
Genetic Programming
for Finite Algebras

— GECCO-2008 Presentation —

Lee Spector *
David M. Clark ✢

Ian Lindsay *
Bradford Barr *

Jon Klein *

* Cognitive Science, Hampshire College, Amherst, MA
✢ Mathematics, SUNY New Paltz, New Paltz, NY

Outline

• The domain

• Specific problems

• Methods

• Results

• Significance

Primal: every possible operation can be expressed by a
term using only (and not even) ∧, ∨, and ¬.

Genetic Programming for Finite Algebras

Anonymous Author
Anonymous Deptartment

Anonymous Institution
Anonymous City, Country

anon@ym.ous

Anonymous Author
Anonymous Deptartment

Anonymous Institution
Anonymous City, Country

anon@ym.ous

Anonymous Author
Anonymous Institution

Anonymous City, Country
anon@ym.ous

Anonymous Author
Anonymous Institution

Anonymous City, Country
anon@ym.ous

Anonymous Author
Anonymous Institution

Anonymous City, Country
anon@ym.ous

ABSTRACT
We describe the application of genetic programming (GP)
to a problem in pure mathematics, in the study of finite al-
gebras. We document the production of human-competitive
results in the discovery of particular algebraic terms, namely
discriminator, Pixley, majority and Mal’cev terms, showing
that GP can exceed the performance of every prior method
of finding these terms in either time or size by several or-
ders of magnitude. Our terms were produced using the ECJ
and PushGP genetic programming systems in configurations
that included alternative code generators, asynchronous is-
lands, trivial geography, parsimony-based selection, alpha-
inverted selection pressure, and fitness case challenges. We
conclude with a discussion of the prospects for further ap-
plications of the presented methods.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis; I.1.2 [Symbolic and Algebraic Ma-
nipulation]: Algorithms—algebraic algorithms

General Terms
Algorithms, Experimentation, Performance

Keywords
ECJ, genetic programming, finite algebras, PushGP

1. INTRODUCTION
Genetic programming (GP) has the potential for applica-

tion to many areas of mathematics. In particular, any area
in which open questions can be resolved by discovering rela-
tively small equations, terms, or finite structures is a promis-
ing area for the application of GP. For some such questions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO 2008 Atlanta, Georgia USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

the very existence of a constraint-satisfying equation, term
or structure may settle the issue under study, while for oth-
ers the specific properties of discovered solutions may have
additional implications or provide additional insights.

In this paper we present initial but promising results from
the application of GP to an area of pure mathematics, the
study of finite algebras. While the idea for application in
this general area has been raised in the literature [16], we
are not aware of significant prior results. We document here
the discovery of particular algebraic terms that have both
theoretical significance and quantifiable difficulty, and we ar-
gue that the results we have achieved are human-competitive
according to widely promulgated criteria.

In the following section we briefly describe the relevant
mathematical context and the specific problems solved. In
Section 3 we describe the GP techniques that we used to pro-
duce our results, which are themselves presented in Section
4. In Section 5 we discuss the significance of these results, in-
cluding our claims of human-competitive performance, and
in Section 6 we summarize our findings and discuss prospects
for further applications of the presented methods.

2. FINITE ALGEBRAS
For the sake of this paper, and within the over-arching

area of mathematics known as universal algebra, an algebra
A := 〈A, F 〉 consists of an underlying set A and an asso-
ciated collection F of operations f : Ar → A on A. The
natural number r is called the arity of the operation f . Uni-
versal algebra is a significant branch of mathematics with a
long history (for example see [29], [9], [2]), important sub-
disciplines such as group theory [18], and applications to sev-
eral areas of science and engineering.

