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ABSTRACT
HiGP is a new high-performance genetic pro-

gramming system. This system combines tech-
niques from string-based genetic algorithms, S-
expression-based genetic programming systems,
and high-performance parallel computing. The
result is a fast, flexible, and easily portable genetic
programming engine with a clear and efficient
parallel implementation. HiGP manipulates and
produces linear programs for a stack-based vir-
tual machine, rather than the tree-structured S-
expressions used in traditional genetic program-
ming. In this paper we describe the HiGP virtual
machine and genetic programming algorithms.
We demonstrate the system’s performance on a
symbolic regression problem and show that HiGP
can solve this problem with substantially less com-
putational effort than can a traditional genetic
programming system. We also show that HiGP’s
time performance is significantly better than that
of a well-written S-expression-based system, also
written in C. We further show that our parallel
version of HiGP achieves a speedup that is nearly
linear in the number of processors, without man-
dating the use of localized breeding strategies.

1 Performance of Genetic
Programming Systems

Genetic programming is a technique for the automatic gen-
eration of computer programs by means of natural selection
[Koza 1992]. The genetic programming process starts by
creating a large initial population of programs that are ran-
dom combinations of elements from problem-specific func-
tion and terminal sets. Each program in the initial population
is then assessed for fitness, and the fitness values are used
in producing the next generation of programs via a variety
of genetic operations including reproduction, crossover, and
mutation. After a preestablished number of generations, or

after the fitness improves to some preestablished level, the
best-of-run individual is designated as the result and is pro-
duced as the output from the genetic programming system.

The performance impact of alternative approaches to ge-
netic programming can only be assessed by measuring per-
formance over a large number of runs. This is because the
algorithm includes random choices at several steps; in any
particular run the effects of the random choices may easily
obscure the effects of the alternative approaches.

To analyze the performance of a genetic programming
system over a large number of runs one can first calculate
P(M,i), the cumulative probability of success by generation
i using a population of size M. For each generation i this is
simply the total number of runs that succeeded on or before
the ith generation, divided by the total number of runs con-
ducted. Given P(M,i) one can calculate I(M,i,z), the number
of individuals that must be processed to produce a solution
by generation i with probability greater than z.1 I(M,i,z) can
be calculated using the following formula:

I(M; i; z) = M � (i+ 1) �

�
log(1� z)

log(1� P (M; i))

�

Koza defines the minimum of I(M,i,z) as the “computa-
tional effort” required to solve the problem with the given
system.2

2 High Performance Genetic
Programming

Genetic programming is a computationally intensive enter-
prise, and recent work has focused on ways in which high
performance computation techniques can increase the set of
problems to which it can be applied. Since the underlying
genetic algorithm appears to be parallelizable, and since sev-
eral parallel implementations of string-based genetic algo-
rithms have been described in the literature, there has been

1For the analyses in this paper a value of z=99% is always used.
2The P(M,i) and I(M,i,z) measures were developed by Koza and are dis-

cussed on pages 99 through 103 of [Koza 1994].



particularly strong interest in parallelizing genetic program-
ming systems.

Most previous high performance genetic programming
systems have either been wedded to particular computer ar-
chitectures, or have been hampered by high overheads in
distributing fitness evaluation and in coordinating reproduc-
tion across parallel machines. For example, Koza and Andre
have implemented an S-expression-based genetic program-
ming system on a network of transputers and have achieved
considerable speed improvements over serial implementa-
tions [Koza and Andre 1995]. Their approach relies on a
hardware base that is less expensive than parallel supercom-
puters but is nonetheless somewhat exotic. They used lo-
cal breeding strategies with migration; they report that this
reduces computational effort as compared with a panmic-
tic (globally interbreeding) population on the problems they
tried. Others have reported similar improvements from the
use of localized breeding strategies, both in genetic program-
ming and in string-based genetic algorithms (e.g., [Collins
and Jefferson 1991]). It is not yet clear, however, that par-
ticular localized breeding strategies are always beneficial,
and it is important that high-performance genetic program-
ming systems not be swamped with communication over-
heads when less localized or global (panmictic) strategies are
used.

