Induction and Recapitulation of Deep Musical Structure *

Lee Spector and Adam Alpern
School of Cognitive Science and Cultural Studies
Hampshire College
Ambherst, MA 01002
U. S. A.

{Ispector, aalpern}@hampshire.edu

Abstract

We describe recent extensions to our framework
for the automatic generation of music-making
programs. We have previously used genetic
programming techniques to produce music-
making programs that satisfy user-provided
critical criteria. In this paper we describe new
work on the use of connectionist techniques to
automatically induce musical structure from a
corpus. We show how the resulting neural net-
works can be used as critics that drive our
genetic programming system. We argue that
this framework can potentially support the in-
duction and recapitulation of deep structural
features of music. We present some initial re-
sults produced using neural and hybrid sym-
bolic/neural critics, and we discuss directions
for future work.

1 Introduction

In previous work we developed a framework for the au-
tomatic generation of art-making programs on the ba-
sis of user-provided critical criteria [Spector and Alpern,
1994]. Our implementation of this framework used ge-
netic programming technology developed by Koza [Koza,
1992] and in principle could be applied to the production
of artworks in a variety of arts media. To demonstrate
our framework we produced a system that automati-
cally constructs an interactive jazz improvisation pro-
gram when presented with a user-provided music critic.
We ran the system with a music critic that judged com-
pliance with a small number of rules found in a popular
jazz method book [Baker, 1988].

The resulting programs performed acceptably but not
spectacularly. We attributed the weakness of the con-
structed jazz musicians to the weakness of the music
critics that guided their construction. In our current
work we are attempting to improve the performance of

To appear in the proceedings of the IJCAI-95 Workshop
on Artificial Intelligence and Music, 1995.

our automatically generated improvisation programs by
improving our music critics. We are using connection-
ist techniques to produce critics that make judgements
about the quality of a musical fragment relative to a cor-
pus. We use the resulting critics to drive the evolution
of new music-making programs.

Previous work in algorithmic composition has pro-
duced programs that induce musical structure from a
corpus and then recapitulate that structure in new pieces
of music (for example [Cope, 1991] and [Rowe, 1993] —
Chapter 7 of [Rowe, 1993] contains a good survey of re-
lated work). The induced and recapitulated structure
generally captures relatively shallow surface features of
the input (e.g., frequently occurring interval sequences).
We view our current project as an extension of such work
to deeper structural levels. Neural network-based critics
are, in principle, capable of inducing rich and complex
structural features of their musical input. Our genetic
programming framework is, in principle, capable of pro-
ducing any music-processing program; it is Turing com-
plete. We believe that our combination of neural and
genetic techniques will allow for the induction and re-
capitulation of deeper structural features of music than
have been captured in previous systems.

A similar marriage of neural and genetic techniques
has been reported by Baluja et al. [Baluja et al., 1994].
Our project differs from theirs in that we are evolving
music-making programs while Baluja et al. evolved im-
ages. In addition, we are training networks to judge sim-
ilarity to a corpus of well-known works, while Baluja et
al. trained their networks to replicate user preferences.

In the remainder of this paper we describe our genetic
programming framework for the automatic generation
of music-making programs and the connectionist tech-
niques that we are using for our new critics. We then
provide an example and discuss directions for additional
work.

2 Automatic Generation of Artists

Our intention in developing a framework for the auto-
matic generation of art-making programs was to sepa-
rate those components of an Al art-making system to

which aesthetic judgement should apply from those to
which scientific judgement should apply [Spector and
Alpern, 1994]. The essential move was to suggest that
ATl art systems take aesthetic critical criteria as param-
eters. Such systems can produce art-making programs
to satisfy a range of different aesthetic criteria; we call
the resulting programs constructed artists. The extent
to which a particular constructed artist satisfies a par-
ticular set of explicit aesthetic criteria is a matter of sci-
entific, rather than aesthetic, judgement. The impact of
culture on the assessment of artworks presents problems
similar to those of varying aesthetic criteria; therefore we
also suggested that AI art systems take “cultures” (usu-
ally case-bases of past works) as parameters. Instances
of our framework take critics and cultural contexts as
input and produce constructed artists as output.

