Final Technical Report December, 2004

Multi-type, Self-Adaptive Genetic Programming for Complex Applications
PI: Lee Spector, Hampshire College

DARPA Agent Based Computing (ABC) Program
Taskable Agent Software Kit (TASK)

Project URL: http://hampshire.edu/Ispector/darpa-selfadapt.html

Abstract

This focus of this project was the development of new forms of genetic and
evolutionary computation and their application to problems in the automatic
development and programming of multi-agent systems. This report
summarizes the project's methods, assumptions, procedures, and results, and
also provides links to related publications and software packages that were
produced during the project.

Table of Contents

SUIMIMATY ..o 1
INErOAUCTION ...t 2
Methods, Assumptions, and Procedures

Genetic Programmingocoouuviiiiiiiieeiiieiiieicceee e e e 5

Reducing Configuration Parameters for GP through Self-Adaptation..6

Multi-type Genetic Programming.............ooeeeveviiiiieeeeiinnniiiiiiiieeeeeeennn. 8

Computational Infrastructure: Asynchronous Parallelism and

STMUIATIONS .t 9

Results and Discussion

Highlights ..ooooee e 11

Explanations and TUStrationsceeoerveiiiiiiiiieeeeeennniiieeeeeee e, 13
CONCIUSIONS ...eeeiieeeiiiiieee ettt e et e e s e ee e e 27
References

Primary publications of work conducted in this project 28

Additional TeferenCesccueeeiiiriiiiiiiiiiiiieieineee e 30

i

List of Figures

Figure 1. Genetic Programming flowchart..........ccccccoovviiiiiiiiiiiiiennnnnnnn. 6
Figure 2. The execution architecture for the Push programming

language for genetic and evolutionary computation................. 13
Figure 3. The flowchart of the Pushpop autoconstructive evolution

SYSTEIIL. 1. 15
Figure 4. Diversification results from Pushpop.........ccccccciiiiiiiininnnniie. 15
Figure 5. A snapshot of SwarmEvolve 2.0.ccccccciiniiiiiiiniiiicenn, 16
Figure 6. A snapshot of SwarmEvolve 2.0 with lines drawn between

agents that have shared energy with one another. 17

Figure 7. Results demonstrating the emergence of collective
behavior in certain conditions in the SwarmEvolve 2.0

autoconstructive evolution SYStem.........cccuvvvvrieeeeeeerernncnninneeen. 18
Figure 8. Team/agent architecture for competitive co-evolution of
Quidditch-playing agents.ccccceeeeeiiiiiiiiiiieeeeeee e, 19
Figure 9. A snapshot of the system for competitive co-evolution of
Quidditch-playing agents.ccccceeeverriiiiiiiiieeeeeeeeeeeiieeeeee. 20
Figure 10. A GUI for the QGAME Quantum Gate and Measurement
EMUIALOT. .oeeiiiiiiiiiiiiee e 21
Figure 11. The cover of the PI’s book on the evolution of quantum
algorithms using QGAME and PushGP................ccccoeeieinni. 22

Figure 12. A better-than-classical quantum algorithm for determining
whether a provided oracle gate (f) satisfies the "AND/OR"

PIOPETLY. ceeiiiiiiiiiiiiiiteeeteteteeeeeteeeee et et eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeaees 23
Figure 13. The structure of the Hampshire/UMass collaboration on
the UAVOIVE PIOJECT. ..evviieiiiiiiiiiiiieeeee e eeeeiieeeee e 24

Figure 14. Performance of the evolved UAV surveillance strategy
relative to the UMass strategy and the random initial

SETALEZICS. .uvvvvvrrieeeeeeeeeaeiitteeeeeeeeeessaanareeeeeeeeeeesasannnsaeeaaaaeeens 25
Figure 15. A snapshot of the UAVolve system for the evolution of
UAV surveillance Strategies.ueeeeeeeeeerrrriiirriiieeeeeeeennnennns 26

Summary

The core technologies developed in this project extend the genetic
programming paradigm through stack-based type-handling facilities that
provide several benefits simultaneously; these include support for data-rich
application areas, automatic modularization (through the use of CODE and
EXEC types), and self-adaptation of the evolutionary process (by leveraging
the CODE type in the reproduction process). These technologies were
applied in a range of complex application areas including several involving
multi-agent systems (such as transport network controllers, goal-directed
swarms, and surveillance UAVs) and other applications that helped to
"stress test" the core technologies (for example on quantum computing
problems). Several infrastructural technologies were also developed,
including systems for conducting and analyzing genetic programming runs
on high-performance computer clusters and simulation systems within which
evolving programs can be assessed for fitness. The results of this project
include both the specific technologies (most of which are available from the
web; links are provided below) and documentation of the methodologies by
which these technologies can be applied to the automatic development and
programming of multi-agent systems.

Introduction

Automatic programming technologies hold great promise for the production
of software agents for complex, dynamic environments. Genetic
programming techniques, in particular, can harness the power of natural
selection to produce autonomous systems well suited to their niches, even in
environments that are too complex or dynamic for detailed human analysis.
In a genetic programming system solutions emerge from a continuous
process of adaptive engagement with the environment; in some cases this
can produce solutions where other methods fail. Furthermore, automated
methods can be repeatedly run and varied, and the results of these runs can
be analyzed to provide detailed information about the difficulty of the
agents’ tasks and the suitability of the methods for the task environments.
The genetic programming literature describes many experiments in which
systems with agent-like properties have been automatically generated.
However, most of the previously generated systems have been too simple to
perform helpful tasks for actual users. A gap remains between the
capabilities of current genetic programming technology and those that would
be required to automatically generate robust software agents. The proposed
research seeks to narrow the gap between current genetic programming
technology and genetically-based “well-founded agent creation tools.”