Nordin and Banzhaf have developed a “compiling” ge-
netic programming system that directly manipulates SPARC
machine code [Nordin and Banzhaf 1995]. Through a com-
bination of compact fixed-length representations, simplified
memory management, and non-interpreted program execu-
tion they have achieved dramatic speed improvements over
traditional genetic programming systems. Their system de-
pends on details of the SPARC architecture and would re-
quire significant redesign for other machines.

Juillé and Pollack have developed a SIMD (single in-
struction multiple data) parallel genetic programming sys-
tem that represents programs as S-expressions but “precom-
piles” them into programs for a virtual stack machine prior
to execution [Juillé and Pollack 1995]. They note that the
variation in S-expression sizes across the population can in-
troduce overhead, and they use local breeding strategies to
reduce interprocessor communication costs.

S-expression-based program representations are respon-
sible for several of the performance limitations of previous
systems. These representations make strong demands on a
system’s memory allocation subsystems and they are expen-
sive to manipulate and to move between processors. In addi-
tion, less prior research has been conducted on the optimiza-
tion and parallelization of S-expression interpreters than on
techniques for more common models of computation.

These limitations of previous systems lead us to consider
the idea of genetic programming with small, linear programs
that can be executed on stack-based virtual machines for
which portable, high performance interpretation techniques

have already been developed. We were encouraged by pre-
vious work that explored the performance benefits of lin-
ear program representations (e.g., [Keith and Martin 1994]).
We were further encouraged by Perkis’s work on stack-based
genetic programming [Perkis 1994], in which he used lin-
ear programs that were executed on a stack-based virtual
machine. In contrast to the work of Keith and Martin and
of Juillé and Pollack, Perkis performed string-based genetic
operations (e.g. string-based crossover) directly on the lin-
ear programs. The safety of the resulting programs was
guaranteed by specifying that all functions take their argu-
ments from the stack, and that function calls that occur with
too few items on the stack simply do nothing. Using this
scheme, Perkis reported lower computational efforts than
were required using traditional S-expression-based genetic
programming.

In HiGP we have combined elements of the stack-based
program frameworks of Perkis and of Juillé and Pollack, the
linear chromosomes of string-based genetic algorithms (also
used in Nordin and Banzhaf’s and Perkis’s systems), the ef-
ficient, low level execution model of Nordin and Banzhaf,
a machine independent virtual stack machine, and high-
performance parallel programming techniques.

3 The HiGP Virtual Stack Machine

HiGP programs are executed on a virtual machine that is sim-
ilar to a pushdown automaton. The virtual machine consists
of three components: an input tape containing a linear pro-
gram, a pushdown stack, and a finite-state control unit. The
contents of the input tape are restricted to a small set of words
that have been defined as HiGP operators. The contents of
pushdown stack are restricted to double precision floating
point numbers. The finite-state control unit reads the input
tape and executes, for each word, the function call for the
corresponding operator. The operators may perform arbi-
trary computations and manipulate the values on the stack.
They may also reposition the read head on the input tape; this
allows for the implementation of conditionals and loop struc-
tures. Return values are generally read from the top of the
stack at the end of program execution.

The system includes two basic stack operators, pop and
dup. The pop operator removes the topmost element from
the stack, while the dup operator pushes a duplicate of the
top element onto the stack. The system also includes a fam-
ily of push operators that correspond to the terminal set in
a traditional genetic programming system; each push oper-
ator pushes a single pre-determined value onto the stack.

The system also includes a noop operator that does noth-
ing. This is necessary because all programs in the system
have the same length, and because we do not wish to pre-
determine the number of actual problem-solving operators
that should appear in solution programs. With the inclusion
of the noop operator the fixed program size becomes a size
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Figure 1: The virtual stack machine

limit, analogous to the depth limits used in S-expression-
based genetic programming systems. “Shorter” programs
are encoded by filling in extra program steps with noops.
Note that this provides the same flexibility with respect to
program size as do S-expression-based genetic programming
systems. If one suspects that a large program may be re-
quired, then one can set the program size to an arbitrarily
large number. In such a case, however, the system may still
produce efficient, parsimonious programs; it may do so by
producing programs that consist mostly of noops.

