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ABSTRACT

Genetic programming can be used to
automatically discover algorithms for
quantum computers that are more
efficient than any classical computer
algorithms for the same problems. In this
paper we exhibit the first evolved better-
than-classical quantum algorithm, for
Deutsch’s “early promise’” problem. We
also demonstrate a technique for evolving
scalable quantum gate arrays and discuss
other issues in the application of genetic
programming to quantum computation
and vice versa.

1. Quantum Computing

Quantum computers are computational devices that use
atomic-scale objects, for example 2-state particles, to store
and manipulate information (Steane, 1997; for an elementary
on-line tutorial see Braunstein, 1995; for an introduction for
the general reader see Milburn, 1997). The physics of these
devices allows them to do things that common digital
(henceforth “classical”) computers cannot. Although quantum
computers and classical computers appear to be bound by
the same limits of Turing computability, physicists argue
that quantum computers can solve certain problems using
less resources (time and space) than classical computers are
thought to require (Jozsa, 1997). For example, Shor’s quantum
algorithm finds the prime factors of an n-digit number in
time O(n’), while the best known classical factoring algorithms

1/3 2/3
require at least time O(2" "¢"") (Shor, 1994; Beckman
etal. 1996). And Grover’s quantum database search algorithm

can find an item in an unsorted list of n items in O( \,@ )
steps, while classical algorithms clearly require O(z) (Grover,
1997). The full power of quantum computation is a subject
of active investigation.

The smallest unit of quantum information is the qubit,
which is analogous to the classical bit. Whereas a classical
system of n bits is at any time in one of 2" states, a quantum
system of n qubits can be in any linear superposition of
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these 2" states simultaneously. Although we cannot read the
entire state (because measurement interferes with the system),
it appears that this quantum parallelism can nonetheless be
harnessed to perform real computational work.

In physical terms, a qubit can be thought of as a two-
component wave, where each component represents a
classical value, O or 1. The height of a component wave
gives the probability that the qubit will be found in a particular
classical state, and the phase controls how the wave will
interfere with other waves. As usual, a wave with height and
phase can be represented by a single complex number. Unlike
a classical bit, a qubit can be in both states at the same time,
and these states may be in phase, out of phase, or somewhere
in between, leading to constructive or destructive interference.

To date, only very small quantum computers have been
built, but the planning and construction of larger devices is
in progress. Current experimental quantum computing
hardware is based on the use of ion traps, cavity QED, and
NMR techniques; many difficult problems must be solved
before these techniques can be scaled up, but a discussion of
these issues is beyond the scope of this paper (see Preskill,
1997).

Quantum computers are different from classical computers
in several ways, and it is not obvious how, in general, software
can be developed to take advantage of their non-classical
power. A variety of basic questions about this power are still
open, for example whether or not there exist polynomial
time quantum algorithms for classically NP complete
problems. In order to assess the wisdom of expending
resources on the physical realization of quantum computers,
it is important that we develop a more solid understanding
of their real computational powers. One way to further this
understanding is to develop more quantum algorithms, either
by hand or by use of automatic programming techniques (as
below). And there are additional reasons, aside from guidance
forresearch and development efforts, for wanting to determine
the real powers of quantum computation. For example,
Penrose has argued that quantum effects play an important
role in human brains (Penrose, 1994), although his claims
have been disputed. Because complexity-theoretic arguments
play a major role in cognitive science, a rethinking of the
computational complexity limits of brain processes could
have a significant impact on the study of human cognition.



In this paper we describe how genetic programming can
be used to automatically find successful quantum algorithms.
Space limitations prevent us from describing the basic genetic
programming technique here; readers unfamiliar with genetic
programming should consult (Koza 1992, 1994). In the
following sections we first describe how quantum computers
are simulated for the purposes of fitness evaluation in a
genetic programming system. We then document the
evolution of a better-than-classical quantum algorithm for
Deutsch’s early promise problem and show how our technique
can also be used to evolve scalable quantum gate arrays.
This is followed by a brief outline of our current research
and comments about the prospects for future results.

