The Push3 Execution Stack
and the

Evolution of Control

Lee Spector”, Jon Klein”, and Maarten Keijzer*
“Cognitive Science, Hampshire College, Amherst, MA USA
"Physical Resource Theory, Chalmers U.Tech. & Géteborg U., Sweden

*Chordiant Software Inc.
Ispector@hampshire.edu, http://hampshire.edu/Ispector/

Outline

¢ The Push project: open-ended evolution of
arbitrary computational processes.

¢ Push concepts and simple examples.

¢ The new EXEC stack and the amazing things
that it can do.

¢ Examples: list reverse, factorial, Fibonacci,
parity, exponentiation, sorting.

The Push Project

€ What! Evolution of arbitrary computational processes.
€ Why! Problem solving, artificial life, cognitive modeling, ...

¢ How! Natural selection of programs expressed in
syntactically trivial, semantically rich program
representation.

¢ How rich? Rich enough to express evolving programs of
arbitrary architecture and even (in some applications but
not in PushGP) the mechanisms of evolution itself.

Representations for
Evolving Programs

¢ Lisp-like symbolic expressions

2 Mac

nine code
¢ Stack-based interpreter code «

2 Grammar indices

¢ Logic clauses

@ ..

Push

¢ Stack-based postfix language with one stack per
type; types include integer, float, vector, Boolean,
name, code, exec,

@ Trivial syntax.

¢ Evolved programs may use:
¢ multiple data types (arbitrarily intermixed)
¢ subroutines (evolved dynamic architecture)
¢ recursion and iteration (arbitrarily structured)

¢ Also supports the evolution of evolutionary
mechanisms (meta-evolution and autoconstructive
evolution).

Push Syntax

program ::= instruction | literal | (program™)

Power from That?

Yes. Here’s how:

¢ Instructions are written to take arguments from,
and put results onto, the appropriate stacks.

¢ By use of the CODE stack (and now also the EXEC
stack) programs can manipulate (arbitrarily) and
then execute (possibly conditionally) parts of their
own code, thereby implementing evolved control
structures, architectures, etc.

Evolved use of Control
Structures in GP

¢ If-then-else

¢ Do-until, Do-times

¢ Recursion (implicit/explicit)

¢ Evolved functions/macros/architectures

Q See Koza, Kinnear, Angeline & Pollack, Racine & Schoenauer & Dague, Robert

& Howard & Koza, Nordin & Banzhaf, Olsson,Whigham & McKay, Brave,Wong &
Leung,Yu & Clack, Nishiguchi & Fujimoto, Schmidhuber, Kochenderfer, ...

¢ Claim: The Push approach is more elegant,
more expressive,and more evolvable.

Sample Push Instructions

Stack manipulation POP, SWAP, YANK,

instructions DUP, STACKDEPTH,

(all types) SHOVE, FLUSH, =

Math _|_7 R /7 *, >7 <7

(INTEGER and FLDAT) MIN, MAX

Logic (BOOLEAN) AND, OR, NOT,
FROMINTEGER

Code manipulation QUOTE, CAR, CDR, CONS,

(CODE) INSERT, LENGTH, LIST,
MEMBER, NTH, EXTRACT

Control manipulation | DO*, DO*COUNT, DO*RANGE,

(CODE and EXEC) DO*TIMES, IF

A Simple Push Program

(2 3 INTEGER.* 4.1 5.2 FLOAT.+ TRUE FALSE
BOOLEAN.OR)

Resulting stacks:

BOOLEAN STACK: (TRUE)

CODE STACK: ((2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE BOOLEAN.OR

))

FLOAT STACK: (9.3)

INTEGER STACK: (6)

A Scrambled Program

(5 1.23 INTEGER.+ (4) INTEGER.- 5.67
FLOAT.*)

Resulting stacks:

CODE STACK: ((5 1.23 INTEGER.+ (4
*)

)
INTEGER.- 5.67 FLOAT.)
FLOAT STACK: (6.9741)

INTEGER STACK: (1)

Quotation

(CODE.QUOTE
(INTEGER.DUP INTEGER.+)
CODE . DO

PushGP

¢ As generic and simple a GP system you can imagine,
except that it represents evolving programs in Push.

¢ A few minor differences from standard tree-based GP
since Push programs aren’t exactly S-expression trees (no
function/arg place distinction).

¢ A few minor enhancements (e.g. size-fair genetic
operators).

¢ Available in C++, Lisp, and as a Breve plugin
(http://hampshire.edu/lspector/push.html).

