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Genetic Programming for Reward Function Search
Scott Niekum, Andrew G. Barto, Fellow, IEEE, and Lee Spector

Abstract—Reward functions in reinforcement learning have
largely been assumed given as part of the problem being solved by
the agent. However, the psychological notion of intrinsic motivation
has recently inspired inquiry into whether there exist alternate
reward functions that enable an agent to learn a task more easily
than the natural task-based reward function allows. This paper
presents a genetic programming algorithm to search for alternate
reward functions that improve agent learning performance. We
present experiments that show the superiority of these reward
functions, demonstrate the possible scalability of our method, and
define three classes of problems where reward function search
might be particularly useful: distributions of environments, non-
stationary environments, and problems with short agent lifetimes.

Index Terms—Genetic programming, intrinsic motivation, rein-
forcement learning.

I. INTRODUCTION

T HE reinforcement learning (RL) paradigm typically as-
sumes a given reward function that specifies the learning

problem being solved by the agent. Although RL theory and al-
gorithms do not depend on the nature of the reward function,
in practice the reward function is a critical parameter of the
RL process that can significantly influence the rate of learning
and, indeed, whether learning is successful or not in improving
system performance. It is widely recognized that learning can
be improved by manipulating the reward function. Ng, Harada,
and Russell [1], for example, showed that the learning rate can
be improved through a special class of “shaping” reward adjust-
ments that do not disturb the optimal policy. However, they did
not specify a mechanism for designing such beneficial adjust-
ments. Even when guided by such a theoretical result, RL prac-
titioners have found that defining good reward functions can be a
very nontrivial task, and they often resort to searching “by hand”
to find a reward function that produces acceptable results.

Singh, Lewis, and Barto [2], [3] recently advanced a general
computational framework for reward that places it in an evo-
lutionary context, formulating a notion of an optimal reward
function given a fitness function and some distribution of en-
vironments. They demonstrated that an entire spectrum of re-
ward functions can exist that allow a learning system to perform
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much better than it can when using what appear to be the most
natural reward functions for a given problem. Even in simple
problems, reward functions can exist that enable significantly
faster learning than do natural task-specific reward functions.
These alternate reward functions can be related to the problem in
counterintuitive ways and can require precise tuning to achieve
their benefits. Some components of these high-performing re-
ward functions are analogous to what in psychology are called
intrinsic rewards, meaning rewards that motivate activity “for its
own sake” instead of for its problem-specific consequences. As
more fully examined in the article by Singh, Lewis, and Barto
[3] in this volume, such reward functions exploit complex causal
chains involving recurring regularities that, in the natural world,
can only be discovered by the evolutionary process.

Searching by hand is not likely to yield high-performing re-
ward functions. To find good reward functions, Singh et al.
[2] used automated quasiexhaustive searches over small, dis-
cretized sets of possible scalar reward functions defined on sub-
sets of the state variables of the original problems. Although
their objective was to examine questions about the nature and
source of reward functions and not to advocate automated search
for good reward functions as a practical methodology, their re-
sults suggest that such searches may indeed be beneficial if car-
ried out efficiently.

In this paper, we employ a genetic programming algorithm
to search for alternate reward functions with the aim of demon-
strating that such a search may be worthwhile when an agent
faces distributions of related environments, nonstationary en-
vironments, or problems with a limited agent lifetime. Reward
functions discovered by this process are able to provide the
agent with both extrinsic and intrinsic motivation, rewarding
events that are causally both proximal and distal to agent suc-
cess. Experiments validate that our search method finds superior
reward functions and is minimally affected by increasing the di-
mensionality of the state space.

II. BACKGROUND

A. Reinforcement Learning (RL)

The RL paradigm [4] typically models a finite-state problem
faced by the agent as a finite Markov decision process (MDP),
expressed as a tuple , where is the set of
environment states the agent can observe, is the set of actions
that the agent can execute, is the probability that the
environment transitions to when action is taken in
state , and is the expected scalar reward given
to the agent when the environment transitions to state from
after the agent takes action . For simplicity and without signif-
icant loss of generality, in this paper we only examine reward
functions of the form that reward the agent solely based
on the state it enters.
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B. Optimal Reward Functions

In the approach taken by Singh et al. [2], [3], learning agents,
and therefore their reward functions, are evaluated according to
their expected fitness given an explicit fitness function and some
distribution of environments of interest. Specifically, they define
an optimal reward function in terms of a distribution over MDP
environments in some set , in which agents should perform
well (in expectation), and a space of reward functions fea-
sible for these MDPs. A specific reward function and a
sampled MDP produce a history generated by an agent
learning in environment while using the reward function .
A given fitness function produces a scalar evaluation for
all such histories . An optimal reward function is a
reward function that maximizes expected fitness over the distri-
bution of environments. In this formulation, the problem to be
solved is specified by the designer through the fitness function,
leaving the reward function as an adjustable parameter of the
agent.