2. Classical Simulation of Quantum
Computation

The fitness of a program in a genetic programming system
is assessed in part by running the program and by observing
its behavior. Because we do not yet have physical quantum
computers at our disposal, we can only assess the fitness of
quantum algorithms by simulating a quantum computer.
Unfortunately, this simulation requires computational
resources that scale exponentially with the size of the
simulated quantum system. For this reason simulation is only
feasible for very small systems.

The state of an n-qubit system can be represented as a
unit vector of 2" complex numbers [o,0,0,...0tn-1]. Each of
these numbers can be viewed as paired with a computational
basis vector of the form Ibb,b,...b, > where each b, is an
element of {0, 1}. (The “l..>” means that this is a “ket”
vector; the mathematics of this are beyond the scope of this
paper, but we are using the notation that is standard in the
quantum computation literature.) The modulus squared of
each ¢, i.e. I(xnlz, represents the probability that measurement
of the system will find it in the state corresponding to ln>.
The unit-length condition ensures that these probabilities add
to one. As an example, the complete state of a two-qubit
system can be represented as a vector space of the following
form:

000> + ¢ 01> + o,110> + or)l11>

If we measure the system the probability that we will
read the state of the system as “01” is Ia,lz.

A quantum algorithm is run by preparing the system in
an initial state, subjecting the system to a sequence of
operators, and then reading the final state of the system. It is
usually required that the initial state is a computational basis
vector (that is, one in which one ¢ is 1 and all others are 0),
that the final measurement be done in the computational
basis, and that each gate involves no more than a few qubits;
this ensures that the number of gates in the quantum circuit
is a reasonable measure of computational complexity. The

final state is read by squaring the modulus of each alpha,
summing those that correspond to the same values for the
output bits, and reporting the output bit pattern with the
highest sum. There will usually be some indeterminacy in
the reading of the final state, but it is possible to sufficiently
reduce this indeterminacy either by running the system
multiple times or by designing quantum algorithms that
minimize the uncertainty. The operators must all be
unitary—that is, they must be linear transformations on the
vector space which are bijective and length-preserving
(Barenco et al., 1995). The operators are often called quantum
logic gates and sequences of these operators are often called
either gate arrays or quantum algorithms. A very small set
of quantum logic gates can be complete for quantum
computation in the same sense that NAND is complete for
classical computation; one can implement any quantum
algorithm using only these primitive gates (Barenco et al.,
1995, and references therein).

A simple example of a quantum gate is the quantum
counterpart of classical NOT. Classical NOT inverts the value
of a single bit, changing 0 to 1 and 1 to 0. Quantum NOT
operates on a single qubit. In a one-qubit system (which has
two os, one for I0> and one for |1>) the quantum NOT
operation simply swaps the values of the two as. That is, a
single qubit system in the state o l0>+oyl1> will be
transformed by quantum NOT into ¢ 10>+0|1>.

It is sometimes convenient to represent quantum gates
via the matrix form of the operator in the computational
basis (which completely determines the operator). Quantum

0 1

NOT can be represented in matrix form as , and its

operation on a one qubit system can be shown as:

0 1
1 0

o, 10> |o |I0>
o |11> |y |I1>

When applied to qubit i of a multi-qubit system, quantum
NOT swaps the os of each pair of basis vectors that differ
from one another only in the ith position. For example, in a
two-qubit system the application of quantum NOT to the
rightmost qubit will swap the o of 100> with that of 101>,
and the o of 110> with that of |11>. This is represented in
matrix form in Figure 1.

Another useful quantum gate is controlled NOT (or CNOT),
which takes two qubit indices as arguments; we will call
these arguments controller and controlled. CNOT is an
identity operation for basis vectors with O in the controller
position, butitacts like quantum NOT applied to the controlled
position for basis vectors with 1 in the controller position.
For the case of a two-qubit system, with qubit O as the
controller and qubit 1 as the controlled (we start counting
with O from the leftmost position in the ket vectors), this can
be notated in matrix form as in figure 2.



