
The Push3 Execution Stack
and the

Evolution of Control

Lee Spector*, Jon Klein*°, and Maarten Keijzer‡

*Cognitive Science, Hampshire College, Amherst, MA USA
°Physical Resource Theory, Chalmers U. Tech. & Göteborg U., Sweden

‡Chordiant Software Inc.
lspector@hampshire.edu, http://hampshire.edu/lspector/

Outline

The Push project: open-ended evolution of
arbitrary computational processes.

Push concepts and simple examples.

The new EXEC stack and the amazing things
that it can do.

Examples: list reverse, factorial, Fibonacci,
parity, exponentiation, sorting.

The Push Project
What? Evolution of arbitrary computational processes.

Why? Problem solving, artificial life, cognitive modeling, ...

How? Natural selection of programs expressed in
syntactically trivial, semantically rich program
representation.

How rich? Rich enough to express evolving programs of
arbitrary architecture and even (in some applications but
not in PushGP) the mechanisms of evolution itself.

Representations for
Evolving Programs

Lisp-like symbolic expressions

Machine code

Stack-based interpreter code

Grammar indices

Logic clauses

...

Stack-based postfix language with one stack per
type; types include integer, float, vector, Boolean,
name, code, exec,

Trivial syntax.

Evolved programs may use:
multiple data types (arbitrarily intermixed)
subroutines (evolved dynamic architecture)
recursion and iteration (arbitrarily structured)

Also supports the evolution of evolutionary
mechanisms (meta-evolution and autoconstructive
evolution).

Push

Push Syntax

program ::= instruction | literal | (program*)

Power from That?

Yes. Here’s how:

Instructions are written to take arguments from,
and put results onto, the appropriate stacks.

By use of the CODE stack (and now also the EXEC
stack) programs can manipulate (arbitrarily) and
then execute (possibly conditionally) parts of their
own code, thereby implementing evolved control
structures, architectures, etc.

Evolved use of Control
Structures in GP

If-then-else

Do-until, Do-times

Recursion (implicit/explicit)

Evolved functions/macros/architectures

See Koza, Kinnear, Angeline & Pollack, Racine & Schoenauer & Dague, Robert
& Howard & Koza, Nordin & Banzhaf, Olsson, Whigham & McKay, Brave, Wong &
Leung, Yu & Clack, Nishiguchi & Fujimoto, Schmidhuber, Kochenderfer, ...

Claim: The Push approach is more elegant,
more expressive, and more evolvable.

Sample Push Instructions
Table 1: Sample Push instructions.

Stack manipulation POP, SWAP, YANK,
instructions DUP, STACKDEPTH,
(all types) SHOVE, FLUSH, =
Math +, −, /, ∗, >, <,
(INTEGER and FLOAT) MIN, MAX
Logic (BOOLEAN) AND, OR, NOT,

FROMINTEGER
Code manipulation QUOTE, CAR, CDR, CONS,
(CODE) INSERT, LENGTH, LIST,

MEMBER, NTH, EXTRACT
Control manipulation DO*, DO*COUNT, DO*RANGE,
(CODE and EXEC) DO*TIMES, IF

programming (e.g. [15, 27, 28]) by providing multiple stacks,
one per type. Types are provided for integers, floating point
numbers, Boolean values, symbolic names, and code (de-
scribed in more detail below), each of which has a corre-
sponding data stack. Additional types for vectors, matrices,
and other data are provided in some implementations, and
it is straightforward to add new types.1 As instructions
are executed they pop any required input values from the
appropriate stacks, preform calculations, and push any out-
put values onto the appropriate stacks. The types of the
values that will be needed or produced are specified in the
implementations of the instructions themselves, and are in-
dependent of the syntactic contexts in which calls to the
instructions occur. This scheme ensures that Push instruc-
tions will always receive inputs and produce outputs of the
appropriate types, regardless of the structure of the pro-
grams in which they occur. Whenever an instruction finds
insufficient items on the stacks for its inputs it acts as a
“no-op” and has no effect.

Instructions in Push3 are typically given names such as
<TYPE>.<NAME>, where NAME specifies the operation and
TYPE specifies the data type upon which the operation should
be preformed. INTEGER.=, for example, takes two input val-
ues from the INTEGER stack, compares them, and places the
result of the comparison on the BOOLEAN stack. It is not un-
common for the same operator to be implemented for mul-
tiple types. The instructions INTEGER.POP, FLOAT.POP, and
CODE.POP, for example, each pop the top item from the cor-
responding stack.

The full Push instruction set is large and cannot be fully
documented here,2 but a sample of some of the more com-
monly used Push instructions is shown in Table 1. The
instructions shown on the right-hand side are implemented
for each of the types described in the left column, so the in-
struction MAX, for example, exists both as INTEGER.MAX and
as FLOAT.MAX.

Flexibility with respect to control arises because CODE is it-
self a native type in Push. A Push program can put code

1Support for the definition of new types from within Push
programs is not part of the current Push3 specification, al-
though several proposals for accomplishing this are under
consideration.
2See [25].

on the CODE stack (for example, dwith the CODE.QUOTE in-
struction), duplicate or otherwise manipulate it, and later
execute it by means of other CODE instructions. This allows
programs to dynamically create novel control structures and
subroutine architectures. Examples of several such results
in earlier versions of Push are described elsewhere [21, 26,
22, 25].