A fitness-based reward function assigns a positive reward to
states that directly increase fitness, negative reward to states that
directly decrease fitness, and uniform reward elsewhere. Such
reward functions are the traditional “obvious” representation
of goals by means of a reward function. Note that not all fit-
ness functions admit such simple fitness-based reward functions
since they evaluate entire histories. (However, for simplicity, all
the fitness functions we use in this work do admit simple fit-
ness-based reward functions).

At first glance, it is not clear what is gained by this formula-
tion. How is a fitness function different from a reward function?
It may seem no easier to design a good fitness function than
a good reward function. We can appeal to the analogy with bi-
ology, in which the evolution of animal reward systems is guided
by the reproductive fitness to which these systems contribute.
An animal learning under the influence of its reward system
can exploit regularities in its local environment, but only the
evolutionary process can exploit regularities that have appeared
across ensembles of ancestral environments. This wider reach of
evolution—the outer-loop search process—creates reward func-
tions that balance multiple subtle factors to enable learning and
behavior that is robust with respect to environmental nonstation-
arity. In some cases, these evolved reward functions include re-
wards that we would call intrinsic rewards. Furthermore, since
a fitness function evaluates entire life histories without neces-
sarily being decomposable into separate influences of states and
actions, it can often represent the true task objective more di-
rectly than can a reward function (although our experiments do
not illustrate this advantage). For more discussion of these cen-
tral issues, see [2], [3], and [5].

C. Q-Learning

Given a reward function, the agent’s objective is to maxi-
mize a measure of the cumulative reward it receives. Commonly,
this measure is the discounted cumulative reward , defined as

, where is the reward received at time and
is a discount factor that specifies to what degree

the agent prefers immediate rewards to future ones. Q-learning
[6] is an RL algorithm that iteratively computes “Q-values”
intended to closely approximate optimal state–action values,

, that give for each state-action pair the expected
discounted cumulative reward to be received if the agent takes
action in state , and follows an optimal policy thereafter.
Depending on the accuracy of the approximation, choosing for
each state the action having the largest Q-value can yield high
cumulative reward over time. These values are determined in-
crementally using the following update rule at each time :

where is the current approximation of the optimal state-action
value function . To balance exploration and exploitation, our
experiments use -greedy action selection, meaning that at each
time step, the optimal action is selected with probability
and a random action is selected with probability .

D. Genetic Programming

Genetic programming is a technique for searching a space
of computer programs using genetic algorithms [7] in which
the “genotypes” are executable programs. In the most standard
version of the technique, one begins with a fixed-sized popula-
tion of randomly generated programs, constructed from func-
tions and values chosen for the problem domain, and then it-
eratively evaluates the quality of each program and produces a
new population by randomly varying and recombining the better
programs in the current population [8]. Each step of this itera-
tive process, in which an entire population is evaluated and a
new population is created, is called a “generation.” Because the
genotypes are executable programs, they are generally evaluated
by executing them, often on a fixed set of “fitness case” inputs,
while taking any necessary measures to ensure execution safety
(e.g., by defining a nonerror return value for division by zero).

In the most standard version of the technique, the programs in
the population are expressed as Lisp-like symbolic expressions,
although we use a variant of this by operating on symbolic
expressions for a stack-based virtual machine (see below).
Variation by “mutation” is implemented as replacement of
random subexpressions by newly generated random subexpres-
sions, while recombination (“crossover”) is implemented as the
swapping of subexpressions between two programs. Further
detail on genetic programming techniques can be found in
survey texts [9] and [10].