3 Genetic Programming of Artists

The technology of genetic programming [Koza, 1992]
provides a straightforward way to implement our frame-
work. Genetic programming is a technique for the au-
tomatic generation of computer programs; in our case
we can use the technique to automatically generate
computer programs that will function as constructed
artists. Genetic programming is an evolutionary method
in which programs are evolved using a process modeled
on Darwinian natural selection. The process of natural
selection is driven by fitness; that is, by some assessment
of the quality of each individual. Genetic programming
systems take fitness functions as parameters. Any func-
tion that maps programs to fitness values may be used
as a fitness function. For the production of constructed
musicians we can provide music critics as parameters to
the system in the form of fitness functions [Spector and
Alpern, 1994].

The genetic programming process starts by creating
a large initial population of programs that are random
combinations of elements from problem-specific function
and terminal sets. Each of the programs in the initial
population is assessed for fitness. This is usually accom-
plished by running the fitness function on each program
with a collection of inputs called fitness cases. The fit-
ness values are used in producing the next generation
of programs via a variety of genetic operations includ-
ing reproduction, crossover, and mutation. Individuals
are randomly selected for participation in these opera-
tions, but the selection function is biased toward highly
fit programs.! The reproduction operator simply selects
an individual and copies it into the next generation. The
crossover operation introduces variation by selecting two
parents and by generating from them two offspring; the
offspring are produced by swapping random fragments

!For the work described in this paper we used tournament
selection [Koza, 1992] with tournament group sizes between
4 and 7.

of the parents. The mutation operator produces one off-
spring from a single parent by replacing a randomly se-
lected program fragment with a newly generated random
fragment.

Over many generations of fitness assessment, repro-
duction, crossover, and mutation, the average fitness of
the population may tend to improve, as may the fitness
of the best-of-generation individual from each genera-
tion. After a preestablished number of generations, or
after the fitness improves to some preestablished level,
the best-of-run individual is designated as the result and
is produced as the output from the genetic programming
system.

4 Task and Representation

In our previous work we generated programs that pro-
duced four-measure melodies as output when given four-
measure melodies as input. This corresponds to the pop-
ular practice of “trading four” in jazz improvisation. In
our current work we are generating single-measure re-
sponses to single-measure calls.

We represent melodies as vectors of (articulation, note)
pairs, 48 per measure, where each articulation is above a
threshold if a new note starts in the corresponding quan-
tum and below the threshold otherwise, and where each
note is a scaled MIDI note number or 0 for a rest. This
allows for all standard durations down to 16th notes and
32nd-note-triplets. It has the additional virtue of be-
ing a fixed-length representation; while neither our ge-
netic programming framework nor criticism by neural
networks requires fixed-length representations, both can
be simplified if fixed-length representations are used.

5 Function and Terminal Sets

In our previous work we evolved programs consisting
of a single terminal, CALL-MELODY, and collection of
special-purpose melody transformation functions such
as RETROGRADE, DIMINUTE and FRAGMENT. Some
of the functions, such as MOST-FAMILIAR, accessed a
case-base of known melodies. Each function took one or
more melodies as input and returned a melody as output.
Each program was a nested expression of function calls,
and the melody returned by the entire expression was in-
terpreted as the response for the given CALL-MELODY.

In our current work we are using more generic func-
tion and terminal sets; our terminals are integers and our
functions are numerical operators, control structures,
and memory accessors. The call melody is provided in
the form of an indexed memory [Teller, 1994]; a program
may access the call melody through the use of a CALL-
COPY function. Similarly, the response melody is con-
structed in a separate indexed memory. The case-base of
known melodies is represented as arrays of indexed mem-
ories accessible through CASE-CALL-COPY and CASE-
RESPONSE-COPY. All numerical values in the system
are in the range from 0 to 95, inclusive, and all indexed

memories are of length 96 and use 0-based addressing.
The full function set used for the runs described in this
paper was as follows:

e +: a two-argument addition operator that returns
the sum of its arguments modulo 96.

e |F-LESS: a four-argument conditional control struc-
ture that evaluates and returns the result of the
body of code that appears as its third argument
if the value of its first argument is less than that
of its second argument; it evaluates and returns the
result of the body of code that appears as its fourth
argument otherwise.

e DO-TIMES: a two-argument iteration control struc-
ture that evaluates the body of code that appears
as its second argument as many times as is specified
by the first argument. The value of the last itera-
tion is returned as the result of DO-TIMES. During
each iteration the variable i is set to the iteration
number, starting with 0.

