any architecture)
 - recursion
 - evolved control structures
 - evolved evolutionary mechanisms
- Push supports all of this using simple, mostly standard GP techniques.
- Stack-based language with one stack per type; types include integer, float, Boolean, code, child, type, name.

Push

- Stack-based, like Forth or Postscript
- Multiple stacks, one for each type
- Types are hierarchical
- Type constants on a type stack/bottom
- Missing argument? NOOP
- **Code** type/stack -> advanced features
- Runtime resource limits

Push Architecture

possibly nested program of stack-manipulating instructions

more stacks as needed

Push Examples

(integer 2 3 +)

- (integer 2 3 + float 2.72 3.14 +)
- (2 3 2.72 3.14 integer + float +)
- (2.72 integer 2 3.14 3 + float +)
- ((integer) (2 (3)) +)
- (code quote (integer 2 3 +) do)

Factorial in Push

```
(quote (pop 1)
quote (code dup
integer dup
1 - do *)
integer dup 2 < if)</pre>
```

Factorial with Names

```
(code
  quote (quote (pop 1)
      quote (integer dup 1 -
            code factorial get do
            *)
        integer dup 2 < if)
  factorial set
  factorial get do)
```

The Push Type Hierarchy

```
- push-base-type: dup, pop, swap, rep, =[boolean],
                  set[name], get[name], convert[type],
                  pull[integer], noop
 - number: +, -, *, /, >[boolean], <[boolean]
   - integer: rand, pull, /
   - float: rand
 - boolean: not, and, or, nand, nor, rand
 - expression: quote, car, cdr, cons, list, append, subst,
               container, length[integer], size[integer],
               atom[boolean], null[boolean], nth[integer],
               nthcdr[integer], member[boolean],
               position[integer], contains[boolean],
                insert[integer], extract[integer],
                instructions[type], perturb[integer],
               other[integer], other-tag[float],
               elder[integer], neighbor[integer],
               rand[integer]
   - code: do, do*, if[boolean], map
   - child:
 - type: rand
 - name: rand
```

Inheritance, multi-stack access, subsets

PushGP

- Evolves Push programs using (mostly) standard GP.
- Multiple types handled without syntactic constraints.
- Evolves modules and control structures automatically.

Size Control via Size-Fair Genetic Operators

With Raphael Crawford-Marks, proceedings of GECCO 2002.

Crossover	Mutation	Successful	Average	Average	Average	Computational
Method	Method	Runs	Solution	Size Limit	Size Limit	Effort
			Size	Replications	Replications	
				(Gen. 25)	(Gen. 49)	
Fair	Fair	30/100	19.80	0.46	28.56	1870000
Fair	Node Sel	36/100	27.58	71.41	428.67	1885000
Naive	Fair	32/100	27.53	127.00	410.82	2080000
Naive	Node Sel	26/100	30.96	389.41	749.47	2520000
Fair	Naive	26/100	32.27	623.75	1388.20	2635000
Node Sel	Naive	23/100	37.57	1375.40	1725.29	2835000
Node Sel	Fair	26/100	27.96	325.13	673.92	3120000
Naive	Naive	26/100	37.92	972.08	1519.34	3200000
Node Sel	Node Sel	18/100	31.11	697.06	1014.76	4320000

Table 3: Results for 6-Bit Multiplexor, sorted by computational effort.

Evolved Transport Network Agents

Collaboration with Selfridge/Feurzeig/Benyo (MIT/BBN).

Four linked flow corridors per intersection.

"N/S/E/W" arbitrary; nothing rectilinear/2D in underlying network transit simulation.

BBN Transport Network Simulator

Evolved TNAs: Control/Metrics

Agent controls "green time" in one direction.

Metrics available to agent:

- Green time
- Average windowed wait
 - Per corridor
 - "Global"
- Maximum wait
 - Per corridor
 - "Global"

Evolved TNAs: Fitness/Cases

Minimize global wait time.

Average over many different flow density/variability configurations.