III. EVOLVING REWARD FUNCTIONS

Task-based reward functions usually used in RL are gener-
ally straightforward, taking the form of simple state-to-reward
mappings. However, to facilitate reward function search, a
representation is needed that is compact, expressive, and natu-
rally capable of accommodating search operations. Even over
a small state set, the space of all possible reward functions is
infinite, and we can only speculate about what characteristics
such a space may have. To be effective in the general case,
a reward function representation and search algorithm are
required that allow for efficient search over large spaces, that
avoid local minima, and that are compatible with both discrete
and continuous state spaces. For similar representation and
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search tasks, others have used evolutionary methods on neural
networks [11] or searched over linear combinations of features,
but these methods are difficult to analyze in the former case and
are relatively inflexible in the latter.

We propose applying genetic programming methods to search
for improved reward functions. These reward functions operate
over the entire state space of an RL problem and are evolved
to quickly and automatically identify relevant variables and fea-
tures of the problem. This may allow an agent using such a re-
ward function to outperform an agent that uses a straightforward
fitness-based reward function. The use of genetic programming
methods may alleviate the difficulty of scaling reward function
search and provide a natural way to search through a very ex-
pressive space of functions. Furthermore, genetic programming
is a global search method that can perform well in the presence
of local minima and when little is known about the character-
istics of the search space. For this task, we selected PushGP, a
stack-based genetic programming system built on the Push pro-
gramming language [12], [13].

PushGP has a number of features that make it appealing for
representing and evolving reward functions. Its stack-based
architecture allows for the use of multiple data types without
concern for the type-correctness of code following evolutionary
operations. Push programs can be analyzed relatively easily, as
PushGP supports an automatic code simplification algorithm,
a full set of familiar logical and programmatic constructs, and
a built-in system that allows for the natural emergence of code
modularity. In principle, a Push program can effectively repre-
sent any computable function, providing us with unrestricted
power to solve arbitrarily difficult problems. Empirically,
PushGP has proven to be effective in producing human-com-
petitive results in multiple domains, and in one case, defeated
other search methods by several orders of magnitude in a
mathematical domain dealing with finite algebras [14].

However, our aim in this article is not to find the best search
method, but to propose a good search method that is efficient
enough to allow us to search for and explore the properties of
alternate reward functions. PushGP reasonably meets our cri-
teria of expressibility, efficiency, and local-minima avoidance.

IV. EXPERIMENTS

Our methodology is evaluated using the Hungry–Thirsty do-
main [2], shown in Fig. 1. At each time step, the agent can move
one square north, south, east, or west, or choose from one of two
special actions, “eat” or “drink.” In each instance of this do-
main, inexhaustible food and water locations are chosen from
two of the four corners and held fixed for the agent’s lifetime
(the food and water cannot be colocated, resulting in 12 pos-
sible environmental configurations). The agent’s objective is to
eat as much food as possible by using the “eat” action at the food
location, but the agent’s eat action fails when it is thirsty (or if
the agent is not at the food location). Drinking at the water loca-
tion makes the agent not-thirsty, but at each time step thereafter,
the agent becomes thirsty again with probability 0.1. When the
agent successfully eats, it becomes not-hungry for one time step,
and is hungry again thereafter. For each time step in the agent’s
lifetime that it is not-hungry, its fitness score increases by one.

Fig. 1. Hungry–Thirsty domain. Thick lines are walls, striped squares denote
possible food or water sites.

Therefore, gives the total number of time steps in which
the agent was not-hungry throughout its history, or lifetime, ,
which we limit to a fixed finite number of time steps. In what fol-
lows, we call this score cumulative fitness. As a corresponding
fitness-based reward function, we provide a positive reward of
100 when the agent is not-hungry and otherwise, to en-
courage exploration. We intentionally chose this small domain
to simplify the analysis of our methodology and to allow us to
relate our results to those of Singh et al. [2].

In our experiments, generations of agents are evaluated
based on their fitness score across a distribution of environ-
ments within this domain. Thus, a reward function may emerge
from the evolutionary process that maximizes an agent’s fitness
across this distribution, capturing the most salient common
features of these environments.