e COPY: a three-argument function that copies a
block of the response to another region in the re-
sponse. The first two arguments determine the end-
points of the block to be copied, and the third ar-
gument specifies the index for the new copy. The
value copied from the high endpoint of the block is
returned as the value of the function call.

o CALL-COPY: a two-argument function that copies
a block of the call to the response. The arguments
determine the endpoints of the block to be copied;
the block is copied to the same location in the re-
sponse. The value copied from the high endpoint
of the block is returned as the value of the function
call.

e CASE-CALL-COPY: a three-argument function that
copies a block of a call from the case base to the re-
sponse. The first argument specifies the case num-
ber and the second and third arguments determine
the endpoints of the block to be copied. The block
is copied to the same location in the response. The
value copied from the high endpoint of the block is
returned as the value of the function call.

o CASE-RESPONSE-COPY: a three-argument func-
tion that copies a block of a response from the case
base to the response. The first argument specifies
the case number and the second and third argu-
ments determine the endpoints of the block to be
copied. The block is copied to the same location in
the response. The value copied from the high end-
point of the block is returned as the value of the
function call.

e TRANSPOSE: a three argument function that adds
the value of its first argument to all elements of the
response between the indices specified by the second
and third arguments. The transposition interval is
returned as the value of the function call.

The terminal set consists of the integers from 0 to 95
and the loop variable i (which has the value 0 outside of
any loop).

Each evolving program also includes two automatically
defined functions [Koza, 1994], ADFO and ADF1, each of
which takes three arguments, ARGO, ARG1, and ARG2.
The function set for the main program therefore also in-
cludes ADFO and ADF1. The function and terminal sets
for the automatically defined functions are identical to
those for the main program except that ADF1 can call
ADFO but not itself, ADFO cannot call any automati-
cally defined functions, and the terminal sets for both
ADFO and ADF1 include the arguments ARGO, ARGL,
and ARG2.

Our reformulation of the function and terminal sets
has several advantages over our previous scheme. First,
it allows for significant efficiency improvements with re-
spect to memory allocation and the complexity of case-
base access. Second, it removes the biasing influence of
preestablished melody transformations. Third, since a
response can be read from the response memory at any
point during a run, it allows for the production of “any-
time” response-generating programs.

6 Fitness Assessment

In our previous work we assessed the fitness of each
program by running it with a collection of Charlie
Parker melodies as input. Each run produced a re-
sponse melody and each call/response pair was as-
sessed on the basis of a set of critical criteria in-
spired by those presented in [Baker, 1988]. The cri-
teria were TONAL-NOVELTY-BALANCE, RHYTHMIC-
NOVELTY-BALANCE, TONAL-RESPONSE-BALANCE,
SKIP-BALANCE, and RHYTHMIC-COHERENCE [Spec-
tor and Alpern, 1994].

Our genetic programming system produced a
response-generating program with behavior that satis-
fied the provided critic. It was not, however, completely
satisfactory; about one of the program’s responses we
wrote:

Although the response ... pleases the critic, it
does not please us (the authors) particularly
well. This is not an indication of weakness of
the genetic programming approach to musician
construction. Nor is it an indication that we
made improper choices (of function set, termi-
nal set, etc.) in applying the technique; it just
means that we should work to improve the crit-
ical criteria that we provide as parameters to
the system. [Spector and Alpern, 1994]

The primary goal of our current work is to improve
the music critic that drives the evolutionary process. We
are using connectionist techniques to automatically in-
duce structural principles underlying a corpus of jazz
melodies. The resulting trained networks are used as mu-
sic critics in our genetic programming framework. The
genetic programming system is run with the networks
as fitness functions, producing response-generating pro-
grams. Note that neither the neural networks nor the
genetic operators appear in the final response-generating
programs.

The task that we intend our networks to perform is
general and difficult. We want the networks to induce
sufficiently many relevant structural features of a corpus
to distinguish reasonable from unreasonable melodies. It
is reasonable to assume that this task would be achieved
more easily if divided into subtasks such as pitch struc-
ture and rhythm analysis. A wide range of network ar-
chitectures have been used for related music classifica-
tion tasks [Page, 1994; Todd and Loy, 1991], and it is
clear that even these subtasks are quite difficult.

