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ABSTRACT
We focus on improving genetic programming through lo-
cal search of the space of program structures using an in-
heritable epigenetic layer that specifies active and inactive
genes. We explore several genetic programming implementa-
tions that represent the different properties that epigenetics
can provide, such as passive structure, phenotypic plastic-
ity, and inheritable gene regulation. We apply these imple-
mentations to several symbolic regression and program syn-
thesis problems. For the symbolic regression problems, the
results indicate that epigenetic local search consistently im-
proves genetic programming by producing smaller solution
programs with better fitness. Furthermore, we find that in-
corporating epigenetic modification as a mutation step in
program synthesis problems can improve the ability of ge-
netic programming to find exact solutions. By analyzing
population homology we show that the epigenetic implemen-
tations maintain diversity in silenced portions of programs
which may provide protection from premature convergence.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
Program synthesis; J.2 [Computer Applications]: Physi-
cal Science and Engineering—Engineering

Keywords
genetic programming, epigenetics, regression, program syn-
thesis
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1. INTRODUCTION
In genetic programming (GP), the role of epigenetics, that

is, regulation of gene expression, is traditionally ignored
(with some exceptions, e.g. [7]), despite the fact that the
expression of biological genes is highly regulated. It has re-
cently become clear that epigenetic processes can provide
several evolutionary benefits. For example, they allow the
underlying genotype to encode various expressions and allow
neutral variation through crossover and mutation of non-
coding segments. This neutrality may allow populations to
avoid evolutionary bottlenecks or allow them to respond to
changing evolutionary pressures [14]. In addition, they pro-
vide for phenotypic plasticity, i.e. the ability of gene expres-
sion to change in response to environmental pressure [5].
Furthermore, epigenetics allow adaptations to gene expres-
sion to be inherited in offspring without explicit changes to
the genotype. Indeed, it is now accepted that the previ-
ously discredited ideas of Lamarck, i.e. the inheritability
of lifetime adaptations, are possible through epigenetic pro-
cesses [14, 12]. Hence epigenetic processes may provide evo-
lutionary benefits by performing “local search” for survival.
We investigate that hypothesis by designing an epigenetics-
enabled GP system to perform experiments for analysis.

Local search methods have been developed and integrated
into evolutionary algorithms [10, 35, 23, 9], especially in ge-
netic algorithms (GAs), through prescribed changes to the
genotype. In GP, especially within the field of symbolic re-
gression, the role of structure optimization is typically left
to the GP process while local search is constrained to con-
stant optimization via stochastic hill-climbing [3], linear [13]
or non-linear regression [30]. While this often improves sym-
bolic regression performance, the methods are inherently
limited to problem domains that require constant optimiza-
tion and cannot be readily applied to other problems like
software synthesis, nor can they improve program topology.
Other more generic local search methods like tree snipping
[3] focus on improving secondary metrics like size or legi-
bility. In these cases the local search is conducted at the
genome level.

Our study of the application of epigenetics to GP is moti-
vated by two main hypotheses: first, that generalized local
search methods can improve the performance of GP across



problem domains; and second, that the benefits of epigenetic
regulation observed in biology may confer analogous im-
provements on GP systems. Thus, we propose a new method
for conducting topological optimization of genetic programs
at level of gene expression via epigenetic local search. The
contributions of this method are twofold: first, it intro-
duces a generic method of topological search of the space of
individual genotypes via modifications to gene expression.
Second, unlike previous methods that focused on whether
lifetime adaptations should be inheritable (the Lamarckian
view) or only affect fitness (the Baldwinian view), epigenetic
local search improves genetic programs without affecting the
genotype and without discarding the acquired knowledge
gained through the process. It does this by conducting local
search on the epigenome rather than the genome and making
these adaptations inheritable via evolutionary processes.

We begin by describing the method and its use in two
stack-based GP environments. We then perform an exper-
imental analysis of different epigenetic implementations on
regression and program synthesis benchmarks. Finally we
analyze population diversity to study how gene expression
evolves for each implementation.

2. EPIGENETIC LINEAR GENETIC PRO-
GRAMMING (ELGP)

We introduce epigenetic information into the GP repre-
sentation by including an on/off condition on each element
in an individual’s genotype. Programs are encoded as post-
fix notation, linear genotypes with a corresponding set of
on/off values, referred to as an epigenome. When evaluated
together, the expressed program, i.e. phenotype, is produced
by executing instructions that are on (active) and ignoring
the instructions that are off (inactive). We refer to this
general approach as epigenetic linear genetic programming
(ELGP).