Code manipulation by evolving programs can also support
entirely new forms of evolutionary computation such as “au-
toconstructive evolution,” in which evolving programs must
generate their own offspring, eschewing hardcoded genetic
operators in favor of evolved genetic operators that are im-
plemented by code-manipulation instructions working on
the CODE stack. The results of experiments employing au-
toconstructive evolution in earlier versions of Push can be
found in [21, 23, 24].

3. THE PUSH3 EXEC STACK
3.1 Push Program Interpretation
The most significant change to the Push language in Push3
is the introduction of the EXEC stack, which stores expres-
sions, instructions, and literals that the Push interpreter will
subsequently execute. This stack is independent of the CODE
stack, which can still be used for code manipulation and for
general list manipulation. Code on the CODE stack is static
data unless it is executed with an instruction like CODE.DO*
or CODE.DO*TIMES; such instructions are now implemented
by moving code to the EXEC stack. In contrast the EXEC
stack holds the code that is queued for execution in the in-
terpereter, and it is continuously executed. Although the
EXEC stack execution model of Push3 is backward compati-
ble with program execution in Push2, it nonetheless repre-
sents a fundamental change in the way that Push programs
are executed and it does so in a way that provides new op-
portunities for the evolution of arbitrary control.

In Push2, programs were executed according to the following
algorithm:

• To execute program P :

1. If P is an INSTRUCTION: execute P (accessing
whatever stacks are required).

2. If P is a LITERAL: push P onto the appropriate
stack.

3. If P is a LIST: recursively execute each subpro-
gram in P .

In this scheme an interpreter that encounters a list must
maintain the state of the computation for continuation after
returning from recursive calls; for example, when executing
a list of two subprograms the interpreter must store the
second (for later execution) while recursively executing the
first. If the Push interpreter is implemented in a language
that supports recursion then this can be handled by the
language’s native mechanisms, which presumably store local
variables in activation records during recursive calls. Push3,
by contrast, performs the same computation by storing all
of the necessary information within the interpreter itself, on
an EXEC stack:

A Simple Push Program
(2 3 INTEGER.* 4.1 5.2 FLOAT.+ TRUE FALSE
BOOLEAN.OR)

Resulting stacks:
BOOLEAN STACK: (TRUE)

CODE STACK: ((2 3 INTEGER.* 4.1 5.2
 FLOAT.+ TRUE FALSE BOOLEAN.OR
))

FLOAT STACK: (9.3)

INTEGER STACK: (6)

A Scrambled Program

(5 1.23 INTEGER.+ (4) INTEGER.- 5.67
FLOAT.*)

Resulting stacks:

CODE STACK: ((5 1.23 INTEGER.+ (4)
 INTEGER.- 5.67 FLOAT.*))

FLOAT STACK: (6.9741)

INTEGER STACK: (1)

Quotation

(CODE.QUOTE
 (INTEGER.DUP INTEGER.+)
 CODE.DO
)

PushGP
As generic and simple a GP system you can imagine,
except that it represents evolving programs in Push.

A few minor differences from standard tree-based GP
since Push programs aren’t exactly S-expression trees (no
function/arg place distinction).

A few minor enhancements (e.g. size-fair genetic
operators).

Available in C++, Lisp, and as a Breve plugin
(http://hampshire.edu/lspector/push.html).

Push’s Glorious Past
Superior scale-up on certain standard GP problems.

Discovery of novel solutions to multi-type problems.

Demonstration of automatic modular architecture evolution.

Use in development of general GP techniques such as size-fair
operators and trivial geography.

Application to quantum computing problems, producing several
human-competitive results.

Application to many and various problems in the evolution of
multi-agent systems.

Use in development of novel self-organizing evolutionary
computation paradigms.

Push’s Glorious Past

See http://hampshire.edu/lspector/push.html

Push(1&2) Semantics

The syntax of a Push program is simply:

program ::= instruction | literal | (program*)

That is, a Push program is an instruction, a literal, or
a parenthesized sequence of zero or more Push programs.
The only syntactic restriction is that parentheses must be
balanced. Because Push programs are typically stored and
manipulated as tree structures within which the parenthe-
ses are implicit, this restriction is usually automatically en-
forced.

With respect to handling multiple datatypes, Push achieves
its flexibility through the use of a stack-based execution ar-
chitecture with one stack for each type. Genetic program-
ming with Push extends prior work on stack-based genetic
programming (e.g. [17, 29, 30]) by providing multiple stacks,
one per type. Types are provided for integers, floating point
numbers, Boolean values, symbolic names, and code (de-
scribed in more detail below), each of which has a corre-
sponding data stack. Additional types for vectors, matrices,
and other data are provided in some implementations, and
it is straightforward to add new types.1 As instructions
are executed they pop any required input values from the
appropriate stacks, preform calculations, and push any out-
put values onto the appropriate stacks. The types of the
values that will be needed or produced are specified in the
implementations of the instructions themselves, and are in-
dependent of the syntactic contexts in which calls to the
instructions occur. This scheme ensures that Push instruc-
tions will always receive inputs and produce outputs of the
appropriate types, regardless of the structure of the pro-
grams in which they occur. Whenever an instruction finds
insufficient items on the stacks for its inputs it acts as a
“no-op” and has no effect.

Instructions in Push3 are typically given names such as
<TYPE>.<NAME>, where NAME specifies the operation and
TYPE specifies the data type upon which the operation should
be preformed. INTEGER.=, for example, takes two input val-
ues from the INTEGER stack, compares them, and places the
result of the comparison on the BOOLEAN stack. It is not un-
common for the same operator to be implemented for mul-
tiple types. The instructions INTEGER.POP, FLOAT.POP, and
CODE.POP, for example, each pop the top item from the cor-
responding stack.

