Genetic Programming for Finite Algebras

— GECCO-2008 Presentation —

Lee Spector * David M. Clark * Ian Lindsay * Bradford Barr * Jon Klein *

* Cognitive Science, Hampshire College, Amherst, MA
 * Mathematics, SUNY New Paltz, New Paltz, NY

Outline

- The domain
- Specific problems
- Methods
- Results
- Significance

Everybody's Favorite Finite Algebra

Boolean algebra, $\mathbf{B} := \langle \{0, 1\}, \wedge, \vee, \neg \rangle$

\wedge	0	1	\vee	0	1		
0	0	0		0		0	1
1	0 0	1	1	1	1	1	1 0

Primal: every possible operation can be expressed by a term using only (and not even) \land , \lor , and \neg .

Bigger Finite Algebras

- Have applications in many areas of science, engineering, mathematics
- Can be *much* harder to analyze/understand
- Number of terms grows astronomically with size of underlying set
- Under active investigation for decades, with major advances (cited fully in the paper) in 1939, 1954, 1970, 1975, 1979, 1991, 2008

Goal

- Find terms that have certain special properties
- Discriminator terms, determine primality

$$t^{A}(x, y, z) = \begin{cases} x \text{ if } x \neq y \\ z \text{ if } x = y \end{cases}$$

- Mal'cev, majority, and Pixley terms
- For decades there was no way to produce these terms in general, short of exhaustive search
- Current best methods produce enormous terms

Specific Algebras

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c ccccccccccccccccccccccccccccccccc$

Methods

- Traditional genetic programming with ECJ
- Stack-based genetic programming with PushGP
- Alternative random code generators
- Asynchronous islands
- Trivial geography
- Parsimony-based selection
- Alpha-inverted selection pressure
- HAH = Historically Assessed Hardness

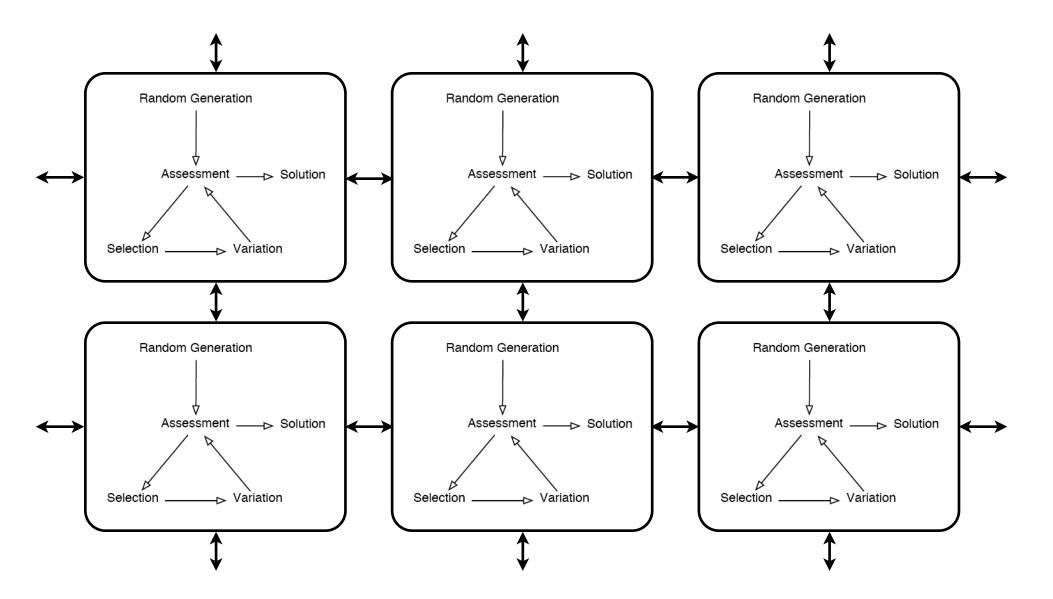
Push/PushGP

- Stack-based postfix language with one stack per type: integer, float, vector, Boolean, name, code, exec,
- Syntax-independent handling of multiple data types.
- Code/exec stacks support evolution of subroutines (any architecture), recursion, evolved control structures, and meta-evolutionary mechanisms.
- Several active implementations/projects (Lisp C++, Java: Psh and others, Python: Nudge [a little Push], ...)