Fitness		South		West
Case	Bound	Bouril		Bound
1	.25	.25	.25	.25
2	.1	.1	.9	.8
3	.1	.1	.8	.8
4	.1	.1	.7	.7
5	.1	.1	.6	.6
6	.1	.1	.5	.5
7	.1	.1	.4	.4
8	.1	.1	.3	.3
9	.1	.1	.2	.2
10	.1	.1	.1	.1
11	.9	.9	.1	.1
12	.8	.8	.1	.1
13	.7	.7	.1	.1
14	.6	.6	.1	.1
15	.5	.5	.1	.1
16	.4	.4	.1	.1
17	.3	.3	.1	.1
18	.2	.2	.1	.1
19	.1	.1	.1	.1
20	.9	.9	.1	.1
21	.3	.3	.5	.5
22	.9	.01	.01	.01

Evolved TNAs: Agent

NewTimeGreen = OldTimeGreen

- + WindowedAverageWait(northCorridor)
- + WindowedAverageWait(southCorridor)
- + WindowedAverageWait(eastCorridor)
- + WindowedAverageWait(westCorridor)
- + MaxWait(southCorridor)
- + MaxWait(westCorridor)
- MaxWait(northCorridor)

Evolved TNAs: Performance

Behavior	Fitness (summed average wait values across all fitness cases)
Evolved agent	1.3
Constant time-green of 0.5	3.1
Constant time-green of 0.2	3.0
Constant time-green of 0.8	2.4

Discontinuous/Uniform Evolutionary Environments

Programs evolved in uniformly variable environments were more immediately reactive to changes in their environments.

Evolved "Opera" Agents

Collaboration with Crespi/Cybenko/Russ/Santini (Dartmouth).

Evolve decentralized and coordinated 3D navigation.

Addition of "vector" data type improves performance.

With Alan Robinson, to appear in *Late-Breaking Papers of GECCO 2002*.

Confirmation/Extension of Van Belle/Ackley Effect

- Collaboration with Van Belle/Ackley (UNM).
- Evolution in a dynamically changing environment $(A^*sin(A^*x), with randomly changing A)$. Modularity allows adaptation via isolation of constant/variable features of the environment.

Van Belle/Ackley Effect Parameters

PARAMETER	VALUE
Denseletien eine	1000
Population size	1000
Tournament size	5
Max generations	200
Fitness cases	50
Mutation %	45
Crossover %	45
Reproduction %	10
Mutation operators	standard, fair (0.25),
	perturb (50)
Crossover operators	standard, fair (0.25),
	uniform
Instruction set	ephemeral-random-integer,
	ephemeral-random-float,
	ephemeral-random-boolean,
	ephemeral-random-symbol,
	convert, =, rep, swap, pop,
	dup, max, min, $>, <, /, *,$
	-, +, pulldup, pull, exp,
	log, cos, sin, not, or, and,
	nth, list, cons, cdr, car, quote,
	map, if, do [*] , do, integer,
	float, boolean, type, code

Van Belle/Ackley Effect Results

Epoch

Autoconstructive Evolution: Pushpop

Individuals make their own children.

The machinery of reproduction and diversification (and thereby the machinery of evolution) evolves.

Radical self-adaptation.

Adaptive Populations of Pushpop Programs are Reliably Diverse

Partial explanation for emergence of diversifying reproduction in biology.

Breve: a 3D Environment for the Simulation of Decentralized Systems and Artificial Life

- Written by Jon Klein, http://www.spiderland.org/breve
- Simplifies the rapid construction of complex 3D simulations.
- Object-oriented scripting language with rich pre-defined class hierarchy.
- OpenGL 3D graphics with lighting, shadows, and reflection.
- Rigid body simulation, collision detection/response, articulated body simulation.
- Runge-Kutta 4th order integrator or Runge-Kutta-Fehlman integrator with adaptive step-size control.

Breve Swarm

By Jon Klein, after Craig Reynolds.

acceleration = p_1^* [away from crowding others vector]

- + p_2^* [towards world center vector]
- + p₃*[average neighbor velocity vector]
- + p₄*[towards neighbor center vector]
- + p_5^* [random vector]

On-Line Evolution of Goal-Directed Swarms

Changes to Breve/swarm:

Multiple species *p*₆*[away from crowding other species vector]

Randomly moving energy sources: *p*₇*[towards closest energy source vector].

Energy costs:

- Colliding with one another
- Being outnumbered (by species) in neighborhood
- Giving birth
- Surviving (per simulation cycle)

Upon death (energy = 0), parameters replaced with mutated version of fittest of species

Fitness metric = age * energy

Evolving Goal-Directed Swarms Demo

["flock nicely" presets, randomize and evolve]

Future

- Enhance complexity/realism of environments for agent evolution.
- Build capability for evolution of arbitrary (Push) agent programs into 3D Breve environment.
- Integrate MIT/BBN elementary adaptive modules into agent evolution system.