2.1 GP Representation
In order to accommodate the introduction of epigenet-

ics, two stack-based GP systems are used. For the sym-
bolic regression problems, a GP system known as ellenGP1

is used. For the program synthesis problems, we implement
an epigenetic extension to PushGP [28]. The stack-based
GP systems used in our research are advantageous because
the representation guarantees syntactic validity for arbitrary
sequences of instructions. This allows instructions to be si-
lenced or activated in a genotype without invalidating the
program’s ability to execute. This “syntax-free” property
stands in contrast to tree-based representations that can be-
come syntactically invalid due to changes to instructions and
literals.

The syntactic robustness of the stack-based approach is
achieved mainly by ignoring the execution of instructions
that have an arity larger than the current size of the stack.
For example, if a + operator attempts to execute and there is
only one element on the stack, it instead does nothing. Fur-
thermore, we base a program’s behavior only on the top el-
ement(s) of the stack after execution which allows programs
to contain unused arguments. The flexibility of this repre-
sentation means that the genotypes of the following three
programs i1, i2 and i3 all produce the identical phenotype
(x + y):

1http://www.github.com/lacava/ellen

i1 =
[
x y +

]
⇒ (x + y)

i2 =
[
x y + − ∗ /

]
⇒ (x + y) (1)

i3 =
[
z + x / x y +

]
⇒ (x + y)

The executions of −, ∗ and / in i2 are ignored due to
insufficient stack size; in i3, the last element of the executed
stack, (x + y), is taken as the phenotype.

2.2 Epigenetic Learning and Evolution
The addition of epigenetic information makes it possible

to alter the topology of and values expressed in the pheno-
type. For example, program i3 admits several phenotypes
via epigenetic transformations, including,

i3 → i′3 =

[
1 1 0 0 0 1 1
z + x / x y +

]
⇒ (z + y)

i3 → i′′3 =

[
1 1 1 1 0 0 0
z + x / x y +

]
⇒ (z/x)

i3 → i′′′3 =

[
1 0 1 1 0 1 1
z + x / x y +

]
⇒ (z/x + y)

Similarly, program i2 in Eq. 1 admits the phenotypes
(x + y), (x − y), (x ∗ y), and (x/y) via epigenetic transfor-
mations. Thus the epigenetic layer introduces flexibility to
the expression of a genotype by treating introns (i.e. unex-
pressed genes) as partial solutions to explore locally in the
search space.

The components of ELGP are shown in Figure 1. The
epigenetic markers are initialized randomly with a proba-
bility of being active (50% for the experimental studies in
Section 4). The extent to which epigenetic information is
learned and inherited is a research question we study by
exploring different implementations. The simplest topolog-
ical search method, Ep1M, mutates the epigenetic layer of
each individual each generation; the hill climber in Figure
1 is skipped. Thus for Ep1M, epigenetic mutations face
only evolutionary pressures. In contrast, the epigenetic hill
climbing (EHC) cases EHC1 and EHC5 use the epigenetic
information explicitly to improve individuals each genera-
tion (the EHC is described in Section 2.2.2). The two meth-
ods execute one and five iterations of EHC each generation,
respectively. Two control methods, Baseline and Ep0, are
used as comparison. In the Baseline case, individuals are
represented as basic genotypes as in Eq. 1. The Ep0 case
acts like Baseline but with half of the genes in initial code
permanently silenced. As such Ep0 controls for the effect
that passive introns might have. Neither Baseline or Ep0
use the right half of the system in Figure 1 (i.e. the program
never enters epigenetic mutation).

2.2.1 Epigenetic Mutation
Whitley et al. [35] introduced Lamarckian updating to

GAs by conducting local search of the bit strings within 1
Hamming distance of the current bit string. In theory it
would be possible to treat the epigenome as a bit string and
proceed similarly. However the cost of GP fitness evaluations
render this approach intractable. Instead, each generation,
the epigenome is uniformly mutated with a probability of
10% at each gene. The mutation flips the binary value of
the epigenome at the gene, thus activating or silencing that
gene. The operation is uniform with respect to the number
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Figure 1: Block diagram of ELGP. After fitness eval-
uation and before selection, the population under-
goes an iteration of epigenetic mutation, represented
by the block on the right. For EHC1 and EHC5, the
hill climbing step is then conducted.

of instructions. For the EHC1 and EHC5 implementa-
tions, the epigenetic mutation is followed by hill climbing,
described next.