The full Push instruction set is large and cannot be fully
documented here,2 but a sample of some of the more com-
monly used Push instructions is shown in Table 1. The
instructions shown on the right-hand side are implemented
for each of the types described in the left column, so the in-
struction MAX, for example, exists both as INTEGER.MAX and
as FLOAT.MAX.

Flexibility with respect to control arises because CODE is
itself a native type in Push. A Push program can put code
on the CODE stack (for example, with the CODE.QUOTE in-
struction), duplicate or otherwise manipulate it, and later
execute it by means of other CODE instructions. This allows
programs to dynamically create novel control structures and
subroutine architectures. Examples of several such results

1Support for the definition of new types from within Push
programs is not part of the current Push3 specification, al-
though several proposals for accomplishing this are under
consideration.
2See [27].

Table 1: Sample Push instructions.
Stack manipulation POP, SWAP, YANK,
instructions DUP, STACKDEPTH,
(all types) SHOVE, FLUSH, =
Math +, −, /, ∗, >, <,
(INTEGER and FLOAT) MIN, MAX
Logic (BOOLEAN) AND, OR, NOT,

FROMINTEGER
Code manipulation QUOTE, CAR, CDR, CONS,
(CODE) INSERT, LENGTH, LIST,

MEMBER, NTH, EXTRACT
Control manipulation DO*, DO*COUNT, DO*RANGE,
(CODE and EXEC) DO*TIMES, IF

in earlier versions of Push are described elsewhere [23, 28,
24, 27].

Code manipulation by evolving programs can also sup-
port entirely new forms of evolutionary computation such
as “autoconstructive evolution,” in which evolving programs
must generate their own offspring, eschewing hardcoded ge-
netic operators in favor of evolved genetic operators that are
implemented by code-manipulation instructions working on
the CODE stack. The results of experiments employing au-
toconstructive evolution in earlier versions of Push can be
found in [23, 25, 26].

3. THE PUSH3 EXEC STACK

3.1 Push Program Interpretation
The most significant change to the Push language in Push3

is the introduction of the EXEC stack, which stores expres-
sions, instructions, and literals that the Push interpreter will
subsequently execute. This stack is independent of the CODE
stack, which can still be used for code manipulation and for
general list manipulation. Code on the CODE stack is static
data unless it is executed with an instruction like CODE.DO*
or CODE.DO*TIMES; such instructions, which were formerly
implemented by (single or multiple) recursive calls to the in-
terpreter, are now implemented by moving code to the EXEC
stack. In contrast with the CODE stack, the EXEC stack holds
the code that is queued for execution in the interpereter, and
it is continuously executed. Although the EXEC stack execu-
tion model of Push3 is backward compatible with program
execution in Push2, it nonetheless represents a fundamental
change in the way that Push programs are executed and it
does so in a way that provides new opportunities for the
evolution of arbitrary control.

In Push2, programs were executed according to the fol-
lowing algorithm:

• To execute program P :

1. If P is an INSTRUCTION: execute P (accessing
whatever stacks are required).

2. If P is a LITERAL: push P onto the appropriate
stack.

3. If P is a LIST: recursively execute each subpro-
gram in P .

In this scheme an interpreter that encounters a list must
maintain the state of the computation for continuation after

Push(3) Semantics

• To execute program P :

1. Push P onto the EXEC stack.

2. While the EXEC stack is not empty, pop and pro-
cess the top element of the EXEC stack, E:

(a) If E is an instruction: execute E (accessing
whatever stacks are required).

(b) If E is a literal: push E onto the appropriate
stack.

(c) If E is a list: push each element of E onto
the EXEC stack, in reverse order.

All of the Push2 control structures (e.g. CODE.DO*TIMES) are
expressed in Push3 as sequences of instructions that pushed
onto the EXEC stack and subsequently executed by the loop
in step 2 above. The CODE.DO*COUNT instruction, for exam-
ple, was implemented in Push2 as a loop in the Push inter-
preter’s native language that would repeatedly push counter
values on to the INTEGER stack and then execute code from
the CODE stack. In Push3, the CODE.DO*COUNT instruction
simply pushes code (including a recursive call) and integers
onto the EXEC stack, and the continued execution of elements
from the EXEC stack produces the same results. Other fea-
tures of Push can also be more elegantly implemented in
Push3 than in Push2; for example the CODE.QUOTE instruc-
tion, which formerly required an exception to the standard
evaluation rule and a global flag, can now be implemented
simply by copying the top of the EXEC stack to the CODE
stack (making it the inverse of CODE.DO*).

At first glance the use of the EXEC stack does not appear
to be a dramatic departure from the program execution al-
gorithm used in Push2. The power of this approach be-
comes evident, however, when one considers what it means
to manipulate the EXEC stack during a computation. Just
as control structures can be implemented by manipulating
and later executing items on to the CODE stack, novel con-
trol structures can also be implemented through EXEC stack
manipulation and these implementations are often more par-
simonious (and therefore potentially more evolvable).