One can also look at CNOT as a gate with one input
qubit (controller) and one output qubit (controlled). CNOT
flips the state with respect to its output wherever its input is
1. By making the condition on this flipping more complex,
possibly using more input qubits, we can construct analogous
unitary transforms for any classical boolean function. For
example, consider classical NAND, which takes two input
bits and outputs O if both inputs are 1, and 1 otherwise. That
is, it has the truth table shown in Table 1.

Such a truth table can be used as the basis of a unitary
transformation by interpreting a 1 in the output (rightmost)
column of a particular row as an instruction to swap os
between each pair of basis vectors that match that row’s
values for the input qubits and differ only in their values for
the output qubit. That is, we can construct a unitary
transformation, called quantum NAND, that takes three qubit
indices (2 inputs and 1 output) and swaps os of all pairs of
basis vectors that are equivalent with respect to their input
qubits but differ in their output qubit, except for those for
which both input qubits are 1 (the bottom row of the truth
table). For a three-qubit system, with qubits 0 and 1 as inputs
and qubit 2 as output, this can be notated in matrix form as
shown in Figure 3.

The work described in this paper uses CNOT, quantum
NAND, and the additional Hadamard and rotation quantum
gates shown in Figures 4 and 5. To apply these operators to
a particular qubit (in the case of Hadamard and the rotation)
or to a pair or triple of qubits (CNOT, NAND) in a n-qubit
system one first builds a 2"x2" matrix by taking the appropriate
tensor products of the operator matrix and the identity matrix.
One then multiplies the system state by the resulting matrix.
We do not actually build the matrices in our implementation
as they are large and mostly zeros, but this matrix formulation
may be the clearest way to see what the operators do.

Table 1. The truth table for classical NAND.

A B A NAND B
0 0 1
0 1 1
1 0 1
1 1 0

01 0O
1 0 0O
0 0 01
0 010

Figure 1. The matrix form of a quantum NOT gate that
operates on the second qubit of a two-qubit system.

oS O =

0 0O
1 00
0 0 1

0 01 0
Figure 2. The matrix form of a quantum CNOT gate for
a two-qubit system, using qubit 0 as the controller and
qubit 1 as the controlled.
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Figure 3. Th;: matrix form of a quantum Nf_lND gate in a
three-qubit system, using qubits 0 and 1 for input and
qubit 2 for output.
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Figure 4. H: Hadamard gate on a single qubit.

cos(0) sin(@)

—sin(@) cos(6)
Figure 5. Uz Unitary rotation of a single qubit by the
angle 6.



3. Evolution of a Better-Than-Classical
Quantum Algorithm for Deutsch’s
Early Promise Problem

Suppose you are given an oracle that computes an unknown
binary function of n input bits. That is, it takes n bits as
input and returns one bit output. Suppose further that you
are promised that the function is either uniform, meaning
that it always returns O or always returns 1, or that it is
balanced, meaning that it will return an equal number of Os
and 1s if called on all possible inputs. The early promise
problem s the problem of determining whether such an oracle
is uniform or balanced.

It is easy to see that a deterministic classical algorithm
n

will in the worst case require ? + 1 oracle calls to solve

n

this problem. If the first — calls all return the same value,

then it is still possible that the oracle is either uniform or
balanced, but the answer will be known for certain after one
more oracle call. A probabilistic classical algorithm can do

somewhat better, because it is unlikely that a balanced oracle
n

will produce ? of the same value in sequence. Nonetheless,

it is also clear that a single call to the oracle on a classical
computer produces no information that can be helpful in
solving the problem, whether deterministically or
probabilistically—0 and 1 are both equally likely outputs
from such a call whether the oracle is uniform or balanced.

Deutsch has shown that quantum computers can do better
here (Deutsch, 1985; Costantini and Smeraldi, 1997). If the
oracle is implemented as a unitary operator on a quantum
computer’s state, then information useful in solving the
problem can be obtained using fewer oracle calls than would
be required by any classical algorithm. In this section we
use genetic programming to automatically discover a quantum
algorithm that provides information on the two-bit early
promise problem using only one oracle call.