We use the term finite algebra to refer to an algebra in
which the underlying set is finite. The finite algebra most
familiar to most computer scientists is the ordinary two-
element Boolean algebra, B := 〈{0, 1},∧,∨,¬〉, in which
the underlying set is {0, 1} and the associated operations
are the Boolean operators AND (∧), OR (∨) and NOT (¬).
These operations can be defined by tables:

∧ 0 1
0 0 0
1 0 1

∨ 0 1
0 0 1
1 1 1

¬
0 1
1 0

A well-known and convenient feature of Boolean alge-
bra is the fact that this small set of operations is sufficient

Genetic Programming for Finite Algebras

Anonymous Author
Anonymous Deptartment

Anonymous Institution
Anonymous City, Country

anon@ym.ous

Anonymous Author
Anonymous Deptartment

Anonymous Institution
Anonymous City, Country

anon@ym.ous

Anonymous Author
Anonymous Institution

Anonymous City, Country
anon@ym.ous

Anonymous Author
Anonymous Institution

Anonymous City, Country
anon@ym.ous

Anonymous Author
Anonymous Institution

Anonymous City, Country
anon@ym.ous

ABSTRACT
We describe the application of genetic programming (GP)
to a problem in pure mathematics, in the study of finite al-
gebras. We document the production of human-competitive
results in the discovery of particular algebraic terms, namely
discriminator, Pixley, majority and Mal’cev terms, showing
that GP can exceed the performance of every prior method
of finding these terms in either time or size by several or-
ders of magnitude. Our terms were produced using the ECJ
and PushGP genetic programming systems in configurations
that included alternative code generators, asynchronous is-
lands, trivial geography, parsimony-based selection, alpha-
inverted selection pressure, and fitness case challenges. We
conclude with a discussion of the prospects for further ap-
plications of the presented methods.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis; I.1.2 [Symbolic and Algebraic Ma-
nipulation]: Algorithms—algebraic algorithms

General Terms
Algorithms, Experimentation, Performance

Keywords
ECJ, genetic programming, finite algebras, PushGP

1. INTRODUCTION
Genetic programming (GP) has the potential for applica-

tion to many areas of mathematics. In particular, any area
in which open questions can be resolved by discovering rela-
tively small equations, terms, or finite structures is a promis-
ing area for the application of GP. For some such questions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO 2008 Atlanta, Georgia USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

the very existence of a constraint-satisfying equation, term
or structure may settle the issue under study, while for oth-
ers the specific properties of discovered solutions may have
additional implications or provide additional insights.

In this paper we present initial but promising results from
the application of GP to an area of pure mathematics, the
study of finite algebras. While the idea for application in
this general area has been raised in the literature [16], we
are not aware of significant prior results. We document here
the discovery of particular algebraic terms that have both
theoretical significance and quantifiable difficulty, and we ar-
gue that the results we have achieved are human-competitive
according to widely promulgated criteria.

In the following section we briefly describe the relevant
mathematical context and the specific problems solved. In
Section 3 we describe the GP techniques that we used to pro-
duce our results, which are themselves presented in Section
4. In Section 5 we discuss the significance of these results, in-
cluding our claims of human-competitive performance, and
in Section 6 we summarize our findings and discuss prospects
for further applications of the presented methods.

2. FINITE ALGEBRAS
For the sake of this paper, and within the over-arching

area of mathematics known as universal algebra, an algebra
A := 〈A, F 〉 consists of an underlying set A and an asso-
ciated collection F of operations f : Ar → A on A. The
natural number r is called the arity of the operation f . Uni-
versal algebra is a significant branch of mathematics with a
long history (for example see [29], [9], [2]), important sub-
disciplines such as group theory [18], and applications to sev-
eral areas of science and engineering.

We use the term finite algebra to refer to an algebra in
which the underlying set is finite. The finite algebra most
familiar to most computer scientists is the ordinary two-
element Boolean algebra, B := 〈{0, 1},∧,∨,¬〉, in which
the underlying set is {0, 1} and the associated operations
are the Boolean operators AND (∧), OR (∨) and NOT (¬).
These operations can be defined by tables:

∧ 0 1
0 0 0
1 0 1

∨ 0 1
0 0 1
1 1 1

¬
0 1
1 0

A well-known and convenient feature of Boolean alge-
bra is the fact that this small set of operations is sufficient