2.2.2 Epigenetic Hill Climbing
In order to mimic the acquisition of lifetime learning by

epigenetic adaptation, the EHC implementations evaluate
epigenetic changes i → i′ to determine whether individuals
should be updated. EHC1 and EHC5 undergo one and
five iterations of epigenetic mutation, and at each iteration
the epigenetic changes are tested for acceptance.

For the program synthesis problems, epigenetic changes to
an individual are kept only if the fitness is improved or does
not change, i.e. fi′ ≤ fi (fitness f is being minimized). For
the symbolic regression problems, we exploit the epigenetic
layer’s potential to reduce equation nonlinearity in order to
break fitness ties. The complexity Ci of program i with
active genotype ga =

[
ga1 ... ga`

]
is defined as Ci =∑`

q=1 c(gaq ), where component function nonlinearities [26]
are defined as

c(ga) =


4 : (ga = log) ∨ (ga = exp)
3 : (ga = sin) ∨ (ga = cos)
2 : (ga = /)
1 : otherwise

Lower-complexity programs with equivalent fitness are ac-
cepted, giving the condition

pass = (fi′ < fi) ∨ ((fi′ = fi) ∧ (Ci′ < Ci)) (2)

If the epigenetically mutated individual i′ does not pass Eq.
2, the changes are discarded and i is kept in the population.
Otherwise i is replaced with i′.

2.2.3 Epigenetic Inheritance
A key feature of ELGP is the inheritance of epigenetic val-

ues throughout the evolutionary process. During crossover
the epigenetic values of the parent genes are kept intact such
that the child receives the epigenetic states of the genes it
has inherited. If a new gene is introduced via genetic muta-
tion, that gene has the same probability of being active as
the initial genes of the population (50% here).

3. RELATED WORK
There has been some work to incorporate epigenetic learn-

ing into GP, notably by Tanev [29]. In this case the focus was
to model histone modification through a double cell repre-
sentation and use it to solve a predator-prey problem. Unlike
our approach, Tanev did not treat lifetime epigenetic mod-
ifications as inheritable, despite recent studies that support
this idea in biology [31, 15, 6].

There have been a number of studies on the effects of non-
coding segments in GP, some of which have found that the
structural presence of introns can protect genotypes from
destructive crossover operations (i.e. operations that pro-
duce children less fit than their parents) [21, 4]. Non-coding
segments were found to be useful in evo-devo for evolution of
arbitrary shapes as well [8]. In each of these studies, introns
were either declared explicitly or measured during evolution,
rather than actively manipulated by the system itself. Our
preliminary study of epigenetic initialization found rates of
beneficial crossover to be highest with the probability set to
50% [18].

Several GP systems use similar stack-based or linear genome
representations such as Push-forth [17] and Gene Expression
Programming [7] that could trivially implement the epige-
netic layer suggested in this paper. In addition, there are
methods that leverage neutrality (i.e. different genotypes
with the same fitness) by creating a genotype - phenotype
mapping, for example Cartesian GP [20] and Binary GP [2].
Rather than redefining the GP representation completely,
our goal with ELGP is to explore whether local search of
gene expression can be a viable, generic GP extension; hence
its application to two different GP systems in this paper.
As mentioned earlier, there are a plethora of studies on
local search methods for improving GP by Lamarckian or
Baldwinian means, yet very few that have considered these
changes to occur at the epigenetic level rather than the geno-
type level. A notable exception is Multiple Regression GP
[1], in which parameter values are implied at each node lo-
cation and updated by linear regression. Still, the tangible
improvements brought about by this and most other local
search methods for symbolic regression are achieved by para-
metric, rather than topological, search.

4. EXPERIMENTAL ANALYSIS

4.1 Symbolic Regression with ellenGP

4.1.1 Algorithm Settings
In order to make our results relevant to state-of-the-art

symbolic regression tools that often leverage Pareto opti-
mization [26, 24], we use age-fitness Pareto survival [25], in
which each individual is assigned an age equal to the num-
ber of generations since its oldest ancestor was created. Each
generation, a new individual is introduced to the population
as a means of random restart. Selection for breeding is ran-
dom, and during breeding we create a number of children
equal to the overall population size. At the end of each
generation, we conduct culling tournaments of size 2 to re-
duce the set consisting of the current population and the
newly created children down to the population size. In each
tournament, we remove an individual from the population
if their competitor Pareto-dominates them by the metrics of
age (younger is better) and fitness. Culling continues until
the population reaches its original size or until it conducts a



Table 1: Symbolic regression problem settings.