As stated in the BAA to which this project was a response, “Agent
development is currently a 'black art' -- an arbitrarily complex software
development” process. One way to make agent development more replicable
and amenable to formal analysis is to automate the process so that
controlled, repeatable experiments can be performed. Unfortunately,
however, the successful application of genetic programming technology is
also a “black art,” often requiring repeated experiments and sophisticated
understanding of interactions among a genetic programming system’s many
parameters. One goal of the proposed project was therefore to reduce the
configuration work that a practitioner must do to apply the technique to a
new problem area. The primary approach was to fold parameters into the
representation over which the evolutionary search is conducted — that is, to
allow the same adaptive process of natural selection to control both the
search for agent programs and the search through the space of system
parameters. This approach, of using self-adaptation to control system
parameters, was studied previously in the genetic algorithms and genetic
programming communities, but it had been applied much more narrowly
than was accomplished here. The work in this project used self-adaptive

mechanisms to control not only mutation rates and other numeric
parameters, but also to develop data representations, program
representations, population structure, and reproductive strategies. When it is
adaptive to do so the developed systems may evolve toward any of a broad
range of genetic algorithm or genetic programming approaches, but the user
is not required to specify the details of the strategy or combination of
strategies in advance.

We began with standard genetic programming systems as described in, for
example, (Koza, 1992, 1994; Banzhaf et al., 1998; Koza et al., 1999; Spector
et al., 1999). Application to the evolution of robust agents in complex multi-
agent systems required several innovations; these innovations were the focus
of this project and they will be outlined below.

Agents must generally interact with a heterogeneous set of entities, each of
which may use a specialized interface or language. Early genetic
programming systems forced users to restrict all operations to a single data
type to ensure the semantic validity of programs undergoing recombination
and mutation. More recently, “strongly typed” genetic programming systems
have been developed that relax this restriction, allowing the generation of
programs that manipulate a diverse set of data types. This capability is
critical for the evolution of agents that must interact with diverse entities and
refer to diverse data. The research conducted in this project extended the
idea of strongly typed genetic programming to a more general notion of
“multi-type” genetic programming that has several advantages. First, it
allows the arbitrary intermixing, without syntactic restrictions, of code that
works with any data type or set of data types. Second, it incorporates first-
class function types to simplify the dynamic evolution of subroutines,
control structures, and other program representations. Third, it leverages the
extended type system to allow agent programs to contain their own
reproduction procedures, thereby transferring the responsibility for
reproductive strategies from the user (via global, human-set parameters) to
the system itself (via natural selection operating on the agents themselves).
The cumulative effect of these innovations is that, in many cases, the user
can specify a diverse set of primitives and related data types while
simultaneously specifying little in the way of system parameters.

These ideas have, over the course of this project, led to the development of
several new technologies for automatic programming of multi-agent
systems. These technologies include the Push programming language for

evolutionary computation (now at version 3 and available in several
programming languages for several platforms), the PushGP genetic
programming system (also available in several versions), and a variety of
specific “autoconstructive evolution” systems. Significant results have been
obtained with these technologies in application areas ranging from
competitive strategy games in complex 3D environments to the discovery of
new quantum computing algorithms.

Methods, Assumptions, and Procedures

Genetic Programming

Genetic programming (GP) is a technique for the automatic generation of
computer programs by means of natural selection (Koza 1992). GP is a
special case of the genetic algorithm developed by Holland (Holland 1992).
Whereas the conventional genetic algorithm uses evolution-inspired
techniques to manipulate and produce fixed-length chromosome strings that
encode solutions to problems, GP manipulates and produces computer
programs.

The GP process starts by creating a large initial population of programs that
are random combinations of elements from problem-specific function and
terminal sets. Each of the programs in the initial population is assessed for
fitness. This is usually accomplished by running each program on a
collection of inputs called fitness cases, and by assigning numerical fitness
values to the output of each of these runs; the resulting values are then
combined to produce a single fitness value for the program. The fitness
values are used in producing the next generation of programs via a variety of
genetic operations including reproduction, crossover, and mutation. (For a
study comparing these operations see (Luke & Spector 1997, 1998)).
Individuals are randomly selected for participation in these operations, but
the selection function is biased toward highly fit programs. Over many
generations of fitness assessment, reproduction, crossover, and mutation, the
average fitness of the population may tend to improve, as may the fitness of
the best-of-generation individual from each generation. After some number
of generations or improvement in fitness, the best-of-run individual is
produced as the output from the GP system. Figure 1 shows a flowchart for
the typical genetic programming system.

random programs

o

test fithess

¥

solution? » halt

3

selection

3

variation

Figure 1. Genetic Programming flowchart.

Reducing Configuration Parameters for GP through Self-Adaptation

Rothlauf et al. describe the problem of configuring a genetic algorithm (GA)
as follows:

Users are often confronted with the situation that a GA does a good
job for a small or easy problem, but when scaled up to bigger or more
complicated problems, the traditional GA degrades or even breaks
down. The user is frustrated and starts knob twiddling until he gets
good solutions (or not!). Research is under way to help the user to
overcome this problem and to adjust the parameters of a GA
autonomously (Harik & Lobo, 1999). Nevertheless, finding good
encodings, operators, and parameters that all fit together is a difficult
task and needs work, time, and sometimes luck. The process of
matching the encoding and the GA often draws the line between
failure or success of optimisation. (Rothlauf, Goldberg and Heinzl,
2000)

One goal of this project was therefore to reduce the configuration work that
a practitioner must do to apply the technique to a new problem area. The

primary approach was to fold parameters into the representation over which
the evolutionary search is conducted — that is, to allow the same adaptive
process of natural selection to control both the search for agent programs
and the search through the space of system parameters. This approach, of
using self-adaptation to control system parameters, had been studied
previously in the genetic algorithms and genetic programming communities
(see especially (Angeline, 1995)) but it had been applied much more
narrowly than was accomplished here. In this project self-adaptive
mechanisms were used to control not only mutation rates and other numeric
parameters, but also to develop data representations, program
representations, population structure, and reproductive strategies. When it is
adaptive to do so the resulting system may evolve toward any of a broad
range of genetic algorithm or genetic programming approaches, but the user
will not be required to specify the details of the strategy or combination of
strategies in advance.