Everybody’s Favorite
Finite Algebra

Bigger Finite Algebras

• Have applications in many areas of science,
engineering, mathematics

• Can be much harder to analyze/understand

• Number of terms grows astronomically with
size of underlying set

• Under active investigation for decades, with
major advances (cited fully in the paper) in
1939, 1954, 1970, 1975, 1979, 1991, 2008

Goal
• Find terms that have certain special properties

• Discriminator terms, determine primality

• Mal’cev, majority, and Pixley terms

• For decades there was no way to produce these
terms in general, short of exhaustive search

• Current best methods produce enormous terms

for representing all possible operations on {0, 1}. For ex-
ample, consider the (randomly chosen) ternary operation
q : {0, 1}3 → {0, 1} given by q(x, y, z) is 1 if (x, y, z) is
(0,0,1), (1,0,1) or (1,1,1); otherwise q(x, y, z) = 0. Then q is
represented as a term by

q(x, y, z) = (¬x ∧ ¬y ∧ z) ∨ (x ∧ ¬y ∧ z) ∨ (x ∧ y ∧ z).

More generally, we say that a finite algebra is primal if every
operation on its underlying set can be represented using a
term that is composed only of the operations in the algebra.
For example, B is a primal algebra.

Over the past fifty years universal algebraists have found
that the existence of a number of special kinds of terms on an
algebra tell us a great deal about the properties of the class
of algebras (called a variety) that it generates. For example,
a natural generalization of the classical Jordan Holder The-
orem and the Krull Schmidt Theorem for groups will hold in
the variety generated by an algebra having a Mal’cev term,
that is, a ternary term m(x, y, z) satisfying

m(x, x, y) ≈ m(y, x, x) ≈ y.

A natural analog of the Stone Duality Theorem for Boolean
algebras holds in the variety generated by any finite algebra
having a !majority term, that is, a ternary term j(x, y, z)
satisfying

j(x, x, y) ≈ j(y, x, x) ≈ j(x, y, x) ≈ x.

The Chinese Remainder Theorem for the ring of integers has
a natural extension in the variety generated by an algebra
that has a Pixley term, that is, a ternary term p(x, y, z)
satisfying

p(x, x, y) ≈ p(y, x, x) ≈ y and p(x, y, x) ≈ x.

The ternary operation on an algebra A given by

tA(x, y, z) =

(
x if x %= y

z if x = y

is called the (ternary) discriminator operation. A discrim-
inator term for A is a ternary term that represents tA. If
A has a discriminator term, then every non-trivial finite al-
gebra in the variety generated by A is isomorphic to a direct
product of subalgebras of A, and the variety generated by
A has a decidable first order theory.

In the very recent work [3] the primality theorem gives
a recursive method to construct a term representing any
desired operation on an algebra already known to be pri-
mal. While this is the most time efficient method currently
available for constructing such terms, those resulting terms
are usually extraordinarily long; often involving millions of
operations even in three and four-element algebras. As an
alternative, the very popular software tool [7] is available to
find terms by an exhaustive search. But this program usu-
ally requires an unacceptably long time for the terms we are
seeking.

In order to test the power of GP in this domain we ap-
plied our GP method to the three and four-element algebras
in Table 1. All of these algebras are known to be primal
as an immediate application of a well known theorem of
Rousseau [19]. But the proof of Rousseau’s theorem is non-
constructive, providing no practical assistance in construct-
ing specific terms. Moreover, previously known methods to
construct terms are not adequate to produce the terms we

Table 1: Algebras explored in this paper.

A1 ∗ 0 1 2
0 2 1 2
1 1 0 0
2 0 0 1

A2 ∗ 0 1 2
0 2 0 2
1 1 0 2
2 1 2 1

A3 ∗ 0 1 2
0 1 0 1
1 1 2 0
2 0 0 0

A4 ∗ 0 1 2
0 1 0 1
1 0 2 0
2 0 1 0

A5 ∗ 0 1 2
0 1 0 2
1 1 2 0
2 0 1 0

B1 ∗ 0 1 2 3
0 1 3 1 0
1 3 2 0 1
2 0 1 3 1
3 1 0 2 0

have described in a feasible amount of space and time. We
show here that GP can be used to evolve Mal’cev, majority,
Pixley and discriminator terms that are orders of magnitude
shorter than those that could be produced by prior algebraic
methods, and we obtain them in orders of magnitude less
time than the expected time for exhaustive search.