Setting Value

Population size 1000
Crossover / Mutation 80/20%
Program length limits [3, 50]
ERC range [-10,10]
Termination criterion max point evals or f < 1.0E-6
Trials 50 Tower & Keijzer-6, 100 rest

Problem Terminal Set Point Evals

Pagie-1 {x, y, +, −, ∗, /, 1.0} 2.5E+10
Nguyen-7 {x, +, −, ∗, /, exp, log, ERC} 2.5E+10
Uball5D {x1 ... x5, +, −, ∗, /, ERC} 2.5E+10
Keijzer-6 {x, +, −, ∗, /, exp, log, ERC} 2.5E+10
Tower {x1 ... x25, +, −, ∗, /, sin, cos,

exp, log, ERC}
1.0E+11

maximum number of tournaments (10 times the population
size in our implementation), at which point individuals with
the worst fitness are removed.

The fitness metric is designed to minimize error and max-
imize correlation so that both mean absolute error (MAE)
and the closeness of the output and target shapes, i.e. the
coefficient of determination (R2), can be compared in the
results. For target y∗ and output yi fi is defined as:

fi =
1

N

N∑
q=1

|y∗(kq)− yi(kq)|/R2
i (3)

R2
i =

(cov(y∗,yi))
2

var(y∗)var(yi)
(4)

Run-time settings for the algorithm are shown in Table
1. A one-point crossover operator is used to produce two
children from two parents. The mutation operator is ap-
plied uniformly to the chosen parent with a probability of
2.5% at each gene. If a constant gene is picked for mu-
tation and ephemeral random constants (ERCs) are being
used, the constant is perturbed by Gaussian noise with stan-
dard deviation equal to half the magnitude of the constant.
Otherwise the instruction is mutated to a randomly chosen
gene.

For problems utilizing ERCs, one iteration of parameter
hill climbing is conducted each generation. The hill climber
perturbs all constant values in the active genotype by Gaus-
sian noise with a standard deviation equal to 10% of the
value of the constant. These changes are kept if they result
in a lower fitness for the individual.

Each trial was allocated a maximum number of point eval-
uations, i.e. gene executions, to normalize for the different
program sizes among methods. A GP run will exit early if
the fitness condition f < 10−6 is achieved before the des-
ignated number of point evaluations has been reached. In
practice, this fitness termination condition was sufficient to
guarantee exact solutions for the problems studied.

4.1.2 Optimizations
The following optimizations are applied to the ellenGP

system in order to reduce the number of point evaluations
required to evaluate the fitness of an individual that has un-
dergone epigenetic mutation. The majority of run-time in
most GP systems (including ours) is spent in fitness evalua-
tion, thus motivating the need for methods that can reduce
the number of point evaluations required.

Fitness Escape.
EHC requires additional fitness evaluations in order to

determine whether the prescribed epigenetic changes will be
kept. Given that the fitness fi of program i monotonically
increases with the evaluation of more fitness cases k1...n,
evaluation of the epigenetically mutated individual i′ can
be halted if at any point the fitness fi′(1...kj) > fi(1...kn)
for 1 ≤ j < n. Since fitness is always equal to or larger
than MAE (see Eq. 3), the halt condition can be defined
conservatively using the mean absolute error (MAE) of i′

and the fitness of i as

1

N

j∑
q=1

|y∗(kq)− yi′(kq)| > fi (5)

Stack Tracing.
In GP tree representations, typically the output of a node

in the program is dependent only on the outputs of its child
nodes (and those children’s children and so forth). We can
say conservatively with ellenGP representations that no in-
struction in the stack is dependent on an instruction to its
right. Therefore, when a gene is silenced or activated, only
the outputs of the genes to its right in the genotype are
affected, hence only part of the program needs to be reeval-
uated. To avoid repeated instruction evaluations during epi-
genetic hill climbing, we save the intermediate program out-
puts of each gene and after epigenetic mutation reevaluate
only those genes to the right of the left-most location of
mutation. Saving the stack outputs is a trade-off between
memory and time resources since it requires more memory to
save the intermediate outputs but requires fewer point eval-
uations to evaluate epigenetically mutated individuals. The
trade-off is favorable in our implementation because proces-
sor resources are much more limited than memory resources.
Similar partial evaluation strategies have been proposed, e.g.
in [19].