Since a list of code to be executed is placed on the EXEC stack
in reverse order, EXEC instructions have the property of oper-
ating on elements in the code which come after them, unlike
operators applied to other types which use the postfix nota-
tion standard in stack-based languages. The following two
programs fragments, for example, both produce the same
results:

(5 CODE.QUOTE (INTEGER.+) CODE.DO*COUNT)
(5 EXEC.DO*COUNT (INTEGER.+))

3.2 Combinators
The stack manipulation instructions that are provided for all
types in Push can be used to manipulate the EXEC stack, but
the EXEC stack can also be manipulated with Push versions
of the standard combinators K, S and Y [19, 5]. These
combinatory logic operators allow complex computational
processes to be built up from simple expressions on the EXEC
stack.

The combinator EXEC.K simply removes the second element
from the EXEC stack. For example, if the EXEC stack contains
(A, B, C) then executing EXEC.K yields (A, C). The combi-
nator EXEC.S pops three items, A, B and C from the EXEC
stack and then pushes back three separate items: (B, C),
C and A (leaving the A on top). Note that this produces
two calls to C. The fixed point Y -combinator instruction
EXEC.Y can also be used to implement recursion using anony-
mous expressions on the EXEC stack; it inspects (but does not
pop) the top of the EXEC stack, A, and then inserts the list
(EXEC.Y A) as the second item on the EXEC stack. By itself,
this generates an endlessly recursive call to the unnamed
non-recursive “function” A. Recursion can be terminated
through further manipulation of the EXEC stack that may
occur, possibly conditionally, within A.

3.3 Re-entrance
An additional benefit of the EXEC stack is that the state of a
Push interpreter can now be fully specified by its configura-
tion, its NAME bindings, and the contents of its stacks. No in-
ternal state variables such as loop counters, execution point-
ers or continuations are necessary. Among other things, this
makes Push interpreters fully re-entrant and allows stricter
control over program execution. Loops, previously imple-
mented in the native language’s for-loop (or analogous con-
trol structure), are now implemented by pushing a series of
elements onto the EXEC stack. Execution of the loop pro-
ceeds through the sequential execution of the elements on
the EXEC stack.

Re-entrant interpreters are of particular interest when using
Push programs as controllers in time sensitive applications.
In these situations, Push programs cannot be allowed to run
until they are complete or until a loop terminates—there
may be strict limits on the number of Push instructions that
can be executed per time-step. The re-entrant interpreter
allows for the controlled execution of a particular number of
instructions per time-step.

3.4 Naming simplified
Previous incarnations of Push allowed names to be bound
to values using a SET instruction and retrieved later using a
GET instruction. This allowed, in principle, for evolution of
named constants and subroutines but it required synchro-
nization of several different instructions. The introduction
of the EXEC stack presents opportunities for simplification.

Binding a name to a subroutine has been simplified by one
instruction, using the EXEC stack instead of a quoted value
on the CODE stack:

Push2:
(TIMES2 CODE.QUOTE (2 INTEGER.*) CODE.SET)

Push3:
(TIMES2 EXEC.DEFINE (2 INTEGER.*))

Executing a subroutine has been simplified by two instruc-
tions. The bound symbol is now executed directly (the bind-
ing is copied to the EXEC stack), instead of being loaded onto
the CODE stack with CODE.GET and executed with CODE.DO:

What’s the difference?

Re-entrance (∴ broader applicability)

Expressive parsimony for iteration, naming,
and other language features. (∴ enhanced
evolvability of programs using these features)

Combinators and novel control regimes via
explicit EXEC stack manipulation. (∴
enhanced evolvability of control)

Naming a Subroutine

returning from recursive calls; for example, when executing
a list of two subprograms the interpreter must store the
second (for later execution) while recursively executing the
first. If the Push interpreter is implemented in a language
that supports recursion then this can be handled by the
language’s native mechanisms, which presumably store local
variables in activation records during recursive calls. Push3,
by contrast, performs the same computation by storing all
of the necessary information within the interpreter itself, on
an EXEC stack:

• To execute program P :

1. Push P onto the EXEC stack.

2. While the EXEC stack is not empty, pop and pro-
cess the top element of the EXEC stack, E:

(a) If E is an instruction: execute E (accessing
whatever stacks are required).

(b) If E is a literal: push E onto the appropriate
stack.

(c) If E is a list: push each element of E onto
the EXEC stack, in reverse order.

All of the Push2 control structures (e.g. CODE.DO*TIMES)
are expressed in Push3 as sequences of instructions that are
pushed onto the EXEC stack and subsequently executed by
the loop in step 2 above. The CODE.DO*COUNT instruction,
for example, was implemented in Push2 as a loop in the
Push interpreter’s native language that would repeatedly
push counter values on to the INTEGER stack and then ex-
ecute code obtained from the CODE stack. In Push3, the
CODE.DO*COUNT instruction simply pushes code (including a
recursive call) and integers onto the EXEC stack, and the con-
tinued execution of elements from the EXEC stack produces
the same results.3 Other features of Push can also be more
elegantly implemented in Push3 than in Push2; for example
the CODE.QUOTE instruction, which formerly required an ex-
ception to the standard evaluation rule and a global flag, can
now be implemented simply by copying the top of the EXEC
stack to the CODE stack (making it the inverse of CODE.DO*).

At first glance the use of the EXEC stack does not appear
to be a dramatic departure from the program execution al-
gorithm used in Push2. The power of this approach be-
comes evident, however, when one considers what it means
to manipulate the EXEC stack during a computation. Just
as control structures can be implemented by manipulating
and later executing items on to the CODE stack, novel con-
trol structures can also be implemented through EXEC stack
manipulation and these implementations are often more par-
simonious (and therefore potentially more evolvable).