The work described in this paper is only a first step
in the use of neural network critics in our genetic pro-
gramming framework, and we used a simple network
that is clearly not adequate for the full task of induc-
ing the structure of jazz melody. It is nonetheless useful
for demonstrating our amalgam of genetic and connec-
tionist techniques, and it can be put to good use as one
component of a multi-network critic or a hybrid connec-
tionist/symbolic critic (see below).

We used a three layer network with 192 input units
(one for each articulation and for each note value over
a two measure fragment), a single layer of 96 hidden
units, and 2 output units. We trained the networks on
four categories of input. The first category consisted of
two-measure fragments of Charlie Parker melodies, the
second consisted of single measures of Charlie Parker
followed by single measures of silence, the third con-
sisted of single measures of Charlie Parker followed by
single measures of random melody, and the fourth con-
sisted of single measures of Charlie Parker followed by
reversed and randomly manipulated Charlie Parker con-
tinuations. Our networks were trained to respond in
a positive way only to inputs from the first category;
the intention was to train the networks to recognize rea-
sonable continuations to reasonable fragments of jazz
melody.

We trained the network, using Fahlman’s Quickprop
algorithm [Fahlman, 1988], to respond with the vector (1
0) to the “good” inputs and (0 1) to the “bad” inputs.
We presented a total of 100 input patterns during train-
ing and our network rapidly converged to minimal error.
Good inputs from the training set reliably produce out-
puts close to (1 0) and bad inputs from the training set
reliably produce (0 1).

In spite of the rather simple network architecture

and modest training set, our network appears to have
achieved some degree of generalization. Newly gener-
ated random inputs reliably produce outputs close to (0
1). Fragments of Charlie Parker melodies not used in
the training set produce outputs that are more affirma-
tive than negative; for example, the first two pairs of
measures from Ornithology, which were not used during
training, produce approximately (0.55 0.00) and (1.00
0.00) respectively. The network is not merely recogniz-
ing randomness or the lack thereof; good melodies from
the training set produce outputs close to (0 1) if they
are presented to the network reversed. This holds even
when the “reverse” operation is modified to maintain
odd-numbered positions in the input vector as articula-
tion positions and even-numbered positions as note-value
positions.

It appears, however, that our network is not so much
recognizing Charlie Parker melodies as it is recognizing
instances of some more generalized notion of musicality.
For example, the first pairs of measures from “Purple
Haze” and “Bold as Love” by Jimi Hendrix produce (0.99
0.00) and (0.97 0.08) respectively.

7 Breeding a Fit Musician

We used our trained network as the fitness function
for the genetic programming system described above.
The two-component network outputs were converted
into “standardized fitness” values [Koza, 1992], for which
lower values are “more fit,” by adding the second com-
ponent to the result of subtracting the first component
from 1.0. Melodies judged to be terrible by the network
produce outputs close to (0 1); such outputs translate to
standardized fitness values close to 2. Melodies judged to
be excellent by the network produce outputs close to (1
0); such outputs translate to standardized fitness values
close to 0.

We ran the genetic programming system with a pop-
ulation size of 400 and assessed each program with re-
spect to four fitness cases. Each fitness case was a call
melody from the case base, which contained 29 two-
measure Charlie Parker fragments.? The fitness of each
program was assessed by running it on each of the four
call melodies. The resulting call/response pairs were
then submitted to the neural network critic, and the re-
sulting standardized fitness values were summed. This
produced a final fitness value for each program between
0.0 and 8.0.

The genetic programming system produced a program
with a perfect fitness value of 0.0 after only one gen-
eration of reproduction, crossover and mutation. The
evolved program was the following:

(TRANSPOSE

2CASE-CALL-COPY and CASE-RESPONSE-COPY take
their case indices modulo the actual number of cases, so any
number of cases (up to 96) is acceptable.