Self-adaptation of program representations had been explored in previous
genetic programming work through the use of automatically defined
functions (Koza, 1994), architecture-altering operations (Koza et al. 1999),
automatically defined macros (Spector, 1996), and to some extent self-
modifying code (Nordin and Banzhaf, 1996; Spector and Stoffel, 1996a).
The new mechanisms developed here, building on multi-type genetic
programming extensions, generalize these mechanisms.

Self-adaptation of population structure and reproductive strategies has been
studied in various forms, often involving the adjustment of parameters that
control the frequency with which various genetic operators will be applied or
details about how those operators will operate (e.g., with adaptive mutation)
(Angeline, 1995). In contrast, the work in this project was more thorough-
going in its approach to self-modification: the entire reproductive strategy,
including population structure (that is, which other individuals may be
accessed for crossover operations), the implementation of particular genetic
operators (such as mutation and crossover), and any numeric control
parameters were represented explicitly in the code of the evolving programs.
They were therefore be manipulable by genetic operators and subject to
variation and natural selection, providing for self-adaptation over
evolutionary time. This notion of reproduction being the “responsibility” of
individuals is widespread in the artificial life literature but has not been
adequately explored in engineering-oriented genetic algorithms or genetic
programming systems. The potential benefit is that a wide range of

parameters and design choices that are normally under the control of human
experimenters are transferred to the control of the algorithm. We coined the
expression “Autoconstructive evolution” to describe evolutionary
computation systems that are self-adaptive in this way.

Multi-type Genetic Programming

Agents must generally interact with a heterogeneous set of entities, each of
which may use a specialized interface or language. Early genetic
programming systems forced users to restrict all operations to a single data
type to ensure the semantic validity of programs undergoing recombination
and mutation. More recently, “strongly typed” genetic programming systems
have been developed that relax this restriction, allowing the generation of
programs that manipulate a diverse set of data types (Montana, 1995). This
capability is critical for the evolution of agents that must interact with
diverse entities and refer to diverse data. In this project we extended the idea
of strongly typed genetic programming to a more general notion of “multi-
type” genetic programming. Multi-type genetic programming builds on the
stack-based genetic programming paradigm, in which all intermediate values
are stored on a global stack (Perkis, 1994; Stoffel and Spector, 1996). In
multi-type genetic programming this concept is extended to use multiple
stacks, one for each data type that may be important in the application
environment. For example, one would use independent stacks for integers,
symbols, strings, URLs, HTML tags, DAML tags, and so on. For each stack
there is a set of primitive stack-manipulation operators (push, pop, duplicate,
etc.) and higher-level functions that take any number of arguments of any of
the types can be included in the function set. To implement the self-adaptive
features described above several additional data types and corresponding
high-level functions and stacks were developed; the additional data types
include CODE and EXEC, and related high-level functions include
DEFINE, DO, a general set of list manipulation primitives, and so forth. As
with ordinary stack-based genetic programming, a function that is called in a
context in which the required arguments are not available (because one or
more stacks are empty) is simply ignored.

Multi-type genetic programming has several advantages over the standard
strongly-typed genetic programming methods. First, it allows the arbitrary
intermixing, without syntactic restrictions, of code that works with any data
type or set of data types. Second, it incorporates first-class function types

and code entry-point types to simplify the dynamic evolution of subroutines,
control structures, and other program representations. Third, it leverages the
extended type system to allow agent programs to contain their own
reproduction procedures, thereby transferring the responsibility for
reproductive strategies from the user (via global, human-set parameters) to
the system itself (via natural selection operating on the agents themselves).
The cumulative effect of these innovations is that the user is able to specify a
diverse set of primitives and related data types while simultaneously
specifying little in the way of system parameters. As a result, these
techniques are able to produce human-competitive results in a variety of
difficult problem areas related to multi-agent systems.

Computational Infrastructure: Asynchronous Parallelism and Simulations

The work in this project was computationally intensive and required the
development and deployment of several significant pieces of computational
infrastructure.

First, it was necessary to deploy the developed evolutionary computation
systems across a “Beowulf-style” computing cluster. We used an
asynchronous “deme” or “island” model for our genetic programming runs,
with one sub-population per computational node, and we developed software
to support the execution and analysis of runs conducted in this way.

Second, it was necessary for several of the applications to develop
simulation environments within which the evolving programs would be
assessed for fitness. In particular, we developed and/or enhanced four
significant simulation environments

- Breve: a 3d simulation environment for decentralized simulations and
artificial life. This is an open source software project; see
http://www.spiderland.org/breve.

- SwarmEvolve: an system for the evolution of goal-directed collective
activity in a 3D environment. See
http://hampshire.edu/lspector/gecco2003-collective.html.

- QGAME: Quantum Gate And Measurement Emulator, a quantum
computer simulator. See http://hampshire.edu/lspector/qgame.html.

- UAVolve: a system for the evolution of strategic behavior of UAV
swarms (developed jointly with the University of Massachusetts at
Amherst TASK team, David Jensen P.I.).