Since a list of code to be executed is placed on the EXEC
stack in reverse order, EXEC instructions have the property
of operating on elements in the code which come after them,
unlike operators applied to other types which use the post-
fix notation standard in stack-based languages. The follow-
ing two programs fragments, for example, both produce the
same results:

(5 CODE.QUOTE (INTEGER.+) CODE.DO*COUNT)
(5 EXEC.DO*COUNT (INTEGER.+))

3The new EXEC.DO*COUNT instruction is equivalent except
that it takes its code argument from the EXEC stack. Other
EXEC versions of pre-existing CODE instructions are analo-
gous.

3.2 Combinators
The stack manipulation instructions that are provided for

all types in Push can be used to manipulate the EXEC stack,
but the EXEC stack can also be manipulated with Push ver-
sions of the standard combinators K, S and Y [21, 5]. These
combinatory logic operators allow complex computational
processes to be built up from simple expressions on the EXEC
stack.

The combinator EXEC.K simply removes (and discards)
the second element from the EXEC stack. For example, if
the EXEC stack contains [A,B, C, ...] then executing EXEC.K
yields [A, C, ...]. The combinator EXEC.S pops three items,
A, B and C from the EXEC stack and then pushes back three
separate items: (B C), C and A (leaving the A on top).
Note that this produces two calls to C. The fixed point
Y -combinator instruction EXEC.Y can also be used to im-
plement recursion using anonymous expressions on the EXEC
stack; it inspects (but does not pop) the top of the EXEC
stack, A, and then inserts the list (EXEC.Y A) as the second
item on the EXEC stack. By itself, this generates an endlessly
recursive call to the unnamed non-recursive “function” A.
Recursion can be terminated through further manipulation
of the EXEC stack that may occur, possibly conditionally,
within A.

3.3 Re-entrance
An additional benefit of the EXEC stack is that the state of

a Push interpreter can now be fully specified by its configura-
tion, its NAME bindings, and the contents of its stacks. No in-
ternal state variables such as loop counters, execution point-
ers or continuations are necessary. Among other things, this
makes Push interpreters fully re-entrant and allows stricter
control over program execution. Loops, previously imple-
mented in the native language’s for-loop (or analogous con-
trol structure), are now implemented by pushing a series of
elements onto the EXEC stack. Execution of the loop pro-
ceeds through the sequential execution of the elements on
the EXEC stack.

Re-entrant interpreters are of particular interest when us-
ing Push programs as controllers in time sensitive applica-
tions. In these situations, Push programs cannot be allowed
to run until they are complete or until a loop terminates—
there may be strict limits on the number of Push instruc-
tions that can be executed per time-step. The re-entrant
interpreter allows for the controlled execution of a particu-
lar number of instructions per time-step.

3.4 Naming simplified
Previous incarnations of Push allowed names to be bound

to values using a SET instruction and retrieved later using a
GET instruction. This allowed, in principle, for evolution of
named constants and subroutines but it required synchro-
nization of several different instructions. The introduction
of the EXEC stack presents opportunities for simplification.

Binding a name to a subroutine has been simplified by one
instruction, using the EXEC stack instead of a quoted value
on the CODE stack:

Push2:
(TIMES2 CODE.QUOTE (2 INTEGER.*) CODE.SET)

Push3:
(TIMES2 EXEC.DEFINE (2 INTEGER.*))

Calling a SubroutineExecuting a subroutine has been simplified by two instruc-
tions. The bound symbol is now executed directly (the bind-
ing is copied to the EXEC stack), instead of being loaded onto
the CODE stack with CODE.GET and executed with CODE.DO:

Push2:
(TIMES2 CODE.GET CODE.DO)

Push3:
(TIMES2)

Push3’s scheme is considerably more parsimonious. Al-
though none of the examples in this paper make non-trivial
use of names, these improvements presumably increase the
chances that systems that evolve Push code will be able to
make use of named variables and subroutines.

4. EXAMPLES
The following examples were produced using PushGP, a

genetic programming system that is generic aside from its
representation of evolving programs in the Push program-
ming language. Versions of PushGP implemented in Lisp
and C++ are freely available online,4 as is a version of
the Breve simulation environment that includes an embed-
ded PushGP system (based on the C++ implementation).5

PushGP is a generation-based system that uses tournament
selection and nearly-standard genetic operators.6 Evolu-
tion across multiple processors is supported through asyn-
chronous migration of selected individuals between “demes”
that run independently, one per node of a computer cluster.

In the runs that produced the results presented below a
variety of control parameters were used, with populations
ranging from 5, 000 to 230, 000 (distributed over up to 23
CPUs), tournament sizes ranging from 5 to 7, mutation and
crossover rates each ranging from 40% to 45% (with the
remainder of each generation produced by straight repro-
duction and/or immigration), and numbers of generations
ranging from 200 to 350. The possibility of unbounded re-
cursion or iteration requires the imposition of execution-step
limits (set between 150 and 1000) and program size limits
(typically between 100 and 250). Instructions that would
violate the program size limit act as no-ops. When a pro-
gram exceeds the execution-step limit a fitness penalty may
be imposed; in some of our runs we imposed a severe penalty
(ensuring that no violating program would ever produce
offspring) while in others we imposed a mild penalty (al-
lowing violating programs to reproduce, but preferring non-
violating programs) or no penalty at all (in which cases a
non-terminating program could count as a solution—we note
any such cases explicitly below). We used large, general-
purpose Push instruction sets, usually excluding only the
RAND instructions (which produce random numbers, ran-
dom code fragments, etc.), some of the higher level code-
manipulation instructions (such as CODE.SUBST), and instruc-
tions associated with the FLOAT data type (since none of the
examples involved floating-point numbers).