Push’s Glorious Past

& Superior scale-up on certain standard GP problems.
¢ Discovery of novel solutions to multi-type problems.
¢ Demonstration of automatic modular architecture evolution.

¢ Use in development of general GP techniques such as size-fair
operators and trivial geography.

& Application to quantum computing problems, producing several
human-competitive results.

& Application to many and various problems in the evolution of
multi-agent systems.

¢ Use in development of novel self-organizing evolutionary
computation paradigms.

Push’s Glorious Past

See http://hampshire.edu/lspector/push.html

Push(l&2) Semantics

e To execute program FP:

1. If P is an INSTRUCTION: execute P (accessing
whatever stacks are required).

2. If P is a LITERAL: push P onto the appropriate
stack.

3. If P is a LIST: recursively execute each subpro-
gram in P.

Push(3) Semantics

e 'To execute program P:

1. Push P onto the EXEC stack.

2. While the EXEC stack is not empty, pop and pro-
cess the top element of the EXEC stack, E:

(a) If E is an instruction: execute E (accessing
whatever stacks are required).

(b) If E is a literal: push E onto the appropriate
stack.

(¢) If E¥ is a list: push each element of F onto
the EXEC stack, in reverse order.

What'’s the difference?

¢ Re-entrance (.. broader applicability)

¢ Expressive parsimony for iteration, naming,
and other language features. (.". enhanced
evolvability of programs using these features)

¢ Combinators and novel control regimes via
explicit EXEC stack manipulation. (.".
enhanced evolvability of control)

Naming a Subroutine

Push?2:
(TIMES2 CODE.QUOTE (2 INTEGER.*) CODE.SET)

Push3:
(TIMES2 EXEC.DEFINE (2 INTEGER.*))

Calling a Subroutine

Push?2:
(TIMES2 CODE.GET CODE.DO)

Push3:
(TIMES2)

Iterators

QY CODE.DO*TIMES . CODE .DO*COUNT ’
CODE .DO*RANGE

¢ EXEC.DO*TIMES, EXEC.DO*COUNT,
EXEC.DO*RANGE

¢ Additional forms of iteration are supported
through code manipulation (e.g. via
CODE.DUP CODE.APPEND CODE.DO)

CODE vs. EXEC
Iterators

¢ The following produce the same net effects:

(5 CODE.QUOTE (INTEGER.+) CODE.DO*CQUNT)
(5 EXEC.DO*COUNT (INTEGER.+))

Combinators

¢ Standard K, S, and Y combinators:
Y EXEC.K removes the second item from the EXEC stack.

¢ EXEC.S pops three items (call them A, B, and C) and
then pushes (B C), C,and then A.

¥ EXEC.Y inserts (EXEC.Y T) under the top item (T).

¢ A Y-based “while” loop:
(EXEC.Y
(<BODY/CONDITION> EXEC.IF
() EXEC.POP))

Evolved List Reverse

¢ Input is list of integers on the CODE stack.

']

¢ PushGP produced the following general
solution:

(CODE .DO*TIMES (CODE.DO* CODE.LIST (((INTEGER.STACKDEPTH EXEC.DO*TIMES)
(BOOLEAN. YANKDUP CODE.FROMINTEGER)) CODE.FROMINTEGER INTEGER.SWAP)
(CODE.YANKDUP INTEGER.% (BOOLEAN.AND) CODE.STACKDEPTH EXEC.DO*TIMES))
(CODE.CONS) (BOOLEAN.SHOVE (CODE.EXTRACT EXEC.S (EXEC.FLUSH CODE.IF
BOOLEAN.YANK (CODE.FROMINTEGER CODE.ATOM (CODE.SWAP BOOLEAN.SHOVE
(INTEGER.MAX) (CODE.QUOTE CODE.APPEND CODE.IF)) ((CODE.ATOM CODE.SHOVE
EXEC.POP (CODE.DO*TIMES BOOLEAN.SHOVE) INTEGER.ROT) (INTEGER.>
BOOLEAN.AND CODE.DO* INTEGER.ROT) CODE.CONS INTEGER.ROT ((CODE.NTHCDR)
INTEGER.ROT BOOLEAN.DUP) INTEGER.SHOVE (CODE.FROMNAME (CODE.CONS

CODE . FROMINTEGER)))) CODE.LENGTH INTEGER.MAX EXEC.Y)) (BOOLEAN.=
(CODE.QUOTE INTEGER.SWAP) CODE.POP) INTEGER.FLUSH))

Evolved List Reverse (2)

¢ The evolved general solution simplifies to:
(CODE.DO* INTEGER.STACKDEPTH EXEC.DO*TIMES
CODE . FROMINTEGER CODE.STACKDEPTH
EXEC.DO*TIMES CODE.CONS)

¢ This works by executing the input list, then
moving all of the integers individually to the
CODE stack, then building the reversed list.