10

Results and Discussion

We first provide a quick listing of the major results (highlights) of the
project to provide an overview. We then augment the highlights with
explanatory text and illustrations relating to some of the major results. Full
details of each specific result, each publication, and each collaborative effort
can be found in the archived technical reports and publications listed at
http://hampshire.edu/Ispector/darpa-selfadapt.html.

Highlights

- Development of the Push programming language for evolutionary
computation (Push 1, Push 2, and Push 3, now available in C++ and Lisp;
see http://hampshire.edu/push.html).

- Development of the PushGP multi-type, self-adaptive genetic
programming system (now available in C++ and Lisp; see

http://hampshire.edu/push.html).

- Development of the Pushpop autoconstructive evolution system (see see
http://hampshire.edu/push.html).

- Development of the Breve simulation environment for complex agent-
based systems (see http://www.spiderland.org/breve).

- Integration of Push/PushGP with Breve (first as a plugin, now through
native support in Breve 2.0 and higher).

- Integration of PushGP/Pushpop with MIT/BBN-derived transport
network agent simulator.

- Integration of Elementary Adaptive Modules into a framework for the
evolution of multi-agent systems.

- Demonstration of the use of servos in evolved agent architectures.

- Demonstration of the utility of a genetic algorithm in conjunction with
the Dartmouth 3D Opera problem simulator.

11

Evolution of transport network control agents.

Demonstration of the evolution of modularization in PushGP.
Demonstration of the efficacy of size-fair genetic operators in PushGP.
Development of diversity metrics in PushGP and Pushpop.
Demonstration and extension of the "Van Belle/Ackley effect" (UNM).

Demonstration of reliable auto-diversification in the Pushpop
autoconstructive evolution system.

Development of the QGAME Quantum Gate and Measurement Emulator
to support the evolution of new quantum algorithms (now available in
C++ and Lisp; see http://hampshire.edu/lspector/qgame.html).

Discovery of several significant new quantum algorithms using the
PushGP genetic programming system in conjunction with Qgame.

Evolution of goal-directed 3D swarms driven by parameterized flocking
equations (in SwarmEvolve 1.0; see
http://hampshire.edu/lspector/gecco2003-collective.html).

Evolution of goal-directed 3D swarms driven by open-ended programs in
a Turing complete representation (in SwarmEvolve 2.0; see
http://hampshire.edu/lspector/gecco2003-collective.html).

Demonstration of the emergence of collective behavior and multicellular
organization in 3D swarms (in SwarmEvolve 1.0 and 2.0; see
http://hampshire.edu/lspector/gecco2003-collective.html).

Analysis of the relations be environmental stability, genetic stability, and
adaptation (in SwarmEvolve 2.0).

Co-evolution of teams players for a complex, dynamic, 3D game
(quidditch; see http://alum.hampshire.edu/~rpcO1/vww.html,
http://hampshire.edu/Ispector/quidditch-movies/, and
http://hampshire.edu/lspector/pubs/virtual_witches_and_warlocks.pdf).

12

- Production of course materials using multi-agent simulations (WUB
World, Capture the Flag; see
http://hampshire.edu/Ispector/cs263/cs263s04.html).

- Evolution of high-performance surveillance strategies for UAVs.

Explanations and Illustrations

Many of the project results built on the development of the Push
programming language for evolutionary computation. Push is described in
over a dozen documents accessible from
http://hampshire.edu/Ispector/push.html, but the most current incarnation of
the language as of this report, Push 3, is described in:

Spector, L., C. Perry, J. Klein, and M. Keijzer. 2004. Push 3.0
Programming Language Description.
http://hampshire.edu/Ispector/push3-description.html.

Figure 2 provides a schematic diagram of the Push execution architecture.

Executing Program
(QUOTE (POP 1) QUOTE (DUP 1 - DO *) DUP 2 < IF)

7 TRUE FLOAT X o s 12
X oat=3.
23 CODE
f/code=(DUP...)
Integer Boolean ~ Type Name -
stack stack stack stack Name/type=value bindings
3.141 (+ 2 . U
[o-00t (POP < CNOT More stacks as needed...
12.34
~ Float Code Matrix
stack stack stack

Figure 2. The execution architecture for the Push programming language for
genetic and evolutionary computation.

13

Push was used in several genetic and evolutionary computation systems, the
most widely-used of which was PushGP. PushGP:

- Evolves Push programs using (mostly) standard GP.
- Multiple types handled without syntactic constraints.

- Evolves modules and control structures automatically, in some cases
more effectively than ADF mechanisms.

- See, e.g., results in GPEM 3:1 (2002), ECOMAS-2002, GECCO-2001,
GECCO-2002, GECCO-2004.

A greater level of self-adaptation was achieved in our “autoconstructive
evolution” systems such as Pushpop and SwarmEvolve 2.0. In an

autoconstructive evolution system:

Individuals make their own children.

- Agents thereby control their own mutation rates, sexuality, and
reproductive timing.

- The machinery of reproduction and diversification (i.e., the machinery of
evolution) evolves.

- Radical self-adaptation is achieved.

- See, e.g., results in ALife8, GECCO-2003, AAAI 2004 Symposium on
Artificial Multiagent Learning, etc.

Figure 3 shows a flowchart for the Pushpop autoconstructive evolution
system. Figure 4 shows results, published in the proceedings of the ALife8
conference, demonstrating that in adaptive Pushpop populations specied are
more numerous and diversification processes are more reliable. This also
demonstrates how selection can promote diversity and provides a possible
explanation for the evolution of diversifying reproductive systems.