Any additional, problem-specific operators must take their
input values from the stack and must push their results back
onto the stack. When there are not enough values on the
stack for an operator it is skipped by the finite-control unit
and the stack remains untouched (as in [Perkis 1994]).

A simple example may help to clarify the operation of the
virtual stack machine. Consider the following program:

push-x noop push-y * push-x push-z noop
- + noop noop

Thenoops in this program have no effect and the remain-
der is equivalent to the Lisp expression:

(+ (* x y) (- x z))

and to the C expression:

(x * y) + (x - z)

For the test examples presented in this paper we used
only the four basic arithmetic operators: + (addition), -
(subtraction), * (multiplication) and % (protected division
[Koza 1992]). Although conditionals, loops, and other con-
trol structures were not used for the examples in this paper,
several have been implemented for HiGP. For example, one
implemented control structure reads a value from the stack
and executes the next instruction if the value, when trun-
cated, is zero; otherwise it jumps over the next instruction.

Another control structure jumps over a number of instruc-
tions; the number is obtained by truncating the value on the
top of the stack. These control structures, along with sev-
eral other features of our virtual stack machine, are similar to
those of the FORTH programming language [Brodie 1981].
The extension of the virtual stack machine with additional
operators and control structures is trivial; the FORTH lan-
guage provides examples of what such extensions might look
like.

4 Genetic Programming in HiGP

One nice feature of the HiGP program representation is that
one can use the same genetic operators that are used in string-
based genetic algorithms. Each gene in the chromosome rep-
resents an operator for the virtual machine. Since the oper-
ators communicate with one another only by means of the
stack, and since stack-underflow is handled gracefully (by
ignoring offending operators), every possible ordering of op-
erators represents a syntactically correct program. Arbitrary
string-based manipulations of the chromosomes are there-
fore acceptable. In fact, it would be possible to use many
existing, off-the-shelf genetic algorithm packages to perform
the genetic operations on HiGP programs. In the current im-
plementation we use three standard genetic operators: re-
production, single-point crossover, and point mutation. The
population is initialized by setting each gene in each chro-
mosome to a random member of the operator set.

An additional consideration for genetic programming is
the implementation of ephemeral random constants [Koza
1992]. In HiGP constants are not included directly in pro-
grams (chromosomes) because a small, fixed gene size is im-
portant for optimized, high-performance execution and ma-
nipulation of HiGP programs. Because some applications
call for constants with representations that are larger than the
optimal gene size (for example, double precision floating-
point constants in an application with a small number of op-
erators and constants) HiGP maintains a table in which con-
stants are stored. Inside the programs the constants are rep-
resented by their positions in the table. The “execution” of a
constant causes the corresponding value from the table to be
pushed onto the stack. The ephemeral random constants in
the table are initialized at the beginning of a run and remain
unchanged during the entire run; this differs from Koza’s im-
plementation, in which new constants may be generated by
the mutation operator at any point in a run. Our point mu-
tation operator can transform one constant into another, or
into an operator, but the set of available constants does not
change during a run. The size of the constant table is lim-
ited only by the size of the alphabet for the virtual stack ma-
chine, which is in turn determined by the operator word-size.
Because the word-size is a variable parameter in the current
implementation, any number of ephemeral random constants
can be supported.



5 Advantages of the HiGP approach
HiGP has several advantages over traditional S-expression-
based genetic programming systems. HiGP programs are
of fixed length and our experience is that they can be quite
small. We have solved several problems with programs only
32 operators in length, with less than a byte required for each
operator. This makes it easy to optimize memory allocation,
to create populations with millions of individuals, and to ef-
ficiently pass programs between processors in multiproces-
sor architectures. Load-balancing during fitness evaluation
is also eased by the fixed program length. These factors com-
bine to allow for nearly linear speedups with added proces-
sors, even when a global breeding strategy is used. Of course
many problems will require longer programs, but all compo-
nents of the system should scale at worst linearly with pro-
gram length.