3. GP TECHNIQUES
In the following subsections we describe the specific GP

techniques that we used to produce the results reported in
this paper. We do this only to document the methods that
we used1; we do not argue here for the superiority of these
techniques over any others, and we are not asserting that
the use of these techniques was necessary to produce the
presented results. Some of the listed techniques have been
described in the literature previously (and we provide cita-
tions when we are aware of them), while others are new and
experimental. We suspect that most of the results reported
here could have been produced with more“generic”GP tech-
niques, possibly at the cost of greater computational effort.
In any event our claims here are not for the peculiar efficacy
of specific GP techniques that we employed, but rather for
the significance and human-competitiveness of the results
and of their automated production.

GP fitness cases for all problems were all of the input com-
binations for which the sought-after term’s definition spec-
ifies a particular output. The fitness value for a candidate
term, which we sought to minimize, was the sum of the er-
rors across all fitness cases (although in some cases these
errors were individually scaled; see section 3.8).

3.1 Traditional GP in ECJ
Most of the results presented in this paper were produced

using traditional, “tree-based” GP techniques [11] as imple-
mented in the ECJ evolutionary computation system [30].2

In this method programs are represented and manipulated as
Lisp-like symbolic expressions, in parenthesized prefix syn-
tax. The mapping between traditional GP representations

1We present the primary methods and major param-
eters; more detail is available in the source code at
http://REMOVED.FOR.ANONYMOUS.REVIEW.
2http://www.cs.gmu.edu/˜eclab/projects/ecj/

Specific Algebras
for representing all possible operations on {0, 1}. For ex-
ample, consider the (randomly chosen) ternary operation
q : {0, 1}3 → {0, 1} given by q(x, y, z) is 1 if (x, y, z) is
(0,0,1), (1,0,1) or (1,1,1); otherwise q(x, y, z) = 0. Then q is
represented as a term by

q(x, y, z) = (¬x ∧ ¬y ∧ z) ∨ (x ∧ ¬y ∧ z) ∨ (x ∧ y ∧ z).

More generally, we say that a finite algebra is primal if every
operation on its underlying set can be represented using a
term that is composed only of the operations in the algebra.
For example, B is a primal algebra.

Over the past fifty years universal algebraists have found
that the existence of a number of special kinds of terms on an
algebra tell us a great deal about the properties of the class
of algebras (called a variety) that it generates. For example,
a natural generalization of the classical Jordan Holder The-
orem and the Krull Schmidt Theorem for groups will hold in
the variety generated by an algebra having a Mal’cev term,
that is, a ternary term m(x, y, z) satisfying

m(x, x, y) ≈ m(y, x, x) ≈ y.

A natural analog of the Stone Duality Theorem for Boolean
algebras holds in the variety generated by any finite algebra
having a !majority term, that is, a ternary term j(x, y, z)
satisfying

j(x, x, y) ≈ j(y, x, x) ≈ j(x, y, x) ≈ x.

The Chinese Remainder Theorem for the ring of integers has
a natural extension in the variety generated by an algebra
that has a Pixley term, that is, a ternary term p(x, y, z)
satisfying

p(x, x, y) ≈ p(y, x, x) ≈ y and p(x, y, x) ≈ x.

The ternary operation on an algebra A given by

tA(x, y, z) =

(
x if x %= y

z if x = y

is called the (ternary) discriminator operation. A discrim-
inator term for A is a ternary term that represents tA. If
A has a discriminator term, then every non-trivial finite al-
gebra in the variety generated by A is isomorphic to a direct
product of subalgebras of A, and the variety generated by
A has a decidable first order theory.