To accelerate the evolutionary process, we evolved reward
function adjustments rather than reward functions directly. An
agent’s final reward function is created by adding the evolved re-
ward function to a given fitness-based reward function. Thus, we
are evolving reward functions from a reasonable starting point
so that PushGP does not have a harder job than necessary. Note
that evolving reward functions “directly” is a special case of
evolving reward function adjustments where the starting point is
the zero reward function. Also, hand-designing a starting point
is the same as creating a simple fitness-based reward function,
which researchers already do when formulating an RL problem.
Therefore, we are not requiring knowledge or effort that goes
beyond what is customarily brought to the task of formulating
an RL problem.

For each run of these experiments, a starting population of
1000 random reward functions is initialized. Each reward func-
tion in the population is evaluated by assigning it to an agent
and evaluating the agent’s fitness over 75 000 time steps in the
Hungry–Thirsty domain. This is repeated for 120 agent lifetimes
(over a distribution of environments that vary per experiment,
resetting learning after each), from which an average fitness
score for the reward function is computed and used to determine
which reward functions are selected for mutation, crossover,
and duplication to produce the next generation. This process
is repeated for 50 generations and the best reward function is
recorded for later use. Finally, this entire experimental process
is repeated 50 times and the results are averaged to make all our
final graphs. The statistical significance of the comparisons of
the various reward functions is determined through paired -tests
that assume unequal variances.
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Fig. 2. Agent fitness (left) and evolutionary progress (right) over a distribution of environments.

We used a Java implementation of PushGP called Psh, written
by Jon Klein.1 For these experiments, we chose a very limited
subset of Push’s full instruction set to simplify our experiments
and analysis. We used only arithmetic floating point operators,
random numbers, swapping, and duplication. We also added
one special instruction per input variable that pushes the vari-
able directly onto the float stack, so that PushGP can access
each state variable on demand. More specifically, FLOAT.+,
FLOAT.-, FLOAT.*, and FLOAT.% pop the top two elements
from the float stack and perform addition, subtraction, multi-
plication, and modulo, respectively. (When order matters, Push
executes <second item on the stack> operator <top item on the
stack>). FLOAT.DUP duplicates the top item on the float stack
and pushes it. FLOAT.SWAP swaps the top two items on the
float stack. STATE pushes the state variable onto the float
stack. If there are not enough items on a stack to complete an
operation, it simply does nothing.

Future work may use PushGP’s full power by including log-
ical constructs, looping, and modularity operators. For our pur-
poses, however, this simple set of operators allowed us to find
improved reward functions and demonstrated the power of evo-
lutionary search over a large space of programs. In this configu-
ration PushGP functions much like the simplest, original genetic
programming systems [8].

Each RL agent learned using -greedy Q-learning
. The initial Q-values were initialized ran-

domly to small values in the range of . We rep-
resented the Q-value function as a simple lookup table, as to not
confound our results with the representational difficulties some-
times encountered with function approximation.

Three experiments are presented that each define a class
of problems for which intrinsic rewards may be particularly
useful, or even necessary. We examine cases in which the
agent faces distributions of related environments, nonstationary
environments, and problems with a significantly shortened
agent lifetime.

1Source code available at http://github.com/jonklein/Psh

V. RESULTS

A. Experiment 1: Distribution of Environments

In solving real-world problems, an agent may face problem
instances selected from a distribution of environments that share
common features, but where the specifics of any particular en-
vironment are not known a priori. It is desirable for an agent to
be able to learn quickly in any of these environments by taking
advantage of known information about the environment distri-
bution. When populations of agents are exposed to such a distri-
bution of environments, an evolved reward function may emerge
that allows an agent to learn quickly on any given problem
within the distribution. To test the ability of PushGP to evolve
such functions, we evaluated reward functions over 120 sam-
ples from a uniform distribution over the 12 possible food and
water arrangements (resetting learning after each trial) in the
Hungry–Thirsty domain. We compared our results to those of
Singh et al. [2] on this same distribution.

The left panel of Fig. 2 compares the average cumulative fit-
ness over an agent’s lifetime when using the fitness-based re-
ward functions, the best brute-force search reward function from
Singh et al. [2], and reward functions evolved by PushGP. In
the two-variable case, the evolved reward function was given
as input the hunger and thirst status of the agent (the same two
state variables used in [2]). Here, the evolved function performs
somewhat better; the evolutionary search did not have to search
over a discretized space, and therefore found a more refined so-
lution. In the four variable case, we provided the reward func-
tion with two additional state variables, the and coordinates
of the agent’s location, and the evolutionary process produced a
slightly better reward function. This shows that an evolutionary
search algorithm can extract salient features of a problem, even
when searching over a large space of functions, affording better
performance than the simpler brute-force method. All compar-
isons on this graph are highly statistically significant after time
step 15 000 .

