
Evolving Control Structures with Automatically De�ned Macros

by Lee Spector

Full citation:

Spector, L. 1995. Evolving Control Structures with Automatically
De�ned Macros. Working Notes of the AAAI Fall Symposium on

Genetic Programming. The American Association for Arti�cial
Intelligence. pp. 99-105.

Evolving Control Structures with Automatically De�ned Macros

Lee Spector
School of Cognitive Science and Cultural Studies

Hampshire College
Amherst, MA 01002
lspector@hampshire.edu

Abstract

Koza has previously shown that the power of a ge-
netic programming system can often be enhanced by
allowing for the simultaneous evolution of a main pro-
gram and a collection of automatically de�ned func-
tions (ADFs). In this paper I show how related tech-
niques can be used to simultaneously evolve a collec-
tion of automatically de�ned macros (ADMs). I show
how ADMs can be used to produce new control struc-

tures during the evolution of a program, and I present
data showing that ADMs sometimes provide a greater
bene�t than do ADFs. I discuss the characteristics
of problems that may bene�t most from the use of
ADMs, or from architectures that include both ADFs
and ADMs, and I discuss directions for further re-
search.

Introduction

Modern programming languages support the produc-
tion of structured, modular programs through sev-
eral mechanisms including subroutines, coroutines, and
macros. Koza has shown that the power of a genetic
programming system can often be enhanced by allow-
ing for the simultaneous evolution of a main program
and a collection of subroutines (Koza 1994a). Fur-
ther studies have investigated factors underlying the
performance of Koza's automatically de�ned functions
(ADFs) along with alternative techniques for the au-
tomatic generation of subroutines (Kinnear 1994).
While subroutines promote programmodularity and

code reuse, they do not normally provide programmers
with the tools needed to produce new control struc-

tures or to otherwise enhance the structure of their
programming languages. Many languages provide an
alternative mechanism, macros, to support this need
(Kernighan & Ritchie 1988) (Steele 1990).
In this paper I show how a genetic programming sys-

tem can simultaneously evolve a program and its con-
trol structures; that is, I show how a genetic program-
ming system can simultaneously evolve a main pro-
gram and a collection of automatically de�ned macros

(ADMs). Using a variant of Koza's obstacle-avoiding
robot problem, I show that ADMs are in some cases
more useful than ADFs. For other problems, how-
ever, ADFs are more useful than ADMs. ADFs and
ADMs serve di�erent purposes | as do functions and
macros in common programming languages | and we
can therefore expect architectures that include both
ADFs and ADMs to provide the best support for the
evolution of programs in certain complex domains.
In the following pages I brie
y describe the genetic

programming framework and the use of ADFs in ge-
netic programming. I then discuss the use of macros to
de�ne new control structures and show how a genetic
programming system can simultaneously evolve a main
program and a set of ADMs that are used by the main
program. I present data from case studies, discuss the
results, and describe directions for future research.

Genetic Programming

Genetic programming is a technique for the automatic
generation of computer programs by means of natural
selection (Koza 1992). The genetic programming pro-
cess starts by creating a large initial population of pro-
grams that are random combinations of elements from
problem-speci�c function and terminal sets. Each of
the programs in the initial population is assessed for
�tness. This is usually accomplished by running each
program on a collection of inputs called �tness cases,
and by assigning numerical �tness values to the out-
put of each of these runs; the resulting values are then
combined to produce a single �tness value for the pro-
gram.
The �tness values are used in producing the next

generation of programs via a variety of genetic opera-
tions including reproduction, crossover, and mutation.
Individuals are randomly selected for participation in
these operations, but the selection function is biased
toward highly �t programs. The reproduction opera-
tor simply selects an individual and copies it into the
next generation. The crossover operation introduces

variation by selecting two parents and by generating
from them two o�spring; the o�spring are produced
by swapping random fragments of the parents. The
mutation operator produces one o�spring from a sin-
gle parent by replacing a randomly selected program
fragment with a newly generated random fragment.

Over many generations of �tness assessment, repro-
duction, crossover, and mutation, the average �tness of
the population may tend to improve, as may the �tness
of the best-of-generation individual from each genera-
tion. After a preestablished number of generations, or
after the �tness improves to some preestablished level,
the best-of-run individual is designated as the result
and is produced as the output from the genetic pro-
gramming system.