4http://hampshire.edu/lspector/push.html
5http://www.spiderland.org/breve
6The operators differ slightly from those of standard genetic
programming because Push’s syntax involves no distinction
between function and argument positions. Some implemen-
tations of PushGP also provide “size fair” genetic operators
[4].

For many of the problems discussed here PushGP pro-
duced large numbers of solutions that used a variety of
algorithms based on different Push instructions. In many
cases it was possible to coerce the system to produce dif-
ferent styles of solutions by making particular instructions
available or unavailable. In particular, most of the prob-
lems could be solved without any of the explicit iteration
instructions (EXEC or CODE versions of DO*TIMES, DO*COUNT,
and DO*RANGE), but most of those solutions were convoluted
and did not generalize beyond the inputs used for fitness
evaluation.

We simplify the programs produced by PushGP using a
simple hill-climbing algorithm that repeatedly performs a
random simplification (e.g. the removal of an instruction or
expression) and retains the simpler program if it is equally
good.

4.1 Reversing a list
For this problem we provide a list of integers, of length

between 10 and 30, as input on the CODE stack. A correct
program is one that leaves a list with the same elements
but the opposite order on top of the CODE stack. We seek a
program that correctly reverses any input list, of any length.
A similar problem was studied by Olsson in the ADATE
system [16]. We used a fitness test with 10 random inputs
and based fitness values on the number of elements in the
proper positions in the final list.

The following is an evolved, 100% correct, general solu-
tion:

(CODE.DO*TIMES (CODE.DO* CODE.LIST
(((INTEGER.STACKDEPTH EXEC.DO*TIMES)
(BOOLEAN.YANKDUP CODE.FROMINTEGER))
CODE.FROMINTEGER INTEGER.SWAP)
(CODE.YANKDUP INTEGER.% (BOOLEAN.AND)
CODE.STACKDEPTH EXEC.DO*TIMES)) (CODE.CONS)
(BOOLEAN.SHOVE (CODE.EXTRACT EXEC.S
(EXEC.FLUSH CODE.IF BOOLEAN.YANK
(CODE.FROMINTEGER CODE.ATOM (CODE.SWAP
BOOLEAN.SHOVE (INTEGER.MAX) (CODE.QUOTE
CODE.APPEND CODE.IF)) ((CODE.ATOM CODE.SHOVE
EXEC.POP (CODE.DO*TIMES BOOLEAN.SHOVE) INTEGER.ROT)
(INTEGER.> BOOLEAN.AND CODE.DO* INTEGER.ROT)
CODE.CONS INTEGER.ROT ((CODE.NTHCDR) INTEGER.ROT
BOOLEAN.DUP) INTEGER.SHOVE (CODE.FROMNAME
(CODE.CONS CODE.FROMINTEGER)))) CODE.LENGTH
INTEGER.MAX EXEC.Y)) (BOOLEAN.= (CODE.QUOTE
INTEGER.SWAP) CODE.POP) INTEGER.FLUSH))

This solution can be simplified to the following:

(CODE.DO* INTEGER.STACKDEPTH EXEC.DO*TIMES
CODE.FROMINTEGER CODE.STACKDEPTH EXEC.DO*TIMES
CODE.CONS)

In this program the CODE.DO* instruction “executes” the
input list which has the effect of placing all of its elements
onto the INTEGER stack. Then the sequence “EXEC.DO*TIMES
CODE.FROMINTEGER” moves all of the values onto the code
stack and the sequence “CODE.STACKDEPTH EXEC.DO*TIMES
CODE.CONS” creates a list of all of the elements. Three loops
are used in this solution. The first is really the “execution”
of the input list, which is bounded by the length of the input.
The second and third are implemented with EXEC.DO*TIMES,

Iterators

CODE.DO*TIMES, CODE.DO*COUNT,
CODE.DO*RANGE

EXEC.DO*TIMES, EXEC.DO*COUNT,
EXEC.DO*RANGE

Additional forms of iteration are supported
through code manipulation (e.g. via
CODE.DUP CODE.APPEND CODE.DO)

CODE vs. EXEC
Iterators

The following produce the same net effects:

returning from recursive calls; for example, when executing
a list of two subprograms the interpreter must store the
second (for later execution) while recursively executing the
first. If the Push interpreter is implemented in a language
that supports recursion then this can be handled by the
language’s native mechanisms, which presumably store local
variables in activation records during recursive calls. Push3,
by contrast, performs the same computation by storing all
of the necessary information within the interpreter itself, on
an EXEC stack:

• To execute program P :

1. Push P onto the EXEC stack.

2. While the EXEC stack is not empty, pop and pro-
cess the top element of the EXEC stack, E:

(a) If E is an instruction: execute E (accessing
whatever stacks are required).

(b) If E is a literal: push E onto the appropriate
stack.

(c) If E is a list: push each element of E onto
the EXEC stack, in reverse order.