(+ (IF-LESS (IF-LESS 16 14 35 86)
(CASE-RESPONSE-COPY 38 i i)
(IF-LESS 57 33 60 i)
(ADFO i 39 6))
(CASE-RESPONSE-COPY
(TRANSPOSE i i i)
(IF-LESS i 67 94 86)
95))
(ADF1 78 86 41)
(DO-TIMES (IF-LESS
20
(DO-TIMES 10 i)
(TRANSPOSE i 11 i)
(CASE-RESPONSE-COPY i 63 1))
(COPY 28 (ADFO 67 i i) (+ i 1))))

The two automatically defined functions that evolved
as a part of this program were the following;:

(DEFUN ADFO (ARGO ARG1 ARG2)

(CALL-COPY

ARG2

(COPY (COPY i ARGO (IF-LESS i i i ARG1))
(TRANSPOSE
ARG1

(CASE-CALL-COPY 0 79 ARG2)
(+ ARG2 ARG1))
i)

(DEFUN ADF1 (ARGO ARG1 ARG2)
(+ (CASE-RESPONSE-COPY

(COPY ARG1 (IF-LESS i 65 ARG2 66)
(ADFO 18 57 22))

(ADFO (DO-TIMES ARG1 ARGO)
(CASE-RESPONSE-COPY ARG1 i ARG2)
(DO-TIMES ARGO i))

i)

(CALL-COPY

(COPY (ADFO i i ARG2)
(CASE-RESPONSE-COPY i ARG1 ARG1)
60)

(+ ARG2 (CALL-COPY i ARGO)))))

As is often the case with the results of genetic pro-
gramming, this program is difficult to assess by visual
inspection. Unfortunately, it turns out that its behavior
is quite unsatisfactory. Its responses jump erratically be-
tween octaves, include notes that fall irrespective of beat
divisions, and vary little between calls. The following is
a representative call/response pair.

The call, the first measure of Billie’s Bounce, was used
as one of the fitness cases during evolution:

() e,
7 . —
[[an) v pod [
9 cHe T e

o @

The response, notated approximately (all notes except
the second and third are actually triplets):

In retrospect it is clear that the network had far too
small a training set to learn about many of these kinds
of errors; perhaps it would have been a better critic if it
had also been trained to reject melodies that are reason-
able except for bizarre rhythmic groupings, etc. In any
event it is clear that the network is far less generalized
than one might have guessed from the casual testing that
we performed prior to running the genetic programming
system. The genetic programming system is a strong
test on the generalization of a critic; if there is a simple
way to exploit a weakness of the critic then it is likely
that genetic programming will find it.

8 A Community of Critics

One implication of the failure of our first experiment
is that far more competent criticism is required if our
musician-producing system is to be properly constrained.
One way to get more competent criticism is to provide
a neural network critic with a more capable architecture
and learning procedure, and to train it on larger train-
ing sets. Another way to get more competent criticism
is to form a community of critics, each of which has a
complementary type of expertise.

The symbolic criteria that we used in our earlier work
had the virtue of transparency and conformance to in-
tuition. While it would be difficult to argue that they
captured “deep” structural features of music, it is clear
that music that satisfies these criteria would likely be
“well formed” at least at a shallow structural level. Our
neural network critic has complementary weaknesses
and strengths; it is opaque and produces music with
inappropriate surface structure, but it seems to have
learned something about the deeper structural princi-
ples of melody. Whatever knowledge it embodies has
been automatically induced from a corpus and is there-
fore relatively free from the biases of the programmer.

A nice feature of our framework is that multiple crit-
ics can be combined by simple addition of fitness val-
ues. This works with symbolic critics as well as with
other neural network-based critics. We therefore tried
running our genetic programming system using a hybrid
symbolic/neural critic. We used the same network as in
our previous experiment and then added the following
quantities to the standardized fitness:

e skip-balance: an indication of the balance between
diatonic movement (intervals of less than three) and
“skips” (intervals of size 3 or greater). The value
is 0 if there is are the same number of each type

of interval, 1 if all intervals are of one type or the
other, and an intermediate value for intermediate
degrees of balance.

e call-response-balance: an indication of the point-for-
point similarity of call and response. The value is
0 if there is a perfect balance of matching and non-
matching points, 1 if the call and response are either
identical or completely dissimilar, and an interme-
diate value for intermediate degrees of balance.

e response-response-balance: an indication of the
point-for-point similarity of responses to different
calls, calculated once for each pair of call/response
pairs. The value is 0 if there is a perfect balance
of matching and non-matching points between re-
sponses, 1 if the two responses are either identical
or completely dissimilar, and an intermediate value
for intermediate degrees of balance.