Automatically De�ned Functions

Koza has shown that the performance of a genetic pro-
gramming system, as measured by the number of indi-
viduals that must be processed to produce a solution
with a probability of 99%, can often be improved by
allowing for the simultaneous evolution of a main pro-
gram and a collection of subroutines (Koza 1994a). He
implements the evolution of subroutines by considering
one part of an evolved program to be a main program
(or \result producing branch") while other parts are
treated as de�nitions for automatically de�ned func-
tions (ADFs). Each ADF may have its own function
and terminal set, and hierarchical references between
ADFs are allowed.

Koza showed that the use of ADFs allows a ge-
netic programming system to better exploit regularities
of problem domains, improving system performance.
Further studies have investigated factors underlying
the performance of Koza's ADFs along with alternative
techniques for the automatic generation of subroutines
(Kinnear 1994).

Macros

I use the term \macro" to refer to operators that per-
form source code transformations. Many programming
languages provide macro de�nition facilities, although
the power of such facilities varies widely. For exam-
ple, C provides substitution macros by means of a pre-
processor (Kernighan & Ritchie 1988), while Common
Lisp allows the full power of the programming lan-
guage to be used in the speci�cation of macros (Steele
1990). A macro \call" is textually transformed into
new source code prior to compilation or interpretation;
this process is often called macro expansion.

Macros, like subroutines, can assist in the modu-
larization of complex programs and in the exploita-
tion of domain regularities. In certain circumstances

macros can be more useful than subroutines.1 In par-
ticular, one can implement new control structures with
macros. One does this by writing macros that expand
into code fragments that include the arguments to the
macro call, unevaluated, in one or more places. If the
bodies of code that appear as arguments to the macro
work by side e�ect or are sensitive to their calling con-
texts, then the macro call can produce an e�ect not ob-
tainable with subroutines. For example, consider the
following Common Lisp de�nition for a macro called
do-twice2:

(defmacro do-twice (code)

`(progn ,code ,code))

Assume that the (beep) function works by produc-
ing a side e�ect. The call (do-twice (beep)) will ex-
pand into (progn (beep) (beep)), causing the side e�ect
to be produced twice. Do-twice could not have been
implemented as a Common Lisp function because the
arguments in a function call are evaluated before being
passed. A do-twice function would, in this context, re-
ceive only the result of (beep), not the code; it therefore
could not produce the e�ect of two calls to (beep).

More generally, the utility of macros stems in part
from the fact that they control the evaluation of their
own arguments. This allows one to use macros to im-
plement control structures that perform multiple eval-
uation or conditional evaluation of bodies of code.

One often builds new macros that leverage the util-
ity of pre-existing macros or built-in control struc-
ture syntax. For example, one could use an existing
if structure to build an arithmetic-if control structure,
and one could use an existing while structure, along
with problem-speci�c operators, to build a while-no-
obstacles control structure.

There are many domains in which problem-speci�c
control structures are useful. In a robot control do-
main one might want to use a control structure that
causes an action to be repeated until a condition in
the world becomes true. For example, the following
macro causes the robot to turn until the given sense-
expression returns non-nil, and returns the value of the
given value-expression in its �nal orientation:

(defmacro where-sensed

(sense-expression value-expression)

`(progn (while (not ,sense-expression)

(turn))

,value-expression))

1A good discussion of related issues can be found in
(Graham 1994).

2The \backquote" syntax used in this de�nition is doc-
umented in (Steele 1990).

This macro would be most useful when the bodies of
code speci�ed for sense-expression and value-expression
depend on the orientation of the robot. If the domain
provides many opportunities for the construction of
such expressions then where-sensed may provide a use-
ful behavioral abstraction that could not be obtained
with ordinary subroutines.

Automatically De�ned Macros

It is possible to simultaneously evolve a main program
and a set of Automatically De�ned Macros (ADMs)
that may be used by the main program. In the ex-
periments described below I use only the simplest sort
of substitution macros; each macro speci�es a template
for the code into which macro calls will expand. Each
ADM de�nition is treated as if it was de�ned with
defmacro, with its body preceded by a backquote, and
with an implicit comma before each occurrence of a pa-
rameter. Conceptually, macro expansion is performed
by replacing the call with the template, and by then
replacing occurrences of the macro's parameters with
the bodies of code that appear in the call. While lan-
guages such as CommonLisp allow one to write macros
that specify more general code transformations, substi-
tution macros can nonetheless be quite useful.3