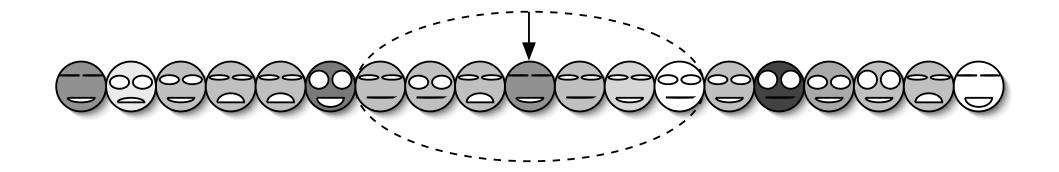
Code Generation/Mutation

- Sean Luke's PTCI, PTC2 used in some runs
- Fair mutation (Langdon, Crawford-Marks, ...) used in some runs

Islands and Migration



Trivial Geography



See Genetic Programming Theory and Practice III (2005)

Selection Methods

- ECJ's parsimony-based selection: with some probability select by size rather than fitness
- Alpha-inverted selection: define the "alpha group" to be the group of programs having the population's best fitness. Then use a larger tournament size the smaller the alpha group is (formulae in paper)

HAH

- Historically Assessed Hardness
- Count performance on "hard" fitness cases more more than performance on easy fitness cases, where hardness is based on solution rates over the history of the run
- Formula in paper
- See also Genetic Programming Theory and Practice VI (2006)

Results

- Discriminators for A_1, A_2, A_3, A_4, A_5
- Mal'cev and majority terms for B_1
- Parameter tables and result terms in paper
- Example discriminator term for A₁:

Assessing Significance

Relative to prior methods:

- Uninformed search:
 - Exhaustive: analytical (expected value) and empirical search time comparisons
 - Random: analytical (expected value) and empirical search time comparisons
- Primality method: empirical term size comparisons

Expected Value Analysis

Since Exp(X) is the weighted sum of the values of X,

$$\operatorname{Exp}(X) = \sum_{j=1}^{\infty} jp_j = \sum_{k=1}^{\infty} \sum_{j=k}^{\infty} p_j = \sum_{k=1}^{\infty} P_k \approx \sum_{k=1}^{\infty} \left(\frac{n-1}{n}\right)^{k-1}$$
$$= \frac{1}{1 - \frac{n-1}{n}} = n.$$

We recapitulate this conclusion as follows.

The expected value Exp(X) of the number X of trials required to find a term representing the function f is approximately the size $n = |A|^{|B|}$ of the search space A^B of all functions from B to A.

Verified via empirical results with random search and exhaustive search

Significance, Time

	Uninformed Search Expected Time (Trials)
3 element algebras	\sim 1 (015 107)
Mal'cev	5 seconds $(3^{15} \approx 10^7)$
Pixley/majority	1 hour $(3^{21} \approx 10^{10})$
discriminator	$1 \text{ month } (3^{27} \approx 10^{13})$
4 element algebras	
Mal'cev	10^3 years $(4^{28} \approx 10^{17})$
Pixley/majority	10^{10} years $(4^{40} \approx 10^{24})$
discriminator	10^{24} years $(4^{64} \approx 10^{38})$

Significance, Time

	Uninformed Search	GP
	Expected Time (Trials)	Time
3 element algebras		
Mal'cev	5 seconds $(3^{15} \approx 10^7)$	1 minute
Pixley/majority	1 hour $(3^{21} \approx 10^{10})$	3 minutes
discriminator	1 month $(3^{27} \approx 10^{13})$	$5 \mathrm{minutes}$
4 element algebras		
Mal'cev	10^3 years $(4^{28} \approx 10^{17})$	30 minutes
Pixley/majority	10^{10} years $(4^{40} \approx 10^{24})$	2 hours
discriminator	10^{24} years $(4^{64} \approx 10^{38})$?

Significance, Size

Term Type	Primality Theorem
Mal'cev	10,060,219
Majority	6,847,499
Pixley	1,257,556,499
Discriminator	12,575,109

(for A_1)

Significance, Size

Term Type	Primality Theorem	GP
Mal'cev	10,060,219	12
Majority	6,847,499	49
Pixley	1,257,556,499	59
Discriminator	12,575,109	39

(for A_1)

Human Competitive?

- Rather: human-**WHOMPING!**
- Outperforms humans and all other known methods on significant problems, providing benefits of several orders of magnitude with respect to search speed and result size
- Because there were no prior methods for generating practical terms in practical amounts of time, GP has provided the first solution to a previously open problem in the field

Potential Impact

These results are in an foundational area of pure mathematics with:

- A long history
- Many outstanding problems of theoretical significance and quantifiable difficulty
- Applications across the sciences

Conclusions

- Using GP, we have improved significantly on extensive past efforts of both humans and machines to solve problems related to finite algebras
- This is an important and previously unexplored application area for GP, with many open problems and quantitative measures of success