14

Population of randomly
generated organisms

Test problem-solving fitness
and produce children

<4

Evaluated, pregnant
organisms

Fitness tournaments

<4
C Chi:ren)

Add random organisms
if too few

U

‘_<Child population >

Figure 3. The flowchart of the Pushpop autoconstructive evolution system.

Note distribution of “+” points: adaptive populations have many species and mother/daughter
differences in a relatively high, narrow range (above near-clone levels).

|

]

]

T T T
reprocuctively conpetent, unsolved phosss: adoptive
reprocuctively conpetent, ureolved phozes: non-odapkive X
rEarocctively inconpetent phazes O

=0lved phoses

T T T
reprocuct-ively conpetent, unsolved phosss: adoptive
reprocuctively conpetent, urealved phozes: non-adophive
rearocctively inconpetent. phozes

=0 lved phoses

4
=)

T
T
=)

T

=
o

ireer
o

)
)
T
o
a
1

)

)
T
1

N
i)

T
jﬂl
o]

1

o) N
b i)
T T

ES
1
o)
b
T
>3
1

[
i
T
B,
+
e
i
1
[
i
T
+
o

1 7

Qveroge cverogs nother child dirtrerence
o
Qveroge cverogs nother child dirtrerence

=
=

—near-clones— e
a 1 Il 1 1
2] 1 2 x| H L) 2] K 2] 18 2 x| H L2 2] ™

w

average count of diancter-15 species

Runs including
sexual instructions

average count of diancter-15 specics

Runs without
sexual instructions

Figure 4. Diversification results from Pushpop (see text).

Figures 5 and 6 show snapshots from the SwarmEvolve 2.0 system, while
Figure 7 presents results demonstrating the emergence of collective behavior
(energy sharing) in this dynamic, goal-oriented environment.

Figure 5. A snapshot of SwarmEvolve 2.0.

16

Figure 6. A snapshot of SwarmEvolve 2.0 with lines drawn between agents
that have shared energy with one another.

17

['.'-I'—' T I I lIlIII Ll) I LI L LN B B B B |

", ‘\\I:Hli' Sharing —&—

05k Charity Sharing - -+ - =
. Mutual Sharing —a—

.\'-ca- P H]I.'Il'].]']'_'_ R e

Illl 1 L lIIllJl } I | IllJJl] I | I} | N -

10 100 1000 10000
Environmental Stability
Figure 7. Results demonstrating the emergence of collective behavior in

certain conditions in the SwarmEvolve 2.0 autoconstructive evolution
system (see GECCO-2003 paper for full explanation).

In another demonstration of our combination of 3D simulation and self-
adaptive evolutionary computation we evolved agents to play the
“Quidditch” game from the popular Harry Potter books. This domain was
chosen both because it attracts general interest and because of several useful
technical features:

- Richly heterogeneous—player roles, balls themselves are
active/intelligent.

- Richly 3-dimensional —flying game, full use of the third dimension.

- Extensible—rules not uniquely determined by the Rowling books;
physics based on magic spells so the sky is the limit!

- Beyond human experience —unlike soccer, few intuitions about strategy
to bias methods.

18

We used competitive co-evolution with teams represented as shown in
Figure 8. Figure 9 shows a snapshot of the system. The source code for the
system is available from http://hamp.hampshire.edu/~rpcO1/vww.html.

Player Population
PN

()

Push |Push |Push [Push |Push |Push |Push
Code|Code|Code|Code|Code|Code[Code

f:hasersa “ &

Ball Population
P

()

T

Push |Push | Push
Code|Code|Code

/
Eludger)

Figure 8. Team/agent architecture for competitive co-evolution of
Quidditch-playing agents.

19

Figure 9. A snapshot of the system for competitive co-evolution of
Quidditch-playing agents.

Several core technologies in the project were tested on applications to
quantum computing which, while not directly involved in multi-agent
systems, provide difficult test problems for machine learning technologies.
These applications were supported by the development of the QGAME
Quantum Gate and Measurement Emulator, a GUI for which is shown in
Figure 10. Versions of QGAME are now available both in Lisp and in C++
from http://hampshire.edu/Ispector/qgame.html. Work on QGAME in
conjunction with PushGP formed the foundation for the book shown in
Figure 11.

Several significant results were obtained in quantum computing, including
results on:

- The 1-bit Deutsch-Jozsa (XOR) problem
- The 2-bit Grover database search problem

- The 1-bit OR problem

20

- The 2-bit AND/OR problem (see the algorithm shown in Figure 12)

- Communication and entanglement capacities of “Smolin” and
“Bernstein-Spector” gates.

- Re-discovery of quantum dense coding.

Several of these results were significant both with respect to the genetic
programming techniques that were employed in their production and in
virtue of their importance in the study of quantum computing and quantum
information theory, irrespective of their means of production. This
significance is demonstrated by the fact that the results were published both
in the computer science literature and in the physics literature. Several of
these results were the basis for a gold medal award granted to the PI in the
Human Competitive Results competition at the 2004 Genetic and
Evolutionary Computation Conference (GECCO-2004).