In practice one can avoid full expansion of substi-
tution macros by expanding the ADMs incrementally
during evaluation. Incrementally expanded substitu-
tion ADMs are easy to implement through minor mod-
i�cations to Koza's publicly available ADF code (Koza
1994a). Koza's ADF functions are de�ned to fast-eval
the evolved ADF code trees, after �rst binding the pa-
rameter symbols to the (evaluated) values passed to
the ADF. For ADMs one can change fast-eval so that
it treats ADMs like pseudo-macros, passing them un-
evaluated code trees as arguments. One can then de-
�ne the ADM functions to substitute the unevaluated
code trees for the parameter symbols, and then to fast-
eval the result:

(defun adm0 (a0)

(fast-eval (subst a0 'arg0 *adm0*)))

Zongker's C-based lil-gp system provides an
even simpler way to implement substitution ADMs
(Zongker 1995). One can simply use the evaluation
function type EVAL EXPR (rather than EVAL DATA,
which is used for normal ADFs), and ADM semantics
will result. This is achieved by changing the runtime
interpretation of a parameter symbol to branch to the
code tree passed as an argument; actual expansion of
the macro call is thereby avoided altogether.

3Examples of macros that perform more exotic code
transformations can be found in (Graham 1994).

More complex implementation strategies are re-
quired for ADMs that perform non-substitutional
transformations of their arguments. In some cases it
may be necessary to fully expand the ADMs prior to
evaluation; this may lead to long macro-expansion de-
lays and to very large expansions. All of the experi-
ments described in this paper used substitution ADMs
and therefore took advantage of one of the simple im-
plementation techniques described above.

Koza has previously made limited use of macro ex-
pansion in genetic programming; he used it as a means
for deleting elements of programs during the simul-
taneous evolution of programs and their architectures
(Koza 1994b). The present work argues for the more
general use of macro expansion through the evolution
of ADMs.

While ADMs and ADFs are in fact compatible and
may be used together, the present study highlights the
di�erences between ADFs and ADMs by using each
to the exclusion of the other, and by contrasting the
results. The simultaneous use of ADFs and ADMs is
brie
y discussed at the end of the paper.

The Dirt-Sensing, Obstacle-Avoiding

Robot

Among the domains in which we expect ADMs to have
utility are those that include operators that work by
producing side e�ects, operators that are sensitive to
their calling contexts, or pre-existing macros. Koza's
obstacle-avoiding robot problem (hereafter \OAR")
has all of these elements. The problem as expressed by
Koza is quite di�cult, and he was only able to solve
it by using an unusually large population (4000). I
have produced a somewhat simpler version of OAR by
adding an additional sensor function (IF-DIRTY); with
this change the problem can easily be solved with a
population as small as 500.

The goal in the dirt-sensing, obstacle-avoiding robot
problem (hereafter \DSOAR") is to �nd a program
for controlling the movement of an autonomous
oor-
mopping robot in a room containing harmless but time-
wasting obstacles. The problem is an extension of
OAR, which Koza describes as follows:

In this problem, an autonomous mobile robot at-
tempts to mop the
oor in a room containing
harmless but time-wasting obstacles (posts). The
obstacles do not harm the robot, but every failed
move or jump counts toward the overall limitation
on the number of operations available for the task.

. . . the state of the robot consists of its location in
the room and the direction in which it is facing.
Each square in the room is uniquely identi�ed by

a vector of integers modulo 8 of the form (i; j),
where 0 � i; j � 7. The robot starts at location
(4,4), facing north. The room is toroidal, so that
whenever the robot moves o� the edge of the room
it reappears on the opposite side.

Six non-touching obstacles are randomly posi-
tioned in a room laid out on an 8-by-8 grid. . . .

The robot is capable of turning left, of moving
forward one square in the direction in which it
is currently facing, and of jumping by a speci�ed
displacement in the vertical and horizontal direc-
tions. Whenever the robot succeeds in moving
onto a new square (by means of either a single
move or a jump), it mops the location of the
oor
onto which it moves. (Koza 1994a, p. 365)

OAR uses terminal sets consisting of the 0-argument
function (MOP), the 0-argument function (LEFT), ran-
dom vector constants modulo 8 (<v8), and the names
of arguments for ADFs. The same terminal sets are
used in DSOAR.