In addition, the evolutionary dynamics of systems of lin-
ear programs appear in some cases to be superior to those
of S-expression-based genetic programming (e.g., in [Perkis
1994] and below). We do not yet have a theoretical explana-
tion of why this should be so.

6 Example: Symbolic Regression
The goal of the symbolic regression problem, as described
in [Koza 1992], is to produce a function that fits a provided
set of data points. For each element of a set of (x, y) points,
the program should return the correct y value when provided
only with the x value. For our experiments we obtained our
data points from the equation y = x9. One can view the task
of the genetic programming system as that of “rediscover-
ing” this formula from the data points used as fitness cases.
We used 20 fitness cases, with randomly selected x values
between -1 and 1.

We used a function set consisting of the two-argument ad-
dition function +, the two-argument subtraction function -,
the two-argument multiplication function *, and the two-
argument protected division function %. We used a single
“terminal” operator push-x that pushes the x value onto
the stack. We did not use ephemeral random constants or
any other constants. We ran HiGP with tournament selection
(tournament size = 5), a 90% crossover rate, a 10% repro-
duction rate, and no mutation. We conducted 100 runs, each
with a population size of 500, and each for a maximum of 30
generations. The length of each individual program was set
to 32 operators.

We also conducted 100 runs of the lil-gp S-expression-
based genetic programming system [Zongker 1995] on this
problem. We used parameters that were as similar as pos-
sible to those used for HiGP: function set=f+, -, *,
%g, terminal set=fXg, tournament selection (size=5), 90%
crossover, 10% reproduction, no mutation, 100 runs, popula-
tion=500, generations=30. The depth limit presented a more
difficult problem since the HiGP concept of length limit and

Table 1: Results for HiGP and for lil-gp using different
depth limits

time/gen. comp. effort

HiGP 0.08 32,729
depth

lil-gp 4 0.16 212,521
5 0.18 135,933
6 0.21 71,481
7 0.23 93,013
8 0.25 82,210
9 0.28 66,323

10 0.30 65,216
11 0.30 70,116
12 0.34 77,030
13 0.36 76,404
14 0.35 71,481
15 0.38 92,436
16 0.39 90,379
17 0.41 79,737

the lil-gp concept of depth limit are quite different. Low-
ering the depth limit in lil-gp improves its execution speed
considerably, but in some cases this may make it more diffi-
cult or impossible to find correct programs. It is not clear, in
general, how the depth limit influences computational effort.
For this reason we ran lil-gp with a range of depth limits. We
used a depth limit of 4 for the low end of the range; this is the
lowest limit for which lil-gp was able to find any correct pro-
grams at all. We used 17 for the high end of the range; this is
the default for lil-gp and, according to our data, much larger
than optimal.

We believe that lil-gp, which is implemented in C, is a
well-written program that provides a reasonable compar-
ative benchmark for S-expression-based genetic program-
ming. One way to establish the relative time performance
of the two systems would be to compare the times that each
system takes for a complete set of 100 runs. However, the
number of generations computed by the two systems are dif-
ferent, as indicated by the computational effort results re-
ported below. To remove this factor from the time perfor-
mance comparisons we computed the time used by each sys-
tem to evaluate one generation. For HiGP the execution time
per generation is nearly constant, because of the fixed length
of the programs and because of the absence of conditionals
or looping operators in the test problem. For lil-gp the time
for the execution of one generation can change significantly
as the structures of the S-expressions evolve. We therefore
used the mean value over 100 runs for all evaluated genera-
tions.