Genetic Programming could be applied to the construction
of quantum algorithms in a variety of ways. In the present
work we have opted to evolve classical programs which,
when executed, construct quantum gate arrays. The quantum
gate arrays are then run a number of times (in this case once
for each of the 8 two-bit oracles that are either uniform or
balanced) to assess each program’s fitness. This scheme is
convenient for several reasons, one of which is that it naturally
extends to the evolution of scalable gate arrays (see next
section).

For the two-bit early promise problem we evolved gate
arrays for a three-qubit quantum computer in which the qubits
are referred to with the indices O, 1, and 2. For each run the
quantum computer is prepared in the initial state of 11000>,
the gate array is executed, and the result is then read from

qubit 2. The gate arrays could include H, U, CNOT, and
NAND gates as described above, along with an ORACLE
gate implemented analogously to NAND, but with a truth
table corresponding to the function that the oracle computes.
The genetic programming function set consisted of the
following gate-array-construction and auxiliary functions:

H-GATE: takes 1 argument, which is coerced to a valid
qubit index (0-2). An H gate is added to the end
(output side) of the quantum gate array.

UN-THETA-GATE: takes 2 arguments, the first of which
is coerced to a valid qubit index (0-2), and the second
of which is interpreted as an angle in radians. A U,
gate is added to the end of the quantum gate array.

CNOT-GATE: takes 2 arguments, both of which are
coerced to valid qubit indices (0-2). A CNOT gate is
added to the end of the quantum gate array, unless the
two qubit indices are the same (in which case no
action is taken).

NAND-GATE: takes 3 arguments, all of which are coerced
to valid qubit indices (0-2). A NAND gate is added to
the end of the quantum gate array, unless any of the
qubit indices are the same (in which case no action is
taken).

ORACLE: takes no arguments. A call to the oracle function,
using qubits 0 and 1 as inputs and qubit 2 as output,
is added to the end of the quantum gate array unless
the gate array already contains a call to the oracle (in
which case no action is taken).

ITERATE: an iteration control structure. Takes 2
arguments, the first of which is coerced to a positive
integer and determines the number of iterations that
the second argument, a body of code, will be executed.
If a (large) bound on the number of iterations is
exceeded the calling program immediately halts.

IQ: an iteration control structure that takes one argument:
abody of code. This is equivalent to a call to ITERATE
with a first argument equal to the number of qubits in
the system (in this case 3).

IVAR: takes one argument, which is coerced to a positive
integer. (IVAR 0) returns the value of the loop
counter of the immediately enclosing iteration
structure. (IVAR 1) returns the value of the loop
counter for the next iteration structure out, etc. The
argument is taken modulo the number of iteration
structures that enclose the call to IVAR. Calls to IVAR
outside of all iteration structures return 0.



+: returns the sum of its two arguments.

1+: returns the sum of its single argument and 1.

—: returns the difference of its two arguments.

1—: returns the difference of its single argument and 1.
*: returns the product of its two arguments.

*2: returns the product of its single argument and 2.

%p: protected division: returns the quotient of its two
arguments; returns 1 if its second argument is 0.

%2: returns the quotient of its single argument and 2.

1/x: returns the quotient of 1 and its single argument;
returns 1 if its argument is 0.

The genetic programming terminal set consisted of *NUM-
QUBITS* (in this case 3), *NUM-INPUT-QUBITS* (in
this case 2), *NUM-OUTPUT-QUBITS* (in this case 1),

—

and the constants 0, 1, 2, PT (3.1415...), and i (~—1).