(MOP) moves the robot in the direction it is cur-
rently facing, mops the
oor at the new location, and
returns the vector value (0,0). If the destination con-
tains an obstacle then the robot does not move, but
the operation still counts toward the limit on the num-
ber of movement operations that may be performed
in a run. (LEFT) turns the robot 90� to the left and
returns the vector value (0,0).

OAR uses a function set consisting of the operators
IF-OBSTACLE, V8A, FROG, PROGN, and the names of
the ADFs. DSOAR uses the same function set (sub-
stituting the names of ADMs when appropriate) and
adds one new operator, IF-DIRTY.

IF-OBSTACLE is a 2-argument conditional branching
operator that evaluates its �rst argument if an obsta-
cle is immediately in front of the robot; it evaluates
its second argument otherwise. IF-OBSTACLE is im-
plemented as a pseudo-macro. V8A is a 2-argument
vector addition function that adds vector components
modulo 8. FROG is a 1-argument movement operator
that jumps the robot to the coordinate produced by
adding (modulo 8) its vector argument to the robot's
current location. FROG acts as the identity operator
on its argument, and fails in the same way as MOP
when the destination contains an obstacle. IF-DIRTY
is a 2-argument conditional branching operator that
evaluates its �rst argument if the square immediately
in front of the robot is dirty; it evaluates its second ar-
gument if the square has been mopped or if it contains
an obstacle. IF-DIRTY is implemented as a pseudo-
macro.

Two �tness cases, shown in Figure 1, are used for

the DSOAR problem. Each program is evaluated once
for each �tness case, and each evaluation is terminated
prematurely if the robot executes either 100 (LEFT)
operations or 100 movement operations ((MOP) and
FROG operations combined). The raw �tness of each
program is the sum of the squares mopped over the two
�tness cases. A program is considered to have solved
the problem if, over the two �tness cases, it successfully
mops 112 of the total of 116 squares that do not contain
obstacles.

s s

Figure 1: The �tness cases used for the DSOAR prob-
lem.

Results

I performed 200 runs of a genetic programming sys-
tem on this problem, half with ADFs and half with
ADMs. Each program in each population had an ar-
chitecture consisting of a result-producing branch and
two modules (either ADF0 and ADF1 or ADM0 and
ADM1). ADF0 and ADM0 each took 1 argument4 and
ADF1 and ADM1 each took 2 arguments5. ADF1 and
ADM1 could call ADF0 and ADM0, respectively, and
result producing branches could call both of the auto-
matically de�ned modules. I used a population size of
500 and ran each run for 51 generations. Tournament
selection was used with a tournament size of 7.

Figure 2 shows a summary of the results as a graph of
P(M,i), the probability of success by generation. The
probability of producing a solution to this problem us-
ing a population size M=500 by any given generation
is generally greater with ADMs than with ADFs; this
can be seen by noting that the ADM line rises faster
than the ADF line. Figure 3 shows a summary of the
results as a graph of I(M,i,z), the number of individu-
als that must be processed to produce a solution with
probability greater than z=99%. The number of indi-
viduals that must be processed is lower for ADMs than
for ADFs; this can be seen by noting that the ADM
line falls faster than the ADM line, and that it reaches
a lower minimum. The minimum, de�ned by Koza as
the \computational e�ort" required to solve the prob-

4Koza used a 0-argument ADF0 for OAR.
5Koza used a 1-argument ADF1 for OAR.

lem, is 26000 when ADFs are used; the computational
e�ort is 21000 when ADMs are used instead.

0

0.25

0.5

0.75

1

0 10 20 30 40 50

P(M,i) with ADMs

P(M,i) with ADFs

Generation

C
um

ul
at

iv
e

P
ro

ba
bi

li
ty

 o
f

S
uc

ce
ss

 (
%

)

Population size M=500
Number of runs N=100

Figure 2: P(M,i) for ADFs and ADMs on the DSOAR
problem.

The calculations of P(M,i) and I(M,i,z) were per-
formed according to the discussion on pages 99 through
103 of (Koza 1994a). P(M,i) is calculated by dividing
the number of runs that succeed in each generation
by the total number of runs, and by then calculat-
ing a running sum of the quotients across generations.
I(M,i,z) is calculated from P(M,i) according to the fol-
lowing formula:

I(M; i; z) = M � (i + 1) �

�
log(1� z)

log(1� P (M; i))

�

The results show that for DSOAR, with the given
parameters, ADMs are somewhat more useful than
ADFs; the number of individuals that must be pro-
cessed to produce a solution using ADMs is lower than
the number that must be processed to produce a solu-
tion using ADFs.