The genetic programming system had a more difficult
time finding a program to satisfy the hybrid critic, but
the resulting program shows far more promise than that
produced from the neural network critic alone. On one
run with a population size of 250 the system produced
the following program on generation 42:

(CASE-RESPONSE-COPY
(IF-LESS
(COPY (COPY i 53 i)
(TRANSPOSE
(CALL-COPY (+ i 79) i)
(CALL-COPY i 95)
(ADFO (CASE-RESPONSE-COPY 59 81 i)
(TRANSPOSE i i i)
(DO-TIMES
(CASE-CALL-COPY 42 77 i)
(CASE-CALL-COPY i i i))))
(+ 36 37))
i
(DO-TIMES (CALL-COPY i 95)
(IF-LESS i 56 i 8))
(DO-TIMES (ADFO i 34 i)
(IF-LESS i 51 i i)))
i
(TRANSPOSE
(CALL-COPY (+ i 79) (COPY i 53 i))
(COPY i 53 i)
(ADFO (CASE-RESPONSE-COPY 59 81 i)
(TRANSPOSE i i i)
(COPY i 20 1))))

The automatically defined function ADF1 is not called
in this program. ADFO, which is called several times
from the main program, evolved the following complex
definition:

(DEFUN ADFO (ARGO ARG1 ARG2)
(CASE-RESPONSE-COPY

32 (TRANSPOSE
(COPY ARG1 (+ i ARG1)
(TRANSPOSE 67 i ARG2))
ii)
(TRANSPOSE
(CASE-CALL-COPY
(COPY i i i)
(CASE-RESPONSE-COPY
(CASE-CALL-COPY
(COPY i i 1)
(CASE-RESPONSE-COPY
(CASE-RESPONSE-COPY
(+ (CASE-CALL-COPY ARG1 i ARG2)
(CALL-COPY ARG1 ARG1))
(CASE-RESPONSE-COPY
(+ 25 ARG1) (+ 7 ARGO)
(TRANSPOSE i ARG2 ARG2))
(TRANSPOSE i ARG2 ARG2))
(CASE-RESPONSE-COPY
(+ 25 ARG1) (+ 7 ARGO)
(CASE-CALL-COPY
(COPY i i i)
(CASE-RESPONSE-COPY
(+ (CASE-CALL-COPY ARG1 i ARG2)
(CALL-COPY ARG1 ARG1))
(CASE-RESPONSE-COPY
(+ 25 ARG1) (+ 7 ARGO)
(TRANSPOSE i ARG2 ARG2))
(TRANSPOSE i ARG2 ARG2))
(CASE-RESPONSE-COPY
ARG2 ARG2 ARG2)))
(TRANSPOSE i ARG2 ARG2))
(CASE-RESPONSE-COPY ARG2 ARG2 ARG2))
(CASE-RESPONSE-COPY
(+ 25 ARG1) (+ 7 ARGO)
(TRANSPOSE i ARG2 ARG2))
(CASE-CALL-COPY
(CALL-COPY ARG1 i)
(CASE-CALL-COPY 44 ARG2 ARG2)
(+ 7 ARGO)))
(CASE-RESPONSE-COPY ARG2 ARG2 ARG2))
(COPY ARG2
(CASE-CALL-COPY ARGO ARGO 13) 63)
(CALL-COPY 1 (CALL-COPY 59 54)))))

This run was conducted with two fitness cases. The
highest (worst) possible fitness value was therefore 9:
for each fitness case we produced a value from the neu-
ral network (maximum 2 each), a value from the skip-
balance function (maximum 1 each) and a value from
the call-response-balance function (maximum 1 each);
we then added the result of a single call to the response-
response-balance function (maximum 1). The best-of-
run program, listed above, had a fitness value of 2.027.
A perfect score of 0.0 may in fact be unobtainable, as
various components of the hybrid fitness function may
be inconsistent with one another in practice.

The program that was evolved using the hybrid critic
behaves better than the program evolved using the pure
neural network-based critic, although it still leaves much
to be desired. Its responses appear to conform to rea-
sonable constraints on musical structure and to relate
to the calls in interesting if unusual ways. For example,
the program produces the following response to the first
measure of Billie’s Bounce, which was again used as a
fitness case during evolution:

9 4o
(o) "
\j/ pa L’%
The following call, the first measure of My Little Suede

Shoes (also by Charlie Parker), was not used as a fitness
case during evolution:

A
h &

.