The right panel of Fig. 2 shows the fitness of the best re-
ward function evaluated so far as a function of time during the
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Fig. 3. Evolved reward function from the Hungry–Thirsty domain.

evolutionary process (where each generation is 1000 evalua-
tions on the -axis, with the initial 250 evaluations removed to
ease scaling and readability). Despite the fact that adding addi-
tional relevant variables significantly increases the size of the
search space, we see that the four-variable curve only lags be-
hind the two-variable curve until around the tenth generation,
and then shows better performance thereafter (after the 25th
generation, ). In the other two cases, we added ad-
ditional “distractor” variables (two and four, respectively) that
were uniformly distributed integers between 0 and 4. It appears
that evolutionary search quickly learned to ignore these irrele-
vant variables, as evolutionary progress slowed relatively little
with their addition. In fact, after the 15th generation, the differ-
ence between the standard four-variable case and the two-dis-
tractor case is no longer statistically significant .
Furthermore, by the end of evolution, there is no statistically
significant difference between the two-distractor and four-dis-
tractor cases . It should be noted that PushGP is not
sensitive to the possible domains of any of the input variables;
each variable is just seen by PushGP as a floating point number
that can take on any possible value. Thus, each time a variable
was added, an entire dimension was added to the problem, yet
the evolutionary process was largely unaffected. This suggests
that evolutionary methods such as PushGP may generalize well
to larger, high-dimensional problems.

Fig. 3 shows the best evolved reward function from one of
our runs (in the four-variable case) at each location when
the agent is hungry and not-thirsty (left) and hungry and thirsty
(right). The first noticeable feature is that there is a penalty for
being thirsty, ranging from 0.5 to 1, depending on the agent’s
location. This is similar in nature to the thirst penalty that was
discovered by the brute-force method in Singh et al. [2] and by
our method in the two-variable case. However, in our reward
function, there is also a corridor on the eastern side of the do-
main that is rewarded more highly than the rest of the locations.
This corridor is significant because in eight of the twelve pos-
sible food and water configurations, the agent must pass through
this corridor to move between the food locations. Here, evolu-
tionary search finds a common feature of the environments that
may not be immediately apparent to a human designer. Further-
more, the evolutionary process carefully tunes the magnitude of
the weights so that they assist learning, rather than distract the
agent, something a human designer cannot do easily. Thus, the

evolved reward function provides the agent with a carefully bal-
anced intrinsic motivation to drink water and spend time in the
eastern corridor, even though there is no direct fitness increment
associated with doing so, thereby improving learning speed and
cumulative fitness of the agent.

Examining the actual Push program that produced this reward
function yields some interesting insights about PushGP. The
program is reproduced here without parentheses, which have no
effect on program execution in the present context2:

FLOAT.- FLOAT.* FLOAT.SWAP STATE2 FLOAT.+
FLOAT.* FLOAT.SWAP FLOAT.+ FLOAT.* FLOAT.*
STATE0 FLOAT.* FLOAT.% STATE2 4.5 FLOAT.% STATE2
FLOAT.% FLOAT.DUP STATE1 STATE2 FLOAT.% FLOAT.+
FLOAT.* STATE1 FLOAT.- 0.5 FLOAT.+ FLOAT.DUP

Here, STATE0 is hunger status, STATE1 is thirst status,
STATE2 is x-position, and STATE3 is y-position. The fol-
lowing is a simplified version of the program produced by
removing the operators that do not do anything or that do not
affect the final reward value:

STATE2 4.5 FLOAT.% STATE2 FLOAT.% FLOAT.DUP
STATE1 STATE2 FLOAT.% FLOAT.+ FLOAT.* STATE1
FLOAT.- 0.5 FLOAT.+

While we can do this simplification for analysis, it should be
noted that the “garbage” instructions may be important for the
evolutionary process, as they can be activated by a small change
in the program.