We used a standardized fitness function (for which lower
values mean “more fit”’) with 3 components: a hits component,
a correctness component, and an efficiency component. The
hits component is the total number of fitness cases (8 here)
minus the number of cases for which the program’s gate
array produces the correct answer (a “hit”’) with an error less
than 0.48 (which is far enough from 0.5 to be sure that it is
not due to roundoff). This is always a non-negative integer.
The correctness component is the error for all cases, calculated
as:

numCases
z max(0,error, —0.48)
i=1

max(hits,1)

Note that any errors below 0.48 are ignored. This keeps
the focus of the genetic search on the attainment of correct
answers rather than on the improvement of errors for cases
that are already being answered correctly. Note also that the
correctness component gets smaller as the number of hits
increases, so reasonably fit programs will be compared
primarily with respect to the number of correct answers, and
only secondarily with respect to the magnitudes of the errors
on the incorrect cases. The efficiency component is simply
the number of gates in the final quantum gate array (a non-
negative integer) divided by 100,000 so that it will always
be far below 1. For programs that do not get all fitness cases
correct, only the hits and correctness components are used
(they are summed). For programs that do get all fitness cases
correct, only the efficiency component is used (and the other

components are zero anyway). This causes the search to
focus initially on the production of correct gate arrays, and
later on the production of more efficient gate arrays. As a
result the fitness function approximates lexicographic fitness
(Ben-Tal, 1979), with the components ordered: hits (most
significant), correctness, efficiency (least significant).

One run of this system, using Koza’s non-ADF Lisp genetic
programming code (Koza, 1992) and the parameters shown
in Table 2, produced the program shown in Figure 6 at
generation 46. (The parameters in Table 2 were chosen by
intuition and have not been optimized.) When executed, this
program produces the gate array shown in Figure 7. Using
notation similar to that in the quantum computation literature,
this can be represented as in Figure 8.

This is not minimal —at least the final H can be removed,
although interestingly the NAND cannot (because quantum
gates can affect their “inputs” as well as their “outputs”).
This gate array solves or provides information useful in
solving the two-bit early promise problem for all 8 possible
two-bit oracles, using only one call to the oracle in each
case. The probabilities of error for the 8 cases are (rounded
to two decimal places): 0.02, 0.29, 0.23, 0.13, 0.13, 0.23,
0.30, and 0.04.

Table 2. Genetic programming parameters for a run on
the two-bit early promise problem.

max number of generations 1,001
size of population 10,000
max depth of new individuals 6

max depth of new subtrees for mutants | 4

max depth after crossover 12
reproduction fraction 0.2
crossover at any point fraction 0.1

crossover at function points fraction 0.5

selection method tournament
(size=5)
generation method ramped

half-and-half

randomizer seed 1.5




(IQ(NAND-GATE
(+ (* (1- 0) (ITERATE PI PI)) (UN-THETA-GATE -1 (*2 *NUM-INPUT-QUBITS*)))

(%2 (+

(NAND-GATE (IQ (1- (IQ (%2 (%2 (IQ (*2 *NUM-INPUT-QUBITS*)))))))

(H-GATE (IQ (IQ (1-PI))))
(ITERATE
(1- (SQRT (CNOT-GATE (UN-THETA-GATE1 (IVAR*NUM-QUBITS*))
(IVAR(ITERATEPI*NUM-OUTPUT-QUBITS*)))))
(1/x%
(NAND-GATE (* (SQRT-1)
(- (%P (IVARO) *NUM-QUBITS*) *NUM-INPUT-QUBITS*))
(1/%NUM-INPUT-QUBITS*)
PI)))))

(IQ (IVAR PI))
(SQRT (%2 (1- (ORACLE-GATE)))))))

Figure 6. An evolved program that produces a quantum gate array for the two-bit early promise problem.

(UN-THETA
(HADAMARD
(UN-THETA
(ORACLE)

(NAND 2 1
(UN-THETA
(HADAMARD
(UN-THETA
(CNOT 1 2

Figure 7. An quantum gate array for the two-bit early
promise problem, produced by the program in Figure 6.