In the very recent work [3] the primality theorem gives
a recursive method to construct a term representing any
desired operation on an algebra already known to be pri-
mal. While this is the most time efficient method currently
available for constructing such terms, those resulting terms
are usually extraordinarily long; often involving millions of
operations even in three and four-element algebras. As an
alternative, the very popular software tool [7] is available to
find terms by an exhaustive search. But this program usu-
ally requires an unacceptably long time for the terms we are
seeking.

In order to test the power of GP in this domain we ap-
plied our GP method to the three and four-element algebras
in Table 1. All of these algebras are known to be primal
as an immediate application of a well known theorem of
Rousseau [19]. But the proof of Rousseau’s theorem is non-
constructive, providing no practical assistance in construct-
ing specific terms. Moreover, previously known methods to
construct terms are not adequate to produce the terms we

Table 1: Algebras explored in this paper.

A1 ∗ 0 1 2
0 2 1 2
1 1 0 0
2 0 0 1

A2 ∗ 0 1 2
0 2 0 2
1 1 0 2
2 1 2 1

A3 ∗ 0 1 2
0 1 0 1
1 1 2 0
2 0 0 0

A4 ∗ 0 1 2
0 1 0 1
1 0 2 0
2 0 1 0

A5 ∗ 0 1 2
0 1 0 2
1 1 2 0
2 0 1 0

B1 ∗ 0 1 2 3
0 1 3 1 0
1 3 2 0 1
2 0 1 3 1
3 1 0 2 0

have described in a feasible amount of space and time. We
show here that GP can be used to evolve Mal’cev, majority,
Pixley and discriminator terms that are orders of magnitude
shorter than those that could be produced by prior algebraic
methods, and we obtain them in orders of magnitude less
time than the expected time for exhaustive search.

3. GP TECHNIQUES
In the following subsections we describe the specific GP

techniques that we used to produce the results reported in
this paper. We do this only to document the methods that
we used1; we do not argue here for the superiority of these
techniques over any others, and we are not asserting that
the use of these techniques was necessary to produce the
presented results. Some of the listed techniques have been
described in the literature previously (and we provide cita-
tions when we are aware of them), while others are new and
experimental. We suspect that most of the results reported
here could have been produced with more“generic”GP tech-
niques, possibly at the cost of greater computational effort.
In any event our claims here are not for the peculiar efficacy
of specific GP techniques that we employed, but rather for
the significance and human-competitiveness of the results
and of their automated production.

GP fitness cases for all problems were all of the input com-
binations for which the sought-after term’s definition spec-
ifies a particular output. The fitness value for a candidate
term, which we sought to minimize, was the sum of the er-
rors across all fitness cases (although in some cases these
errors were individually scaled; see section 3.8).

3.1 Traditional GP in ECJ
Most of the results presented in this paper were produced

using traditional, “tree-based” GP techniques [11] as imple-
mented in the ECJ evolutionary computation system [30].2

In this method programs are represented and manipulated as
Lisp-like symbolic expressions, in parenthesized prefix syn-
tax. The mapping between traditional GP representations

1We present the primary methods and major param-
eters; more detail is available in the source code at
http://REMOVED.FOR.ANONYMOUS.REVIEW.
2http://www.cs.gmu.edu/˜eclab/projects/ecj/

Methods

• Traditional genetic programming with ECJ
• Stack-based genetic programming with PushGP
• Alternative random code generators
• Asynchronous islands
• Trivial geography
• Parsimony-based selection
• Alpha-inverted selection pressure
• HAH = Historically Assessed Hardness

Push/PushGP
• Stack-based postfix language with one stack per

type: integer, float, vector, Boolean, name, code,
exec,

• Syntax-independent handling of multiple data types.

• Code/exec stacks support evolution of subroutines
(any architecture), recursion, evolved control
structures, and meta-evolutionary mechanisms.

• Several active implementations/projects (Lisp C++,
Java: Psh and others, Python: Nudge [a little Push], ...)