Our results, obtained on a Sun SPARC 5, are summarized
in Table 1. HiGP was clearly superior both with respect to



computational effort and with respect to time performance.
The best computational effort for lil-gp was obtained with
a depth limit of 10, but even this effort (65,216) was nearly
double that required by HiGP (32,729). In addition, the time
performance of lil-gp with a depth limit of 10 was quite poor;
the time required per generation was 0.30 seconds, while
HiGP required only 0.08 seconds per generation. The best
time performance for lil-gp was obtained with a depth limit
of 4, but even this time (0.16 seconds) was double that of
HiGP (0.08 seconds). In addition, the computational effort
required by lil-gp with a depth limit of 4 was quite poor; it
was 212,521, which is over six times greater than the effort
required by HiGP (32,729).

7 Parallel HiGP

The parallel version of HiGP was developed to run on MIMD
(multiple instruction multiple data) supercomputers, but it
was not tailored for any one particular system. We used
the MPI (message passing interface) communication library,
which is available for many different parallel computer sys-
tems. This greatly simplifies the process of porting HiGP to
various different computer systems. The system was written
within the SPMD (single program multiple data) paradigm;
all nodes of the parallel system execute identical programs
but on different data.

The population is distributed evenly across the processors,
with each processor maintaining its own local copy of a fit-
ness table for the entire population. This allows much of the
breeding process (including selection) to occur locally, along
with fitness evaluation.

During the fitness evaluation phase, all processors evalu-
ate the fitness of their individuals in parallel. Because each
processor hosts the same number of programs, and because
all of the evolving programs are the same length, all of the
processors complete fitness evaluation at nearly the same
time. Load balancing may be more complicated for applica-
tions with function sets that include functions of widely vary-
ing runtimes, and for applications that include conditional
and looping operators in their function sets. At the end of
the fitness evaluation phase all computed fitness values are
exchanged between processors and all fitness tables are up-
dated.

During the breeding phase each processor independently
produces its own segment of the next generation. The choice
of which genetic operators to apply is determined locally, us-
ing the percentages specified for the whole population. For
example, if it has been specified that 60% of the next gen-
eration should be produced by crossover, 30% by reproduc-
tion, and 10% by mutation, each processor can choose oper-
ators according to these percentages locally and the correct
global percentages will result. Selection is also performed
locally, using the local fitness tables to perform either fitness-
proportionate or tournament selection. Interprocessor com-

munication is only required to exchange the actual individu-
als that have been selected for use in genetic operations (and
then only when they are not local).

Notice that the breeding strategy is global (panmictic)
even though selection occurs locally on individual proces-
sors. The need for interprocessor communication is mini-
mized, and there are low communication overheads both for
the distribution of fitness values and for the transportation of
the small linear programs. Notice also that it would be triv-
ial to modify HiGP to make use of localized breeding strate-
gies; although little would be saved with respect to commu-
nication costs, improvements in computational effort might
result for certain problems.
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Figure 2: Parallel execution times for one run on up to
16 processors on an IBM SP2.

The HiGP strategy leads to a very efficient implementa-
tion, as Figure 2 shows. We were able to execute a pro-
gram which took 91:41 seconds on one single node of the
IBM SP2 nearly 9 times faster on 16 nodes in 10:89 seconds.
This leads to an efficiency (number of times faster divided
by number of nodes) of more than 50%, which is good for a
communication-intensive program. Note also that the graph
in Figure 2 is nearly linear.

8 Conclusions
HiGP is a new high-performance genetic programming sys-
tem that combines techniques from string-based genetic
algorithms, S-expression-based genetic programming sys-
tems, and high-performance parallel computing. HiGP is
fast, flexible, and easily portable. It also has a clear and effi-
cient parallel implementation that is not tied to any particular



parallel computer architecture.
HiGP manipulates and produces linear programs for a

stack-based virtual machine, rather than the tree-structured
S-expressions used in traditional genetic programming. This
appears to have several benefits; along with the optimiza-
tions that it allows for memory management and paralleliza-
tion, it appears to decrease the computational effort required
to produce a correct program, at least for the regression prob-
lem that we presented.

We showed that HiGP’s time performance is significantly
better than that of lil-gp, a well-written S-expression-based
system which is also written in C. We further showed that our
parallel version of HiGP achieves a speedup that is nearly
linear in the number of processors, without mandating the
use of localized breeding strategies.
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