~e

[() p N
P4 |)]
y 4N h 4

The program that was evolved using the hybrid critic

produces the following response for this call:
—

,‘Q'hL|
y——— ==

9 Conclusions and Future Work

While we have not yet succeeded in inducing and re-
capitulating the deep structure of jazz melody, we be-
lieve that our framework holds promise for the eventual
achievement of this goal. The quality of our automati-
cally generated music-making programs is driven by the
quality of the music critics that serve as fitness evalua-
tors for genetic programming. We have shown how such
critics can be constructed using explicit symbolic rules,
neural networks, and hybrids of the two. The use of neu-
ral networks in this context is particularly interesting in
that it allows us to automatically induce the structural
principles that genetic programming will later automat-
ically recapitulate.

As we have seen, the networks must be quite compe-
tent if they are to provide the necessary guidance to the
genetic programming process; genetic programming will
often find and exploit bizarre niches produced by weak-
nesses in fitness functions. One short-term solution to
this problem is to augment neural network critics with
symbolic critical criteria that help to ensure some degree
of “well-formedness.” The longer-term solution is to im-
prove the network critics by drawing on the considerable
past work on connectionist models of music processing
[Todd and Loy, 1991]. This is one of our immediate re-
search priorities. As we improve our neural network ar-
chitectures we also intend to begin working with longer
musical fragments.

A virtue of our framework is that any number of in-
dependent critics, each of which may use a different set
of techniques and may specialize in different aspects of
musical structure, can be combined to allow their col-
lective wisdom to guide the evolutionary process. The
only constraint on the critics in such a “community” is
that they each must be capable of producing a single
numerical value fitness value. We intend to collect critic
functions from others in the research community and to
allow communities of these critics to drive the evolution
of new music-making programs.

We are also experimenting with enhancements to the
genetic programming component of our system. For ex-
ample, we are exploring trade-offs in general vs. special
purpose function and terminal sets, and we are exam-
ining a possible role for automatically defined macros
[Spector, 1995].

Acknowledgments

Jay Garfield first suggested the use of neural network-
based critics in our framework. James Carlson and
Garth Zenie provided valuable feedback on the project
as it progressed. Wil Bonner and Aaron Culich helped
with neural network simulation software and with sys-
tem integration problems.

References

[Baker, 1988] Baker, D. 1988. David Baker’s Jazz Im-
provisation, Revised Edition. Alfred Publishing Co.,
Inc.

[Baluja et al., 1994] Baluja, S., Dean Pomerleau, and
Todd Jochem. 1994. Towards Automated Artificial
Evolution for Computer-generated Images. In Connec-
tion Science, Vol. 6, No. 2 & 3, 325-354.

[Cope, 1991] Cope, D. 1991. Computers and Musical
Style. Madison, Wisconsin: A-R Editions, Inc.

[Fahlman, 1988] Fahlman, S.E. 1988. An Empirical
Study of Learning Speed in Back-Propagation Net-
works. In Proceedings of the 1988 Connectionist Mod-
els Summer School. Morgan-Kaufmann.

[Koza, 1992] Koza, J.R. 1992. Genetic Programming.
Cambridge, MA: The MIT Press.

[Koza, 1994] Koza, J.R. 1994. Genetic Programming II.
Cambridge, MA: The MIT Press.

[Page, 1994] Page, M.P.A. 1994. Modelling the Percep-
tion of Musical Sequences with Self-organizing Neural
Networks. In Connection Science, Vol. 6, No. 2 & 3,
223-246.

[Rowe, 1993] Rowe, R. 1993. Interactive Music Systems:
Machine Listening and Composing. Cambridge, MA:
The MIT Press.

[Spector, 1995] Spector, L. 1995. Evolving Control
Structures with Automatically Defined Macros. Sub-
mitted to the 1995 AAAT Fall Symposium on Genetic
Programming.

[Spector and Alpern, 1994] Spector, L., and A. Alpern.
1994. Criticism, Culture, and the Automatic Genera-
tion of Artworks. In Proceedings of the Twelfth Na-
tional Conference on Artificial Intelligence, AAAI-
94, 3-8. Menlo Park, CA and Cambridge, MA: AAAI
Press/The MIT Press.

[Teller, 1994] Teller, A. 1994. The Evolution of Mental
Models. In K. Kinnear, Jr., Ed., Advances in Genetic
Programming, 199-219. Cambridge, MA: The MIT
Press.

[Todd and Loy, 1991] Todd, P.M., and D.G. Loy. 1991.
Music and Connectionism. Cambridge, MA: The MIT
Press.