4. Evolution of Scalable Quantum Gate
Arrays

2 4) ;; qubit 2, 6=4 radians

0)
11)

0)
2 4)
0)
1 2)
)

;; qubit O

;; qubit 1, 6=1 radian

;; acts on qubit 2

;; inputs are 2 & 1, output is 0

;; qubit 2, 6=4 radians

;; qubit O

;; qubit 1, 6=2 radians

;; qubit 1 is controller, 2 controlled

Our framework for evolving quantum gate arrays, described
above, can also be used to evolve scalable gate arrays. That
is, we can use this framework to evolve a single program
which, when run with different values for * NUM-QUBITS*,
*NUM-INPUT-QUBITS*, and *NUM-OUTPUT-
QUBITS*, produces a gate array that solves the given problem
at the given size. This is important because the unavailability
of quantum computation hardware, coupled with the
exponential resources required for classical simulation of
quantum computers, limits us to simulating quantum
algorithms for small numbers of qubits. But quantum
computation is most interesting when applied to much larger
problems, for which their exponential savings in resource
requirements really pays off. The reason to evolve scalable

2 U@ -
1 qumHi
0— H i

in

out

Oracle

n

- - gate arrays is that we can use small cases for fitness evaluation
—|n — U(4) [—in2/out — out  qyring evolution. If we manage to evolve gate arrays that do

g g g y
in fact scale correctly, then we will be able to run scaled-up

NAND CNOT . .
versions of the gate arrays on much larger problem instances

—in — U2) [inl — on real quantum computer hardware in the future.

Our technique for evolving scalable gate arrays is to evolve

programs that construct gate arrays (rather than evolving
gate arrays more directly) and to allow the problem size
(e.g. *NUM-QUBITS*, *NUM-INPUT-QUBITS*, and

out— H

*NUM-OUTPUT-QUBITS*) and iterative control structures

Figure 8. A graphic view of the quantum gate array (see  (¢-2- ITERATE and I0Q) to appear in the evolved programs.
Figure 7) for the two-bit early promise problem. It may also be useful to allow novel iterative control structures

to evolve simultaneously with the programs that use them
(Spector, 1996).

As an example, consider an oracle version of the majority-
on problem. (Genetic programming is applied to the standard
non-oracle version of majority-on by Koza, 1992.) This
problem is the same as the early promise problem, discussed
above, except that all binary oracles are allowed (there is no



promise that the oracles will be either balanced or uniform)
and the program’s job is to determine if the majority of the
oracle’s outputs are 1 or not. Using a similar function set
and fitness function to those described above we evolved a
program that produces the following gate arrays for this
problem:

For one-bit oracles:
(HADAMARD 0)
(ORACLE)

For two-bit oracles:
(HADAMARD 1)
(HADAMARD 0)
(ORACLE)

For three-bit oracles:
(HADAMARD 1)
(HADAMARD 2)
(HADAMARD 0)
(ORACLE)

For four-bit oracles:
(HADAMARD 1)
(HADAMARD 2)
(HADAMARD 3)
(HADAMARD 0)
(ORACLE)

Etc.

This works by spreading the probability out among all
basis vectors and then using a single oracle call, which can
be thought of as operating on the superposition of all oracle
inputs simultaneously, to compute the output. This works
quite well for oracles that produce mostly 1s or mostly Os,
but for exactly balanced oracles (for which the answer should
be 0—a majority is not on) the output error will be 0.5. This
means that there will be a 50% chance of getting the wrong
answer for balanced oracles, but this can be remedied by
running the program multiple times; if the answer is 1 50%
of the time then we know that the oracle is balanced and that
the real answer is therefore 0.

It should be noted that in contrast to the early promise
algorithm exhibited above, this majority-on quantum
algorithm is not better than classical. A probabilistic classical
algorithm for majority-on can simply call the oracle with a
random input; if the output is 1 then it should answer 1,
otherwise it should answer 0. This too will have a 50%
chance of being wrong for balanced oracles (and some smaller
chance of being wrong for other oracles), and this too can be
remedied with multiple runs. In this case the genetic
programming system found a quantum algorithm that works
in the same way as a probabilistic classical algorithm, although

the early promise algorithm above shows that it can in some
cases do better.

The strategy of running a Hadamard gate on all qubits at
the beginning of the computation, found here by the genetic
programming process, is useful in general. It puts the system
into an in-phase equal superposition of all inputs, and thereby
allows for computation on all inputs simultaneously (with
interference). In some of our subsequent experiments we
have found it useful to automatically run a Hadamard gate
on each qubit whenever the simulated quantum computer is
initialized; that is, we evolve a gate array that takes an equal
superposition as input.