The Lawnmower Problem

I have also obtained a related but negative re-
sult on Koza's 64-square Lawnmower problem. The
Lawnmower problem is identical to OAR (described
above) except that there are no obstacles and the IF-
OBSTACLE operator is not used. Note that this do-
main includes no pre-existing macros and no operators
that are sensitive to the robot's environment. It does,

0

25000

50000

75000

100000

0 10 20 30 40 50

I(M,i,z) with ADMs

I(M,i,z) with ADFs

Generation

In
di

vi
du

al
s

th
at

 m
us

t
be

 p
ro

ce
ss

ed

Population size M=500
Number of runs N=100
Desired probability of success z=99%

Effort E=21000

Effort E=26000

Figure 3: I(M,i,z) for ADFs and ADMs on the DSOAR
problem.

however, include operators that work by side e�ect, so
one might expect ADMs to be more useful than ADFs.

I performed 200 runs of a genetic programming sys-
tem on the 64-square Lawnmower problem, half with
ADFs and half with ADMs. Aside from the switch to
ADMs for half of the runs, I used the same parameters
as did Koza (Koza 1994a). The results are shown in
Figures 4 and 5. Figure 4 shows P(M,i) for ADFs and
for ADMs on this problem; it is not obvious from ca-
sual inspection of this graph that either type of module
provides greater bene�t. Figure 5 shows I(M,i,z), from
which it is clear that ADMs are more of a hindrance
than a help on this problem; the computational e�ort
(minimum for I(M,i,z)) is 18000 for ADMs, but only
12000 for ADFs.

When Are ADMs Useful?

The semantics of ADFs and of substitution ADMs are
equivalent when all operators in the domain are purely
functional. The only di�erence between an ADF and
an ADM in such a case is that the ADM may take
more runtime to evaluate, since the code trees appear-
ing as arguments to the ADMmay have to be evaluated
multiple times. It is therefore clear that substitution
ADMs can only be more useful than ADFs in envi-
ronments that include operators that are not purely
functional.

Even when a domain includes operators that work by

0

0.25

0.5

0.75

1

0 5 10 15 20

P(M,i) with ADMs

P(M,i) with ADFs

Generation

C
um

ul
at

iv
e

P
ro

ba
bi

li
ty

 o
f

S
uc

ce
ss

 (
%

)

Population size M=1000
Number of runs N=100

Figure 4: P(M,i) for ADFs and ADMs on the Lawn-
mower problem.

side e�ect, there is no guarantee that the use of ADMs
will result in less individuals being processed than will
the use of ADFs. The negative result on the Lawn-
mower problem is a testament to this fact. Informally
we may speculate that the \less functional" a domain
is, the more likely that ADMs will be useful in that do-
main. If context-sensitive and side-e�ecting operators
play an important role in a given domain, then it is
likely that new and/or problem-speci�c control struc-
tures will be useful; we can therefore expect a genetic
programming system to take advantage of automati-
cally de�ned macros to produce control structures that
help in evolving a solution to the problem.

Although ADFs and ADMs have been contrasted
above for expository purposes, they are in fact com-
pletely compatible with one another. Just as a human
programmer may wish to de�ne both new functions
and new control structures while solving a di�cult pro-
gramming problem, it may be advantageous for genetic
programming to de�ne a collection of ADFs and a col-
lection of ADMs. Functions may be most helpful for
some aspects of a problem domain, while macros may
be most helpful for others. Since the optimal number
of ADFs and ADMs may not be clear from the outset,
it may also be advantageous to simultaneously evolve
programs and their macro-extended architectures, in
the style of (Koza 1994b).

0

20000

40000

60000

80000

0 5 10 15 20

I(M,i,z) with ADMs

I(M,i,z) with ADFs

Generation

In
di

vi
du

al
s

th
at

 m
us

t
be

 p
ro

ce
ss

ed

Population size M=1000
Number of runs N=100
Desired probability of success z=99%

Effort E=18000
Effort E=12000

Figure 5: I(M,i,z) for ADFs and ADMs on the Lawn-
mower problem.