4.1.3 Problems
Five problems were chosen from the benchmark suite sug-

gested by White et. al. [34]. The first four problems have
the following forms2:

Pagie-1 [22] :
1

1 + x−4
+

1

1 + y−4
(6)

Nguyen-7 [32] : ln(x + 1) + ln(x2 + 1) (7)

UBall5D [33] :
10

5 +
∑5

i=1 (xi − 3)2
(8)

Keijzer-6 [16] :

x∑
i

1

i
(9)

The settings for each problem are summarized in Table
1. Each of these problems use the training and validation
sets provided in the original papers except for the Nguyen-7
validation set (not originally provided). We test validation
on Nguyen-7 using 20 evenly spaced points from x ∈ [2, 4].
Keijzer-6 is unique here in that it does not admit an analytic
solution, and can only be approximated. The final problem
is an industrial data set known as the Tower problem3 that
uses data recorded from a chemical distillation tower. The

2UBall5D is also known as Vladislavleva-4.
3http://symbolicregression.com/?q=towerProblem



data is split into training and validation sets according the
scaled extrapolation method used in [33]. The training set
is comprised of data in the scaled range [0.02, 0.98] of input
variables x6, x8, x11, x17, and x23, and the validation set is
comprised of data in [0, 0.02) ∪ (0.98, 1].

4.2 General Program Synthesis with PushGP

4.2.1 Algorithm settings
We conduct the program synthesis experiments in PushGP

using standard tournament selection of size 7, a population
size of 1000, and 100 trials for all problems. Table 2 shows
the settings for each problem.

The new linear-genome PushGP allows us to use entirely
uniform genetic operators. The crossover operator, which
we use 20% of the time, alternates between parents, with a
1% chance of alternation at each instruction and an align-
ment deviation of 10, similar to ULTRA [27]. The mutation
operator, which we use 20% of the time, gives a 1% chance of
changing each instruction to a randomly selected one. The
uniform close mutation operator, which we use 10% of the
time, gives a 10% chance of adding or removing a closing
parenthesis after each instruction. Finally, 50% of the time
we perform a crossover followed by a mutation.

4.2.2 Problems
We perform tests on five program synthesis benchmark

problems [11]. The problems used are:

• Replace Space with Newline (RSWN): Given a string
input, print the string, replacing spaces with newlines.
The input string will not have tabs or newlines, but
may have multiple spaces in a row. It will have maxi-
mum length of 20 characters. The program should also
return the integer count of the non-whitespace charac-
ters.

• String Lengths Backwards (SLB): Given a vector of
strings with length ≤ 50, where each string has length
≤ 50, print the length of each string in the vector start-
ing with the last and ending with the first.

• Vector Average (VA): Given a vector of floats with
length in [1,50], with each float in [-1000,1000], return
the average of those floats.

• Negative To Zero (N2Z): Given a vector of integers in
[-1000,1000] with length ≤ 50, return the vector where
all negative integers have been replaced by 0.

• Syllables (Syl): Given a string (max length 20, con-
taining symbols, spaces, digits, and lowercase letters),
count the number of occurrences of vowels (a, e, i, o,
u, y) in the string and print that number as X in “The
number of syllables is X”.

Instruction sets are determined by selecting potentially rel-
evant data types for each problem, and then using all in-
structions that utilize those data types (shown in Table 2).

4.3 Results
We discuss the results of the symbolic regression and pro-

gram synthesis experiments in the following two sections. In
the third section, we look at population homologies for spe-
cific symbolic regression and program synthesis problems in
order to shed light on the performance differences observed
between methods.
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Figure 2: Boxplot comparison of best-of-run train-
ing fitnesses for the symbolic regression problems.

4.3.1 Symbolic Regression
The symbolic regression results are summarized in Table

3, and the best-of-run fitnesses are shown in Figure 2. We
compare training performance in terms of exact solutions,
mean best MAE, mean best R2, and mean active program
size (averaged from population averages recorded each gen-
eration for each trial). For the validation comparisons we
report the percent of solutions that “generalize”, defined as
having a real-valued, finite output on validation data. We
assign a poor fitness to non-generalizing solutions when cal-
culating (non-parametric) statistics and report the median
values of MAE and R2 on the validation sets to account for
outliers (i.e. non-generalizing models).