When executed, this program leaves the result of the fol-
lowing expression (where thirst status is denoted by and -lo-
cation coordinate by ) on top of the float stack as the reward
(more correctly, this is the reward modifier that is later added to
the fitness-based reward)

The most obvious feature of this expression is the thirst penalty
of and the base reward of 0.5. We also see that the phrase

is repeated twice, via the FLOAT.DUP instruction.
Since we did not provide PushGP with an “if” instruction, it
finds a creative way to check if the agent is in the eastern cor-
ridor: evaluates to 0.5 when and evaluates to

2Parentheses are important in PushGP because they delimit the subprograms
that are targets of mutation and crossover operations. They can also affect exe-
cution when programs include code-manipulation instructions, but no such in-
structions were used in the experiments described here.
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Fig. 4. Agent fitness on nonstationary (left) and short lifetime (right) problems.

0 otherwise (FLOAT.% is implemented to allow fractional re-
turn values). Thus, an additional reward is given to the agent
if , and the thirst penalty is slightly adjusted as well.
We see that PushGP finds a sensible program and represents
it efficiently by reusing a useful calculation via FLOAT.DUP.
However, this should not be confused with the built-in support
Push has for code modularity that we did not enable for these
experiments.

To verify that our results were not highly dependent on the
subset of instructions we selected to use, we also ran this exper-
iment with 18 instructions rather than seven, including if-state-
ments, boolean stack operators, and simple code manipulation.
We hypothesized that the extra instructions would increase the
search space and slow down the evolutionary process (although
this larger subset might allow a better solution to be found in
the limit). However, by the 30th generation, the evolutionary
process produced a solution using this larger subset that is not
significantly different from our original result . This
suggests that there may be only a small initial time penalty for
using a larger set of instructions. Thus, it may be worthwhile to
do so since these additional instructions may provide additional
descriptive power and solution quality.

B. Experiment 2: Nonstationary Environment

In this experiment, we examined the class of nonstationary
problems in which the state–transition function, (i.e., the en-
vironmental dynamics) changes during an agent’s lifetime. This
experiment modifies the Hungry–Thirsty domain such that the
locations of the food and water change every 7500 steps, for a
total of 10 subproblems over a lifetime. In a manner similar to
when the agent faces problems sampled from a distribution, we
expect the evolved reward function to identify salient common
features between the possible environmental configurations and
adapt to the additional demands of nonstationarity. In a nonsta-
tionary environment, the agent must be able to learn the correct
policy quickly, which requires unlearning an incorrect policy
quickly when the environment changes. It should be emphasized
that shaping rewards [1] (or equivalently, initial value functions
[15]) are of little use on nonstationary problems since they are

quickly “learned away,” that is, are reduced to zero in the course
of learning. Evolved reward functions, on the other hand, are
permanent and provide a consistent advantage across environ-
mental changes.

The left panel of Fig. 4 compares the average cumulative fit-
ness over an agent’s lifetime when using the fitness-based re-
ward function and functions evolved using PushGP. We see that
an agent using an evolved reward function greatly outperformed
an agent using the fitness-based reward function (
after step 15 000). The nonstationarity of the problem magni-
fied this improvement as compared to the improvement shown
over a distribution of environments in the first experiment. The
fitness-based curve shows almost no fitness gains for the first
two subproblems, but thereafter shows some degree of learning
on each subproblem, followed by a performance hit after each
switch. This suggests that some of the Q-values learned on the
early subproblems are reusable in the later problems; otherwise
the agent would never gain any fitness, given its performance
on the early problems. However, as time goes on, the maximum
slope of the curve during a subproblem (the rate of fitness gain)
decreases, and the curve becomes more linear. It appears that
the agent does not have enough time to completely learn each
subproblem, so as time goes on, the Q-values tend toward the
mean of the values appropriate for the various subproblems, re-
ducing performance on any one of them. By contrast, we see
that the agent using the evolved reward function takes a small,
consistent performance hit every time the problem changes but
otherwise quickly gains fitness at a rapid rate. This suggests that
the reward function is tuned to help the agent both learn and un-
learn quickly in the presence of a nonstationary environment.

Upon examination, the evolved reward functions for nonsta-
tionary environments look somewhat different from those in the
first experiment. The reward functions leading to the highest
performance exhibit a strong gradient of negative reward that
encourages the agent to always move east when possible. This
suggests that the evolutionary process is optimizing for partic-
ular problems (when food and water are both on the eastern side)
at the expense of others because the average payoff for doing so
is greater than the losses incurred. This is one possible danger
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when designing a fitness function—you get exactly what you
ask for. There is no penalty for the agent failing completely
at one of the subtasks if it can make up for it later, thereby
increasing the mean fitness. An alternate fitness function may
give the agent a fitness of zero if it does not perform with some
threshold level of competence on every task, depending on what
the designer desires.