-
ggame, p=0.4999999999999999 QGAME Program
fhadamard @) =
{u-theta 1,/ pi 43}
21 0 . . fomot 1 20
Instruction History Uz 1 1.832505714504846 —3.00830065882337
[HADANARD @) 3 -B.207S070810256552 @)
{U-THETA 1 B.7E53981633074483) {hadamard @}
(CHOT 1 2) {meosure 20
P fe 1 1 oeososT 1 ASOdRAFR -3 Q00S0RESRED fu-theta 1,0/ pi 43
qgame, p=0.49999999999999047 | [icnot 1 2}
(U2 1 1.832505714504840 -3 . 00830065082 337

3 -@.297597901 AZ5R552 @)
{hadamard @)

210
Instruction History (u-theta 1 ,{/ pi 43}
THACANARD &7 senot 123 =
U-THETA 1 ©.7853081 F3=074483 fU2 1 1 .83259571 4504046 -3 . 003I9RRSEAZ23T3 -l
ECHDT 123 ; I—B L2O7597081 B256552 @) -

(U2 1 1.832595714594m46 —3.00234 [I) [«]»
{HADAMARD &)

{MERSUFE 23 .
{U-THETA 1 &.7853081633074453) | Qubits: Delay: | 0.5 Run__|
A

(CHOT 1 2} \,
(U2 1 1.832505714504646 —3.00230865AR2
* Meqsurement History
|(2 [EIED) |
Figure 10. A GUI for the QGAME Quantum Gate and Measurement
Emulator.

21

Mg l.-.:l.'lhi.-. Punimhere

-

Lee Spactor

Figure 11. The cover of the PI’s book on the evolution of quantum
algorithms using QGAME and PushGP.

22

>

J/

£
\

1- U(?m.f4}|- THH

°9H

UG.4205

U(0.07491)

T T I ..

IIIIIIIIIIIIIIIIII.

>

o

A

Figure 12. A better-than-classical quantum algorithm for determining
whether a provided oracle gate (f) satisfies the "AND/OR" property. The
algorithm was found by PushGP and is documented in the book described in
the text.

The project culminated in a collaboration with the UMass TASK group on
the UAV project organized by the TASK OEF group. Figure 13 shows the
structure of the interaction between Hampshire College and UMass
researchers.

As demonstrated at the August, 2004 TASK demonstration our techniques
enabled us to evolve a UAV surveillance strategy that is robust in the face of
unexpected target behaviors and threat areas. The evolved behavior appears
disorganized at first, but after a short time, an “emergent” tour is established.

23

Figure 14 shows the performance of the evolved strategy, demonstrating that
our techniques are able to improve on the strategies produced by well-
trained humans (the UMass development team). Figure 15 shows a snapshot
of the evolved strategy, in which an agent is skirting a threat area.

(HEnotes) AV Collaboration

{

PROXIMITY UMass

Push/Evolution Hampshire College

OEF UMass

Hampshire College

Figure 13. The structure of the Hampshire/UMass collaboration on the
UAVolve project.

Average minutes since last surveillance
120

90

60

30

Early Evolution Hand Coded Late Evolution
B Worst B Average [Best

Figure 14. Performance of the evolved UAV surveillance strategy (Late
Evolution) relative to the UMass strategy (Hand Coded) and the random
initial strategies (Early Evolution). Lower is better.

25

o
F
A
P

Figure 15. A snapshot of the UAVolve system for the evolution of UAV
surveillance strategies.

26

Conclusions

This project produced several new technologies to support the automated or
semi-automated development of multi-agent systems in complex, dynamic
environments. These technologies, all of which are based on the concepts of
self-adaptive, multi-type genetic programming, were demonstrated in a
variety of application areas that range from transport network and UAV
control to quantum computing. A large number of results were produced in
these applications that are significant in their own right. The developed
technologies are now available for deployment on other problems, both in
the domain of multi-agent systems and in other problem areas.

27

References

Primary publications of work conducted in this project (note: many of these
publications are available for download from
http://hampshire.edu/lspector/darpa-selfadapt.html)

Spector, L., J. Klein, C. Perry, and M. Feinstein. To appear. Emergence of
Collective Behavior in Evolving Populations of Flying Agents. In Genetic
Programming and Evolvable Machines.

Spector, L., C. Perry, J. Klein, and M. Keijzer. 2004. Push 3.0 Programming
Language Description. http://hampshire.edu/lspector/push3-description.html.

Spector, L. 2004. Automatic Quantum Computer Programming: A Genetic
Programming Approach. Boston, MA: Kluwer Academic Publishers.

Spector, L., J. Klein, and C. Perry. 2004. Tags and the Evolution of
Cooperation in Complex Environments. In Proceedings of the AAAI 2004
Symposium on Artificial Multiagent Learning. Melno Park, CA: AAAI
Press.

Crawford-Marks, R., L. Spector, and J. Klein. 2004. Virtual Witches and
Warlocks: A Quidditch Simulator and Quidditch-Playing Teams Coevolved
via Genetic Programming. In Late-Breaking Papers of GECCO-2004, the
Genetic and Evolutionary Computation Conference. Published by the
International Society for Genetic and Evolutionary Computation.

Spector, L., J. Klein, C. Perry, and M. Feinstein. 2003. Emergence of
Collective Behavior in Evolving Populations of Flying Agents. In
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2003). Springer-Verlag. pp. 61-73. Winner, Best Paper Award
(AAAA Track).

Spector, L. 2003. An Essay Concerning Human Understanding of Genetic
Programming. In Genetic Programming: Theory and Practice, edited by R.L

Riolo and W. Worzel, pp. 11-24. Boston, MA: Kluwer Academic Publishers.

Spector, L., and H.J. Bernstein. 2002. Communication Capacities of Some
Quantum Gates, Discovered in Part through Genetic Programming. In J.H.

28

Shapiro and O. Hirota, Eds., Proceedings of the Sixth International
Conference on Quantum Communication, Measurement, and Computing
(OCMC). Princeton, NJ: Rinton Press.

Spector, L. 2002. Adaptive populations of endogenously diversifying
Pushpop organisms are reliably diverse. In R. K. Standish, M. A. Bedau, and
H. A. Abbass (eds.), Proceedings of Artificial Life VIII, the Sth International
Conference on the Simulation and Synthesis of Living Systems, pp. 142-145.
Cambridge, MA: The MIT Press.