Overall, exact solutions are found only for the Pagie-1 and
Nguyen-7 problems; for both cases, EHC1 and EHC5 find
approximately 3 to 5 times more exact solutions than Base-
line or Ep0. In all training cases, a significant improve-
ment to MAE and R2 is achieved by EHC1 and/or EHC5
except when all methods converge to mean best R2 = 1
(Nguyen-7 and Keijzer-6). For the validation cases, EHC1
and EHC5 are significantly better on Pagie-1, Nguyen-7 and
UBall5D, but on Keijzer-6 and Tower the results are not sig-
nificant aside from EHC1 R2 on Keijzer-6 and Ep1M R2

on Tower. Surprisingly, Ep1M significantly improves vali-
dation R2 on Tower even though it has the poorest training
fitness, perhaps due to the small program sizes produced by
that method for that problem.

For all problems, Ep1M has the smallest average program
sizes, followed by Ep0, EHC1 and EHC5. All the epige-
netic programs have significantly smaller programs than the
Baseline case. In general the symbolic regression problems
seem to benefit from some level of epigenetic hill climbing,
both in terms of fitness convergence and program size.



Table 2: PushGP settings for the program synthesis problems.

Problem
Replace Space with

Newline
String Lengths

Backwards
Vector Average Negative To Zero Syllables

Max Point Evals 3.0E+10 1.0E+10 1.0E+10 1.0E+10 1.0E+10
Max Program Size 800 300 400 500 800
Max Point Evals per
Program Evaluation

1600 600 800 1500 1600

Instruction Set (all
instructions in listed
types)

:integer :boolean
:string :char :exec

:print

:string :vector string
:integer :boolean

:exec :print

:vector float
:float :integer

:exec

:integer :boolean
:vector integer :exec

:integer :boolean
:string :char :exec

:print

Terminal Set
input, ‘\n’, ‘ ’,

visible char ERC,
string ERC

input, integer ERC
[-100, 100]

input input, 0, []

input, “The number of
syllables is ”, “aeiouy”,
‘a’, ‘e’, ‘i’, ‘o’, ‘u’, ‘y’,

visible char ERC,
string ERC

Error Function

printed string
Levenshtein

distance, integer
absolute error

printed string
Levenshtein

distance

float absolute
error

Levenshtein distance
between vectors

printed string
Levenshtein distance,

printed integer
absolute error

4.3.2 Program Synthesis
The results for the program synthesis problems are sum-

marized in Table 4. Unlike symbolic regression problems,
the goal is to generate a program that passes all tests, and so
the results are compared only in terms of the number of ex-
act solutions found. By this measure, the best performance
case is always Ep1M or EHC1, although this performance
boost is only significant for Ep1M on the RSWN and VA
problems. Surprisingly, Ep1M outperforms EHC1, unlike
in the symbolic regression case. We discuss reasons for why
this might occur in the following section.
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Figure 3: Active (on) and inactive (off) genotype
homology for Uball5D problem, averaged over 100
trials.

4.3.3 Homology
We hypothesize that epigenetics provide protection from

premature convergence in populations by preserving sections
of the genome from fitness pressure and allowing them to
drift genetically, thus providing an avenue for introduction
of diversity and continued progress. We look at population
homology in detail to determine whether this phenomenon
of preserved diversity is evident. We define the homology
H of a population using a Levenshtein distance compari-
son of P randomly sampled pairs of individuals (|ij , im|L),
normalized by the length, | · |, of the longer individual:

H = 1− 1

P

P∑
n=1

|ij , im|L
max(|ij |, |im|)

(10)

We sample homology separately for the active, inactive, and
total (whole genome) portions of the genotypes with P =
200. In general we find that inactive genotypes have lower
homology (i.e. higher diversity) than active genotypes for
every epigenetic case. The homologies for the UBall5D prob-
lem are shown in Figure 3 as an example. The differences
between active and inactive homologies are very significant
in this example (p < 10−14). The active gene homologies
for Ep0, EHC1, and EHC5 are slightly (yet significantly)
lower than Baseline as well (p < 10−13). This suggests
the improvement in fitness convergence for the symbolic re-
gression problems is linked to the extra diversity available
during epigenetic local search. Ep1M displays much lower
homology in both active and inactive genotypes, a trend also
evident when comparing total genome homology for the VA
problem in Figure 4. The program synthesis problems may
therefore benefit mostly from increased genetic diversity over
the total genome (afforded by Ep1M). We hypothesize that
increased diversity in this context assures larger phenotypic
coverage and hence a higher likelihood of finding exact so-
lutions in non-convex fitness landscapes.
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Figure 4: Total (whole genome) homology for the
Vector Average problem.