Future Work

A reasonable speculation is that architectures that in-
clude both ADFs and ADMs will be particularly use-
ful in application areas that have traditionally made
use of exotic control structures. One such application
area is \dynamic-world planning" or \reactive plan-
ning," in which the goal is to produce systems that in-
tegrate planning and action in complex environments.
Computational architectures for dynamic-world plan-
ning tend to use multiple control \levels," blackboard-
based opportunistic control structures, \monitor" pro-
cesses, and other complex and unusual control struc-
tures (Dean & Wellman 1991, Spector 1992). A ge-
netic programming system with ADMs should be ca-
pable of evolving and re�ning such control structures
to suit particular problem environments. One clear av-
enue for future work therefore is to apply ADM-based
techniques to dynamic-world planning problems; pre-
liminary work on the \wumpus world" environment
(Russell & Norvig 1995) has produced results similar
to those reported for DSOAR above, indicating that
ADMs are indeed useful for such applications.

Even when ADMs decrease the number of individ-
uals that must be processed to solve a problem, the
runtime costs of ADMs may cancel any savings in prob-
lem solving time. Such costs include the time spent on
redundant re-evaluation of purely functional code frag-
ments, and, depending on the techniques used to im-

plement ADMs, macro-expansion costs. Further stud-
ies must be conducted on the trade-o�s involved.
The ADMs considered in this paper are all substi-

tution macros, but it should also be possible to evolve
more powerful code transforming operators. Macros
may also be useful in more ways than were sketched
above; for example, they can be used to establish vari-
able bindings or, like setf in Common Lisp, to imple-
ment \generalized variables." These uses of macros,
and the bene�ts of richer macro de�nition facilities,
should also be explored.

Conclusions

The human programmer's toolkit includes several
module-building tools, each of which can be useful in
certain circumstances. Genetic programming systems
should have access to a similar toolkit. In particu-
lar, they should have access to macro-de�nition facil-
ities so that they can evolve control structures appro-
priate to particular problems. Automatically De�ned
Macros can improve the performance of a genetic pro-
gramming system, but more work must be done to re-
�ne our understanding of the conditions under which
ADMs, or combinations of ADFs and ADMs, are likely
to be helpful. Perhaps the best strategy, given suf-
�cient computational resources, is to simultaneously
evolve programs and their macro-extended architec-
tures (the number of ADF/Ms and the number of ar-
guments that each takes). Architectures that include
both ADFs and ADMs may prove to be particularly
useful in domains that have traditionally made use of
exotic control structures; for example, dynamic-world
planning.

Acknowledgments

The idea for this work emerged from a conversation
with William E. Doane in which he suggested that
we simultaneously evolve chromosomes and protein ex-
pression mechanisms. The comments of an anonymous
reviewer lead to several signi�cant improvements in
this work.

References

Dean, T.L. and M.P. Wellman. 1991. Planning and

Control. San Mateo, CA: Morgan Kaufmann Pub-
lishers.

Graham, P. 1994. On Lisp: Advanced Techniques

for Common Lisp. Englewood Cli�s, NJ: Prentice
Hall.

Kernighan, B.W. and D.M. Ritchie. 1988. The C

Programming Language. Second Edition. Engle-
wood Cli�s, NJ: Prentice Hall.

Kinnear, K.E. Jr. 1994. Alternatives in Automatic
Function De�nition: A Comparison of Performance.
In K.E. Kinnear Jr., Ed., Advances in Genetic Pro-

gramming. pp. 119{141. Cambridge, MA: The MIT
Press.

Koza, J.R. 1992. Genetic Programming. Cambridge,
MA: The MIT Press.

Koza, J.R. 1994a. Genetic Programming II. Cam-
bridge, MA: The MIT Press.

Koza, J.R. 1994b. Architecture-altering Operations
for Evolving the Architecture of a Multi-part Pro-
gram in Genetic Programming. Computer Science
Department, Stanford University. CS-TR-94-1528.

Russell, S.J., and P. Norvig. 1995. Arti�cial Intel-

ligence, A Modern Approach. Englewood Cli�s, NJ:
Prentice Hall.

Spector, L. 1992. Supervenience in Dynamic-World
Planning. Ph.D. diss., Dept. of Computer Science,
University of Maryland.

Steele, G.L. Jr. 1990. Common Lisp. Second Edi-
tion. Digital Press.

Zongker, D. and B. Punch. 1995. lil-gp

1.0 User's Manual. Available via the Web at
http://isl.cps.msu.edu/GA/software/lil-gp, or via
anonymous FTP to isl.cps.msu.edu, in the directory
\/pub/GA/lilgp".