Code Generation/Mutation

• Sean Luke’s PTC1, PTC2 used in some runs

• Fair mutation (Langdon, Crawford-Marks, ...)
used in some runs

Islands and Migration

Trivial Geography

See Genetic Programming Theory and Practice III (2005)

Selection Methods

• ECJ’s parsimony-based selection: with some
probability select by size rather than fitness

• Alpha-inverted selection: define the “alpha
group” to be the group of programs having
the population’s best fitness. Then use a
larger tournament size the smaller the alpha
group is (formulae in paper)

HAH

• Historically Assessed Hardness

• Count performance on “hard” fitness cases
more more than performance on easy
fitness cases, where hardness is based on
solution rates over the history of the run

• Formula in paper

• See also Genetic Programming Theory and
Practice VI (2006)

Results
• Discriminators for A1, A2, A3, A4, A5

• Mal’cev and majority terms for B1

• Parameter tables and result terms in paper

• Example discriminator term for A1:

((((((((x*(y*x))*x)*z)*(z*x))*((x*(z*(x
*(z*y))))*z))*z)*z)*(z*((((x*(((z*z)*x)*
(z*x)))*x)*y)*(((y*(z*(z*y)))*(((y*y)*x
)*z))*(x*(((z*z)*x)*(z*(x*(z*y)))))))))

Assessing Significance

Relative to prior methods:

• Uninformed search:

- Exhaustive: analytical (expected value)
and empirical search time comparisons

- Random: analytical (expected value) and
empirical search time comparisons

• Primality method: empirical term size
comparisons

Expected Value Analysis

• Verified via empirical results with random
search and exhaustive search

An alternative is to generate terms in random order, for
example by first picking a size and then generating a term
of that size using an algorithm such as Knuth’s “R” [12]. We
call this random search. Because exhaustive and random
search are equally uninformed — in the sense that we know
nothing about how the different functions are distributed in
the sequences of terms generated by these methods — our
mathematical analysis will apply to both. But exhaustive
and random search provide different opportunities for em-
pirical verification (see below).

Our aim is to find a reasonable estimate of the expected
number of trial terms we will need to construct and test be-
fore finding f . Let t1, t2, t3, . . . be any enumeration of terms
produced by either an exhaustive search, a random search,
or any other uninformed search. Let X be the random vari-
able whose value is the smallest k such that tk represents f .

The difficult part of computing the expected value Exp(X)
of X is finding, for each k, the probability that tk repre-
sents f . This is the proportion, among all possible defining
tables for the operations of A, of choices which result in tk

representing f . Computing this value appears to be extraor-
dinarily difficult, even – with a few exceptions – for a single
term tk. In order to get a rough estimate of Exp(X), we
make the simplifying assumption that the terms t1, t2, t3, . . .
are uniformly distributed among the n possible functions
they might represent, that is, that each tk represents f with
probability 1

n . Thus tk fails to represent f with probability
n−1

n . For each j, k ∈ N, we have

pj := Prob(X = j) ≈
`

n−1
n

´j−1 1
n

and

Pk := Prob(X ≥ k) ≈
`

n−1
n

´k−1
.

Since Exp(X) is the weighted sum of the values of X,

Exp(X) =
∞X

j=1

jpj =
∞X

k=1

∞X

j=k

pj =
∞X

k=1

Pk ≈
∞X

k=1

`
n−1

n

´k−1

=
1

1− n−1
n

= n.

We recapitulate this conclusion as follows.

The expected value Exp(X) of the number X of trials
required to find a term representing the function f is ap-
proximately the size n = |A||B| of the search space AB of all
functions from B to A.

We first apply this result to the search for a Mal’cev term.
Notice that a ternary operation mA : A3 → A is a Mal’cev
function if and only if it takes the Mal’cev value on the set

B := {(a, a, b), (b, a, a) | a, b ∈ A}.

Here we have r = 3 and we count |B| = 2|A|2 − |A|.

Example 5.1. If A has a Mal’cev term, then the ex-
pected number of trials required to find one is Exp(X) ≈
|A|2|A|2−|A|.