Spector, L., and J. Klein. 2002. Evolutionary Dynamics Discovered via
Visualization in the BREVE Simulation Environment. In Bilotta et al. (eds),
Workshop Proceedings of the 8th International Conference on the
Simulation and Synthesis of Living Systems, pp. 163-170. Sydney, Australia:
University of New South Wales.

Spector, L., and A. Robinson. 2002. Multi-type, Self-adaptive Genetic
Programming as an Agent Creation Tool. In Proceedings of the Workshop
on Evolutionary Computation for Multi-Agent Systems, ECOMAS-2002,
International Society for Genetic and Evolutionary Computation.

Robinson, A., and L. Spector. 2002. Using Genetic Programming with
Multiple Data Types and Automatic Modularization to Evolve Decentralized
and Coordinated Navigation in Multi-Agent Systems. In Late-Breaking
Papers of GECCO-2002, the Genetic and Evolutionary Computation
Conference. Published by the International Society for Genetic and
Evolutionary Computation.

Spector, L., and A. Robinson. 2002. Genetic Programming and
Autoconstructive Evolution with the Push Programming Language. In
Genetic Programming and Evolvable Machines, Vol. 3, No. 1, pp. 7-40

Crawford-Marks, R., and L. Spector. 2002. Size Control via Size Fair
Genetic Operators in the PushGP Genetic Programming System. In W. B.
Langdon, E. Cantu-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K.
Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter,
A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska (editors), Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO-2002,
pp. 733-739. San Francisco, CA: Morgan Kaufmann Publishers.

29

Spector, L. 2002. Hierarchy Helps it Work That Way. In Philosophical
Psychology, Vol. 15, No. 2 (June, 2002), pp. 109-117.

Spector, L. 2001. Autoconstructive Evolution: Push, PushGP, and Pushpop.
In Spector, L., E. Goodman, A. Wu, W.B. Langdon, H.-M. Voigt, M. Gen,
S. Sen, M. Dorigo, S. Pezeshk, M. Garzon, and E. Burke, editors,
Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO-2001, 137-146. San Francisco, CA: Morgan Kaufmann Publishers.

Spector, L., R. Moore, and A. Robinson. 2001. Virtual Quidditch: A
Challenge Problem for Automatically Programmed Software Agents. In E.D.
Goodman, editor, Late-Breaking Papers of GECCO-2001, the Genetic and
Evolutionary Computation Conference. Published by the International
Society for Genetic and Evolutionary Computation.

Barnum, H., H.J. Bernstein, and L. Spector. 2000. Quantum circuits for OR
and AND of ORs. Journal of Physics A: Mathematical and General, Vol. 33
No. 45 (17 November 2000), pp. 8047-8057.

Additional references

Angeline, P. J. 1995. Adaptive and Self-Adaptive Evolutionary
Computations, In Computational Intelligence: A Dynamic Systems
Perspective, M. Palaniswami, Y Attikiouzel, R. Marks, D. Fogel and T.
Fukuda (eds.), Piscataway, NJ: IEEE Press, pp 152-163.

Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and Francone, Frank
D. 1998. Genetic Programming -- An Introduction; On the Automatic
Evolution of Computer Programs and its Applications. Morgan Kaufmann,
dpunkt.verlag.

Barnum, H., Bernstein, H. J., and Spector, L. 1999. Better-than-classical

Circuits for OR and AND/OR Found Using Genetic Programming. Los
Alamos Preprint Archive, http://xxx.lanl.gov/abs/quant-ph/9907056

30

Bruce, W.S. 1996. Automatic Generation of Object-Oriented Programs
Using Genetic Programming. In Genetic Programming 1996: Proceedings
of the First Annual Conference, pp. 267-272, MIT Press, 28-31.

Bruce, W.S. 1997. The Lawnmower Problem Revisited: Stack-Based
Genetic Programming and Automatically Defined Functions. In Genetic

Programming 1997: Proceedings of the Second Annual Conference, pp. 52-
57, Morgan Kaufmann, 13-16.

Holland, J. H. 1992. Adaptation in Natural and Artificial Systems.
Cambridge, MA: The MIT Press.

Koza, John R. 1992. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press.

Koza, John R. 1994. Genetic Programming II: Automatic Discovery of
Reusable Programs. MIT Press.

Koza, J.R., D. Andre, F. H Bennett III, and M. Keane. 1999. Genetic
Programming 3: Darwinian Invention and Problem Solving, Morgan
Kaufman.

Luke, S., and L. Spector. 1996. Evolving Graphs and Networks with Edge
Encoding: Preliminary Report. In Koza, John R. (editor), Late-Breaking
Papers at the Genetic Programming 1996 Conference. Palo Alto, CA:
Stanford Bookstore (ISBN 0-18-201-031-7).

Luke, S. and L. Spector. 1997. A Comparison of Crossover and Mutation in
Genetic Programming. In Genetic Programming 1997: Proceedings of the
Second Annual Conference, 240-248.Cambridge, MA: The MIT Press.

Luke, S., and L. Spector. 1998. A Revised Comparison of Crossover and
Mutation in Genetic Programming. In Genetic Programming 1998:
Proceedings of the Third Annual Conference, edited by J.R. Koza, W.
Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D.B. Fogel, M.H. Garzon, D.E.
Goldberg, H. Iba, and R.L. Riolo. pp. 208-214. San Francisco, CA: Morgan
Kaufmann.

Montana, D.J. 1995. Strongly Typed Genetic Programming. Evolutionary
Computation, 3(2), pp. 199-230.