5. CONCLUSIONS
The results suggest that epigenetic local search can be

a promising addition to GP. We have shown that the epi-
genetic layer is able to preserve diversity in the inactive



Table 3: Comparison of best-of-run results for the symbolic regression benchmark problems. ∗ and underline
indicate significant (p < 0.05) improvement over Baseline and Ep0, respectively. Exact solution p-values are
based on pairwise chi-squared tests with Holm correction. Fitness and size p-values are based on pairwise
Wilcoxon rank-sum tests.

Problem Exact Solutions (%) Training Validation Mean Active

Method Mean MAE Mean R2 Generalize (%) Median MAE Median R2 Program Size

Pagie-1

Baseline 1 0.114 0.930 100 0.116 0.960 31.7

Ep0 3 0.099 0.960 100 0.109 0.971 ∗19.21

EHC1 ∗12 ∗0.071 ∗0.968 100 ∗0.080 ∗0.972 ∗20.92

EHC5 ∗15 ∗0.065 ∗0.970 100 ∗0.078 ∗0.963 ∗21.35

Ep1M 0 0.104 0.962 100 0.111 ∗0.971 ∗18.3

Nguyen-7

Baseline 10 5.04E-4 1 95 0.074 0.999 28.22

Ep0 10 7.08E-4 1 98 0.061 0.999 ∗17.77

EHC1 ∗27 4.34E-4 1 99 ∗0.024 0.999 ∗20.25

EHC5 ∗31 ∗3.46E-4 1 94 ∗0.019 ∗1.000 ∗21.20

Ep1M 11 1.10E-3 1 99 0.031 0.999 ∗15.41

UBall5D

Baseline 0 0.130 0.325 100 0.165 0.124 33.20

Ep0 0 0.130 0.288 100 0.149 0.163 ∗18.70

EHC1 0 ∗0.122 0.334 100 ∗0.128 ∗0.287 ∗20.22

EHC5 0 ∗0.119 ∗0.352 100 ∗0.122 ∗0.293 ∗22.14

Ep1M 0 0.132 0.259 100 0.149 0.160 ∗17.77

Keijzer-6

Baseline n/a 3.65E-5 1 88 4.93E-5 1 25.84

Ep0 n/a 3.26E-5 1 90 4.31E-5 1 ∗16.62

EHC1 n/a ∗2.42E-5 1 90 4.08E-5 ∗1 ∗19.44

EHC5 n/a 3.05E-5 1 94 4.53E-5 1 ∗20.23

Ep1M n/a 5.10E-5 1 92 6.47E-5 1 ∗16.06

Tower

Baseline n/a 41.03 0.663 96 42.55 0.663 22.57

Ep0 n/a 40.08 0.682 98 42.99 0.667 ∗16.67

EHC1 n/a ∗37.55 ∗0.706 100 38.56 0.705 ∗18.28

EHC5 n/a ∗37.23 ∗0.715 98 40.64 0.697 ∗19.37

Ep1M n/a 41.91 0.660 100 40.46 ∗0.752 ∗13.47

Table 4: Results of program synthesis runs. ∗ and
underline indicate significant (p < 0.05) improvement
over Baseline and Ep0, respectively, according to
chi-squared tests with Holm correction.

Problem Solutions on training / validation set (%)

Baseline Ep0 EHC1 Ep1M

RSWN 61/58 66/65 61/60 ∗85/83

SLB 14/14 11/10 23/23 15/14

VA 12/12 10/10 20/20 ∗43/43

N2Z 9/9 9/8 9/8 21/19

Syl 10/10 2/2 5/5 11/11

sequences of genes and that, for the benchmark problems
studied, epigenetic methods outperform a baseline imple-
mentation of GP in terms of fitness minimization, exact so-
lutions, and program sizes. We have only considered epige-
netic learning by mutation and hill climbing here, but we
hope the results encourage further research into the use of
epigenetic methods for structure optimization in GP.
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