Similarly, a ternary operation on A is a majority function
or a Pixley function if and only if it takes the majority value
or Pixley value, respectively, on each triple in the set

B := {(a, a, b), (a, b, a), (b, a, a) | a, b ∈ A}.

Here again r = 3 and we count |B| = 3|A|2 − 2|A|.

Table 10: Approximate times required to find terms
by uninformed search and by GP.

Uninformed Search GP
Expected Time (Trials) Time

3 element algebras
Mal’cev 5 seconds (315 ≈ 107) 1 minute
Pixley/majority 1 hour (321 ≈ 1010) 3 minutes
discriminator 1 month (327 ≈ 1013) 5 minutes

4 element algebras
Mal’cev 103 years (428 ≈ 1017) 30 minutes
Pixley/majority 1010 years (440 ≈ 1024) 2 hours
discriminator 1024 years (464 ≈ 1038) ?

Example 5.2. If A has a majority term or a Pixley term,
then the expected number of trials required to find one is

Exp(X) ≈ |A|3|A|2−2|A|.

If we search for some specific ternary operation, such as
the ternary discriminator operation, on a primal algebra A,
we have r = 3 and B = A3.

Example 5.3. If A is primal, then the expected number
of trials required to find a term representing a given opera-

tion (such as the discriminator) is Exp(X) ≈ |A||A|3 .

The values of Exp(X) grow dramatically as a function
of |A| in each of these examples. In Table 10 we list these
values for three and four element algebras. For each case we
list a plausible estimate of the time that a 3 GHz computer
would require to conduct the search, conservatively estimat-
ing that the average term will require 1, 000 computer cycles
to generate and test. Within this range we see that searches
move from those that can be done quickly to those that are
unlikely to ever become computationally feasible. On the
right we estimate the times required for single-processor GP
runs to find these terms, based on the run times of the spe-
cific GP searches documented in this paper.

In favor of exhaustive search we note that it is parsimo-
nious. Since it enumerates the terms from shortest to longest
it is guaranteed to produce a shortest term representing the
given function. We conducted such an exhaustive search
looking for a Mal’cev term for the three-element algebra
A1. We found a minimal size term with 11 operations, and
our search revealed exactly 2 such 11-operation terms. Such
searches rapidly become impractical, however, and we have
conducted exhaustive searches only up to size 14 (which re-
quired at least 2 months of CPU time). By comparison GP
quickly found A1 Mal’cev terms of various sizes; one run on
a single CPU took one minute to evaluate 840, 000 terms
and found a Mal’cev term of size 12, while an independent
run quickly found a term of size 24.

To empirically test our analytical results we also con-
ducted random searches for discriminator and Mal’cev terms
on A1. In our first test we generated approximately 1011

terms with sizes uniformly distributed from 12 to 50, us-
ing Knuth’s tree-generation algorithm “R” [12]. We tested
each term to see if it was a discriminator term for A1. Ex-
ample 5.3 predicts that a successful search would require
approximately 327 ≈ 1013 trial terms. Our test of approxi-
mately 1% of this number indeed revealed no discriminator
term. This search required over a week of CPU time on
hardware in the 2.4GHz-3.0GHz range.

Significance, Time

Significance, Time

Significance, Size

(for A1)

Significance, Size

(for A1)

Human Competitive?
• Rather: human-WHOMPING!

• Outperforms humans and all other known methods on
significant problems, providing benefits of several
orders of magnitude with respect to search speed
and result size

• Because there were no prior methods for
generating practical terms in practical amounts of
time, GP has provided the first solution to a
previously open problem in the field

Potential Impact

These results are in an foundational area of
pure mathematics with:

• A long history

• Many outstanding problems of theoretical
significance and quantifiable difficulty

• Applications across the sciences

Conclusions

• Using GP, we have improved significantly on
extensive past efforts of both humans and machines
to solve problems related to finite algebras

• This is an important and previously unexplored
application area for GP, with many open problems
and quantitative measures of success