31

Nordin, P. 1994. A Compiling Genetic Programming System that Directly
Manipulates the Machine Code. In Advances in Genetic Programming,
edited by K.E. Kinnear, Jr. pp. 311-331, MIT Press, 1994.

Nordin, P., and W. Banzhaf. 1995. Evolving Turing-Complete Programs for
a Register Machine with Self-modifying Code Genetic Algorithms. In
Proceedings of the Sixth International Conference (ICGA9S5), pp. 318-325,
Morgan Kaufmann.

Perkis, T. 1994. Stack-Based Genetic Programming. In Proceedings of the
1994 IEEE World Congress on Computational Intelligence, Vol. 1, pp. 148-
153, IEEE Press, 27-29.

Robinson, A. 2001. Genetic Programming: Theory, Implementation, and the
Evolution of Unconstrained Solutions. Hampshire College Division III
(senior) thesis.

Rothlauf, F., D. Goldberg and A. Heinzl. 2000. Bad Codings and the Utility
of Well-designed Genetic Algorithms. [l1liGAL Report #2000007. Illinois
Genetic Algorithms Laboratory, University of Illinois at Urbaba-
Champaigne.

Spector, L. Genetic Programming and Al Planning Systems. In Proceedings
of the Twelfth National Conference on Artificial Intelligence, AAAI-94,
1329-1334. Menlo Park, CA and Cambridge, MA: AAAI Press/The MIT
Press. 1994.

Spector, L. 1996. Simultaneous Evolution of Programs and their Control
Structures. In Advances in Genetic Programming 2, edited by P. Angeline

and K. Kinnear. Cambridge, MA: MIT Press.

Spector, L. 1997. Automatic Generation of Intelligent Agent Programs. In
IEEE Expert. Jan—-Feb 1997, pp. 3-4.

Spector, L. 2000. LGP2, a linear, steady-state genetic programming engine
in Common Lisp. http://hampshire.edu/Ispector/code.html

Spector, L., H. Barnum, and H. J. Bernstein. 1998. Genetic Programming
for Quantum Computers. In J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb,

32

M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, R. L. Riolo,
editors, Genetic Programming 1998: Proceedings of the Third Annual
Conference. Morgan Kaufmann. pp. 365-374.

Spector, L., H. Barnum, H. J. Bernstein, and N. Swamy. 1999a. Quantum
Computing Applications of Genetic Programming. In Spector, Lee, W. B.
Langdon, Una-May O’Reilly, and Peter J. Angeline, editors, Advances in
Genetic Programming 3. MIT Press. pp. 135-160.

Spector, L., H. Barnum, H.J. Bernstein, and N. Swamy. 1999b. Finding a
Better-than-Classical Quantum AND/OR Algorithm using Genetic
Programming. In Proceedings of the 1999 Congress on Evolutionary
Computation. IEEE Press. pp. 2239-2246.

Spector, L., and S. Luke. 1996a. Culture Enhances the Evolvability of
Cognition. In G. Cottrell (editor), Proceedings of the Eighteenth Annual
Conference of the Cognitive Science Society, 672—677. Mahwah, NJ:
Lawrence Erlbaum Associates, Publishers.

Spector, L., and S. Luke. 1996b. Cultural Transmission of Information in
Genetic Programming. In Koza, John R., Goldberg, David E., Fogel, David
B., and Riolo, Rick L. (editors) Genetic Programming 1996: Proceedings of
the First Annual Conference, 209-214. Cambridge, MA: The MIT Press.

Spector, L., and K. Stoffel. 1996a. Ontogenetic Programming. In Koza, John
R., Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors),
Genetic Programming 1996: Proceedings of the First Annual Conference,
394-399. Cambridge, MA: The MIT Press.

Spector, L., and K. Stoffel. 1996b. Automatic Generation of Adaptive
Programs. In P. Maes, M. Mataric, J.-A. Meyer, J. Pollack, and S.W. Wilson
(editors), From Animals to Animats 4: Proceedings of the Fourth

International Conference on Simulation of Adaptive Behavior,
476—483. Cambridge, MA: The MIT Press.

Spector, Lee, W. B. Langdon, Una-May O’Reilly, and Peter J. Angeline,
editors. 1999. Advances in Genetic Programming 3. MIT Press.

Spector, L., and J. Klein. 2002. Complex Adaptive Music Systems in the
BREVE Simulation Environment. In Bilotta et al. (eds), Workshop

33

Proceedings of the 8th International Conference on the Simulation and
Synthesis of Living Systems, pp. 17-23. Sydney, Australia: University of
New South Wales

Stoffel, K., and L. Spector. 1996. High-Performance, Parallel, Stack-Based
Genetic Programming. In Koza, John R., Goldberg, David E., Fogel, David
B., and Riolo, Rick L. (editors), Genetic Programming 1996: Proceedings of
the First Annual Conference, 224-229. Cambridge, MA: The MIT Press.

Walsh, P. 1999. A Functional Style and Fitness Evaluation Scheme for
Inducting High Level Programs. In Proceedings of the Genetic and
Evolutionary Computation Conference, Vol. 2, pp. 1211-1216, Morgan
Kaufmann, 13-17.

Yu, T., and Clack, C. 1998. Recursion, Lambda Abstraction and Genetic
Programming. In Genetic Programming 1998: Proceedings of the Third
Annual Conference, edited by J.R. Koza, W. Banzhaf, K. Chellapilla, K.
Deb, M. Dorigo, D.B. Fogel, M.H. Garzon, D.E. Goldberg, H. Iba, and R.L.
Riolo. San Francisco, CA: Morgan Kaufmann.

34