Evolved Factorial

Two simplified evolved general solutions:

(1 EXEC.DO*RANGE INTEGER. *)
Runs a loop that just multiplies all of the loop counter values.

(INTEGER.* INTEGER.STACKDEPTH CODE.DO*RANGE

INTEGER .MAX)

Recursively executes the whole program, which is on the CODE stack;
INTEGER.STACKDEPTH produces the | for the loop index lower
bound, and INTEGER.MAX pulls each product out from under each
INTEGER.STACKDEPTH,; only the first CODE.DO*RANGE is executed
in a context with code on the CODE stack.

Evolved Fibonacci

Two simplified evolved general solutions:

(EXEC.DO*TIMES (CODE.LENGTH EXEC.S)
INTEGER.STACKDEPTH CODE.YANKDUP)

Builds an expression with Fibonacci(input) instances of
INTEGER.STACKDEPTH on the EXEC stack, then executes them all.

(EXEC.DO*COUNT EXEC.S CODE.QUOTE NAME.=
CODE.DO*COUNT CODE.YANKDUP CODE.DO*COUNT
CODE.CONS CODE.STACKDEPTH)

Builds an expression with Fibonacci(input) instances of NAME.= on
the CODE stack, then executes CODE.STACKDEPTH.

Evolved Even Parity

¢ Input is list of Boolean values on the CODE
stack.

¢ Goal is a general solution that solves the
problem for any number of inputs.

Evolved Even Parity (2)

Two simplified evolved general solutions:

(CODE.DO* EXEC.Y BOOLEAN.=)
Terminates only when execution limit is reached; works only for even
number of inputs.

((((CODE.POP CODE.DO BOOLEAN.STACKDEPTH)
(EXEC.DO*TIMES) (BOOLEAN.= BOOLEAN.NOT))))
100% correct, general, terminating; see paper for explanation.

Evolved Expt(2,n)

¢ Normally an easy problem, but here we
attempted to evolve solutions without iteration
Instructions.

¢ The following evolved solution uses novel evolved
control structures (but does not generalize
beyond the training cases, n=1-8):

((INTEGER.DUP EXEC.YANKDUP EXEC.FLUSH 2
CODE.LENGTH) 8 (2 8 INTEGER.* INTEGER.DUP)
(EXEC.YANK 8 INTEGER.* ((CODE.IF (EXEC.ROT))
BOOLEAN.DEFINE EXEC.YANK)))

©

Evolved Sort

¢ Input/output in an external data structure

accessed with INTEGER.LIST-SWAP,
INTEGER.LIST-LENGTH, INTEGER.LIST-GET,

INTEGER.LIST-COMPARE.

s

Simplified evolved general solution that makes
n*(n-1) comparisons:

(INTEGER.LIST-LENGTH INTEGER.SHOVE
INTEGER.STACKDEPTH CODE .DO*RANGE
INTEGER.YANKDUP INTEGER.DUP EXEC.DO*COUNT
INTEGER.LIST-COMPARE INTEGER.LIST-SWAP)

Conclusions

¢ The Push3 EXEC stack supports powerful and parsimonious
control regimes through explicit manipulation of the stack of
expressions that are queued for execution.

¢ These control regimes include standard iteration, several forms
of recursion based on code manipulation, combinators, named
subroutines, and less conventional strategies.

€ PushGP can routinely produce solutions that incorporate a
range of these control regimes.

¢ Examples were provided here for reversing and sorting lists and
for computing factorials, Fibonacci numbers, powers of 2, and

parity.

Available Technologies

© Push 3 (in Lisp and C++), PushGP 3 (Lisp and C++), and Pushpop (Lisp):
http://hampshire.edu/lspector/push.html.

Y Breve (Linux, Mac OS X,Windows, includes Push3):
http://www.spiderland.org/breve.

© SwarmEvolve 2.0 (uses Push 2):
http://hampshire.edu/Ispector/gecco2003-collective.html.

© Related technology: http://hampshire.edu/lspector/code.html.

Thanks

¢ Collaborators: Raphael Crawford-Marks, Chris
Perry, Alan Robinson.

¢ @rants: National Science Foundation Grants
No. 0308540 and No. 0216344, Defense Advanced
Research Projects Agency and Air Force Research
Laboratory, agreement number F30502-00-2-061 I.