All of the Push2 control structures (e.g. CODE.DO*TIMES)
are expressed in Push3 as sequences of instructions that are
pushed onto the EXEC stack and subsequently executed by
the loop in step 2 above. The CODE.DO*COUNT instruction,
for example, was implemented in Push2 as a loop in the
Push interpreter’s native language that would repeatedly
push counter values on to the INTEGER stack and then ex-
ecute code obtained from the CODE stack. In Push3, the
CODE.DO*COUNT instruction simply pushes code (including a
recursive call) and integers onto the EXEC stack, and the con-
tinued execution of elements from the EXEC stack produces
the same results.3 Other features of Push can also be more
elegantly implemented in Push3 than in Push2; for example
the CODE.QUOTE instruction, which formerly required an ex-
ception to the standard evaluation rule and a global flag, can
now be implemented simply by copying the top of the EXEC
stack to the CODE stack (making it the inverse of CODE.DO*).

At first glance the use of the EXEC stack does not appear
to be a dramatic departure from the program execution al-
gorithm used in Push2. The power of this approach be-
comes evident, however, when one considers what it means
to manipulate the EXEC stack during a computation. Just
as control structures can be implemented by manipulating
and later executing items on to the CODE stack, novel con-
trol structures can also be implemented through EXEC stack
manipulation and these implementations are often more par-
simonious (and therefore potentially more evolvable).

Since a list of code to be executed is placed on the EXEC
stack in reverse order, EXEC instructions have the property
of operating on elements in the code which come after them,
unlike operators applied to other types which use the post-
fix notation standard in stack-based languages. The follow-
ing two programs fragments, for example, both produce the
same results:

(5 CODE.QUOTE (INTEGER.+) CODE.DO*COUNT)
(5 EXEC.DO*COUNT (INTEGER.+))

3The new EXEC.DO*COUNT instruction is equivalent except
that it takes its code argument from the EXEC stack. Other
EXEC versions of pre-existing CODE instructions are analo-
gous.

3.2 Combinators
The stack manipulation instructions that are provided for

all types in Push can be used to manipulate the EXEC stack,
but the EXEC stack can also be manipulated with Push ver-
sions of the standard combinators K, S and Y [21, 5]. These
combinatory logic operators allow complex computational
processes to be built up from simple expressions on the EXEC
stack.

The combinator EXEC.K simply removes (and discards)
the second element from the EXEC stack. For example, if
the EXEC stack contains [A,B, C, ...] then executing EXEC.K
yields [A, C, ...]. The combinator EXEC.S pops three items,
A, B and C from the EXEC stack and then pushes back three
separate items: (B C), C and A (leaving the A on top).
Note that this produces two calls to C. The fixed point
Y -combinator instruction EXEC.Y can also be used to im-
plement recursion using anonymous expressions on the EXEC
stack; it inspects (but does not pop) the top of the EXEC
stack, A, and then inserts the list (EXEC.Y A) as the second
item on the EXEC stack. By itself, this generates an endlessly
recursive call to the unnamed non-recursive “function” A.
Recursion can be terminated through further manipulation
of the EXEC stack that may occur, possibly conditionally,
within A.

3.3 Re-entrance
An additional benefit of the EXEC stack is that the state of

a Push interpreter can now be fully specified by its configura-
tion, its NAME bindings, and the contents of its stacks. No in-
ternal state variables such as loop counters, execution point-
ers or continuations are necessary. Among other things, this
makes Push interpreters fully re-entrant and allows stricter
control over program execution. Loops, previously imple-
mented in the native language’s for-loop (or analogous con-
trol structure), are now implemented by pushing a series of
elements onto the EXEC stack. Execution of the loop pro-
ceeds through the sequential execution of the elements on
the EXEC stack.

Re-entrant interpreters are of particular interest when us-
ing Push programs as controllers in time sensitive applica-
tions. In these situations, Push programs cannot be allowed
to run until they are complete or until a loop terminates—
there may be strict limits on the number of Push instruc-
tions that can be executed per time-step. The re-entrant
interpreter allows for the controlled execution of a particu-
lar number of instructions per time-step.

3.4 Naming simplified
Previous incarnations of Push allowed names to be bound

to values using a SET instruction and retrieved later using a
GET instruction. This allowed, in principle, for evolution of
named constants and subroutines but it required synchro-
nization of several different instructions. The introduction
of the EXEC stack presents opportunities for simplification.

Binding a name to a subroutine has been simplified by one
instruction, using the EXEC stack instead of a quoted value
on the CODE stack:

Push2:
(TIMES2 CODE.QUOTE (2 INTEGER.*) CODE.SET)

Push3:
(TIMES2 EXEC.DEFINE (2 INTEGER.*))

Combinators

Standard K, S, and Y combinators:

EXEC.K removes the second item from the EXEC stack.

EXEC.S pops three items (call them A, B, and C) and
then pushes (B C), C, and then A.

EXEC.Y inserts (EXEC.Y T) under the top item (T).

A Y-based “while” loop:
(EXEC.Y
 (<BODY/CONDITION> EXEC.IF
 () EXEC.POP))

Evolved List Reverse

Input is list of integers on the CODE stack.