5. Future Work

The work described in this paper points to several directions
for future research, several of which we are actively pursuing.

5.1. Search for Better-than-Classical
Quantum Algorithms for Other Problems

We are currently applying the techniques described in this
paper to several other problems, including problems for which
better-than-classical quantum algorithms are already known
(for example, Grover’s database search algorithm) and
classically NP complete problems (including Hamiltonian
Circuit and Clique).

5.2. Exploration of the Quantum Complexity
of Boolean Functions

Recent results (Beals et al., 1998) establish tight bounds on
the quantum complexity of certain classes of boolean
functions. But there are still several open questions about
the speedup that quantum computers may be able to achieve
for boolean functions (e.g. for asymmetric boolean functions),
and we are currently using genetic programming to look for
quantum algorithms that may shed light on these questions.

5.3. Evolution of Deterministic Quantum Gate
Arrays

In the work described here we ignored errors of less than
0.48, meaning that we were satisfied when the correct answer
was the most probable one, even if there was still significant
indeterminacy. While this can be remedied via repeated runs,
and while one can often nonetheless prove that the quantum
algorithm is better than any possible classical algorithm (as
with the early promise problem), it would be more desirable
to produce deterministic algorithms that always produce the
correct answers. It is straightforward to adapt our methods
to this goal, either by counting all error all of the time or by
lowering the acceptable error threshold as the genetic
programming runs progress.



5.4. Evolution of Hybrid Quantum/Classical
Algorithms

Several known quantum algorithms use quantum computation
for a central calculation but rely on classical computation
either to pre-process the quantum computer’s inputs or to
post-process the quantum computer’s outputs (or both). It is
straightforward to adapt our methods to evolve hybrid
quantum/classical algorithms. For example, one can use a
genetic programming engine that supports automatically
defined functions (Koza, 1994) to evolve a program with
three branches: a classical pre-processing branch, a quantum
gate array producing branch, and a classical post-processing
branch.

5.5. Evolution of Useful Gates from Physically
Simple Gates

Depending on the physical means used to implement a
quantum computer, certain kinds of quantum gates may be
more or less easy to build. Because the physically simple (or
even feasible) gates may not be most convenient gates for
human theoreticians/programmers or for automatic
programming processes, we may wish to evolve gate arrays
that implement the theoretically convenient gates in terms of
the physically simple ones.

5.6. Genetic Programming on Quantum
Computers

It has not escaped our attention that a slight modification of
this paper’s title, “Genetic Programming on Quantum
Computers” may also hold significant promise. Grover’s work
demonstrates the existence of better-than-classical search
algorithms, and it is possible that this result could be extended
to the search of the space of computer programs. It is also
possible that quantum parallelism and the intrinsic
probabilistic processing provided by quantum computers may
provide better-than-classical speedups for fitness evaluation.
For genetic algorithms with binary chromosomes, it may be
particularly easy to speed up recombination or to determine
the fitness of entire schemata (in the sense of the Schema
Theorem of Holland, 1992) using quantum parallelism.

6. Conclusion

We have used genetic programming to automatically discover
a quantum algorithm that is more efficient than any possible
classical algorithm for Deutsch’s early promise problem. We
also showed how our technique can be used to evolve scalable
quantum gate arrays, and we exhibited a scalable quantum
gate array for the oracle version of the majority-on problem.
We sketched extensions to our technique, including methods
by which deterministic quantum gate arrays and hybrid
quantum/classical algorithms may be evolved.

Genetic programming appears to be a useful tool for
exploring the power of quantum computation, and perhaps
for developing software for the quantum computers of the
future. One significant problem is the simulation speed for
quantum gates—this may be improved but the problem will
not go away because of the very powers of quantum
computation that we wish to harness. This means that research
should be focused on problems for which small instances
are nonetheless significant, on the evolution of scalable
quantum gate arrays, and on genetic programming techniques
that reduce the required number of fitness evaluations.

Genetic programming on quantum computers, using
better-than-classical search algorithms that are already in the
literature, is also likely to be a fruitful area for future research.
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