PushGP produced the following general
solution:

(CODE.DO*TIMES (CODE.DO* CODE.LIST (((INTEGER.STACKDEPTH EXEC.DO*TIMES)
(BOOLEAN.YANKDUP CODE.FROMINTEGER)) CODE.FROMINTEGER INTEGER.SWAP)
(CODE.YANKDUP INTEGER.% (BOOLEAN.AND) CODE.STACKDEPTH EXEC.DO*TIMES))
(CODE.CONS) (BOOLEAN.SHOVE (CODE.EXTRACT EXEC.S (EXEC.FLUSH CODE.IF
BOOLEAN.YANK (CODE.FROMINTEGER CODE.ATOM (CODE.SWAP BOOLEAN.SHOVE
(INTEGER.MAX) (CODE.QUOTE CODE.APPEND CODE.IF)) ((CODE.ATOM CODE.SHOVE
EXEC.POP (CODE.DO*TIMES BOOLEAN.SHOVE) INTEGER.ROT) (INTEGER.>
BOOLEAN.AND CODE.DO* INTEGER.ROT) CODE.CONS INTEGER.ROT ((CODE.NTHCDR)
INTEGER.ROT BOOLEAN.DUP) INTEGER.SHOVE (CODE.FROMNAME (CODE.CONS
CODE.FROMINTEGER)))) CODE.LENGTH INTEGER.MAX EXEC.Y)) (BOOLEAN.=
(CODE.QUOTE INTEGER.SWAP) CODE.POP) INTEGER.FLUSH))

Evolved List Reverse (2)

The evolved general solution simplifies to:
(CODE.DO* INTEGER.STACKDEPTH EXEC.DO*TIMES
CODE.FROMINTEGER CODE.STACKDEPTH
EXEC.DO*TIMES CODE.CONS)

This works by executing the input list, then
moving all of the integers individually to the
CODE stack, then building the reversed list.

Evolved Factorial

Two simplified evolved general solutions:

(1 EXEC.DO*RANGE INTEGER.*)
Runs a loop that just multiplies all of the loop counter values.

(INTEGER.* INTEGER.STACKDEPTH CODE.DO*RANGE
INTEGER.MAX)
Recursively executes the whole program, which is on the CODE stack;
INTEGER.STACKDEPTH produces the 1 for the loop index lower
bound, and INTEGER.MAX pulls each product out from under each
INTEGER.STACKDEPTH; only the first CODE.DO*RANGE is executed
in a context with code on the CODE stack.

Evolved Fibonacci

Two simplified evolved general solutions:

(EXEC.DO*TIMES (CODE.LENGTH EXEC.S)
INTEGER.STACKDEPTH CODE.YANKDUP)
Builds an expression with Fibonacci(input) instances of
INTEGER.STACKDEPTH on the EXEC stack, then executes them all.

(EXEC.DO*COUNT EXEC.S CODE.QUOTE NAME.=
CODE.DO*COUNT CODE.YANKDUP CODE.DO*COUNT
CODE.CONS CODE.STACKDEPTH)
Builds an expression with Fibonacci(input) instances of NAME.= on
the CODE stack, then executes CODE.STACKDEPTH.

Evolved Even Parity

Input is list of Boolean values on the CODE
stack.

Goal is a general solution that solves the
problem for any number of inputs.

Evolved Even Parity (2)

Two simplified evolved general solutions:

(CODE.DO* EXEC.Y BOOLEAN.=)
Terminates only when execution limit is reached; works only for even
number of inputs.

((((CODE.POP CODE.DO BOOLEAN.STACKDEPTH)
(EXEC.DO*TIMES) (BOOLEAN.= BOOLEAN.NOT))))
100% correct, general, terminating; see paper for explanation.

Evolved Expt(2,n)
Normally an easy problem, but here we
attempted to evolve solutions without iteration
instructions.

The following evolved solution uses novel evolved
control structures (but does not generalize
beyond the training cases, n=1-8):

((INTEGER.DUP EXEC.YANKDUP EXEC.FLUSH 2
CODE.LENGTH) 8 (2 8 INTEGER.* INTEGER.DUP)
(EXEC.YANK 8 INTEGER.* ((CODE.IF (EXEC.ROT))
BOOLEAN.DEFINE EXEC.YANK)))

Evolved Sort
Input/output in an external data structure
accessed with INTEGER.LIST-SWAP,
INTEGER.LIST-LENGTH, INTEGER.LIST-GET,
INTEGER.LIST-COMPARE.

Simplified evolved general solution that makes
n*(n-1) comparisons:

(INTEGER.LIST-LENGTH INTEGER.SHOVE
INTEGER.STACKDEPTH CODE.DO*RANGE
INTEGER.YANKDUP INTEGER.DUP EXEC.DO*COUNT
INTEGER.LIST-COMPARE INTEGER.LIST-SWAP)

Conclusions
The Push3 EXEC stack supports powerful and parsimonious
control regimes through explicit manipulation of the stack of
expressions that are queued for execution.

These control regimes include standard iteration, several forms
of recursion based on code manipulation, combinators, named
subroutines, and less conventional strategies.

PushGP can routinely produce solutions that incorporate a
range of these control regimes.

Examples were provided here for reversing and sorting lists and
for computing factorials, Fibonacci numbers, powers of 2, and
parity.

Available Technologies

Push 3 (in Lisp and C++), PushGP 3 (Lisp and C++), and Pushpop (Lisp):
http://hampshire.edu/lspector/push.html.

Breve (Linux, Mac OS X, Windows, includes Push3):
http://www.spiderland.org/breve.

SwarmEvolve 2.0 (uses Push 2):
http://hampshire.edu/lspector/gecco2003-collective.html.

Related technology: http://hampshire.edu/lspector/code.html.

Thanks

Collaborators: Raphael Crawford-Marks, Chris
Perry, Alan Robinson.

Grants: National Science Foundation Grants
No. 0308540 and No. 0216344, Defense Advanced
Research Projects Agency and Air Force Research
Laboratory, agreement number F30502-00-2-0611.