C. Experiment 3: Short Agent Lifetime

Finally, we examine the properties of evolved reward func-
tions on a problem with a short agent lifetime. In such a sce-
nario, an agent might never reach a fitness-incrementing state
or be able to learn a good policy in the allotted time. We mod-
ified the original experiment such that the agent only lived for
12 500 time steps rather than 75 000, significantly reducing the
amount of time available to learn the task. The right panel of
Fig. 4 compares the average cumulative fitness over an agent’s
lifetime when using the fitness-based reward function and func-
tions evolved using PushGP. Again, we see a magnified im-
provement ( after time 5000). The agent using the
fitness-based reward function managed to eat a few times, but
never learned a good policy due to its short life. The evolved re-
ward functions allowed the agent to learn a better policy within
the allotted lifetime, despite not knowing all the details of the
environment that it will face. These reward functions look very
similar to those that evolved under nonstationary conditions, but
they generally have a weaker gradient toward the east.

VI. RELATED RESEARCH

Other work has explored alternate reward functions in var-
ious contexts. Singh et al. [2], [3] demonstrated possible ben-
efits of reward function search while illuminating issues sur-
rounding the origins of reward and the distinction between in-
trinsic and extrinsic rewards. Sorg et al. [5] emphasize the ben-
efits of reward function search in counteracting limitations of
learning systems, benefits that are exhibited in our results as
well. Ng, Harada, and Russell [1] explored shaping adjustments
to the task-based reward function that do not disturb the optimal
policy. In contrast to their approach, ours essentially defines a
new problem (because there is a different reward function) that
is easier to learn to solve than the original problem but whose
solution entails a solution of the original problem. Shaping re-
wards do not redefine the problem and can be “learned away,”
an approach later shown to be equivalent to specifying an initial
value function [15]. Reward function search has been explored
by others [11], [16]–[20], but to the best of our knowledge, none
have used genetic programming methods.

Our work shares some characteristics with existing ap-
proaches to transfer learning (e.g., [21]). In this paper, we only
experiment over distributions of problems involving the same
domain, but one can use our approach to find reward func-
tions that exploit similarities across domains. Future research
will explore the utility of reward function search for transfer
learning.

VII. DISCUSSION AND CONCLUSION

We demonstrate a genetic programming method to search
for alternate reward functions for RL problems and describe

classes of problems where it might be particularly useful or
necessary to do so. Genetic programming can discover common
features across distributions of environments to improve an
agent’s expected fitness across this distribution. This property
may increase performance in a number of real-world problems
where examples of the domain are known, but the details of
what an agent may face in any particular instance is unknown.
We demonstrated a magnified performance boost on a nonsta-
tionary version of the Hungry–Thirsty problem [2], suggesting
that reward function search may be valuable for dealing with
constantly changing environments in realistic problems. In
general, reward function search is most beneficial when the
up-front computational expense of the search can be offset by
a large improvement over a series of problems to be faced over
time.

Furthermore, we show how an agent with a properly tuned
reward function can perform well on a task that an agent using
the fitness-based reward function simply cannot learn in a short
lifetime. Practically, a short agent lifetime can be interpreted
in many ways: a high-cost for an agent training episode, a hard
time constraint on solving an instance of a problem, or an upper-
bound on computational time that is reasonable to spend on
a task. Consider the case of a physical robot that learns how
to balance itself. Each training episode is expensive; an engi-
neer may have to pick the robot up and reinitialize it each time
that it falls while learning. The number of real-world training
episodes required might be dramatically decreased if a reward
function were evolved in simulation first and then transferred to
the physical robot to guide learning. Elfwing, Uchibe, and Doya
[22] demonstrate the utility of this strategy on a small foraging
robot using evolved shaping rewards. Thus, even if the up-front
cost is high, reward function search can be beneficial if it helps
conserve other, more valuable resources. Sorg et al. [5] explore
additional ways that a reward function can compensate for lim-
itations of the agent and its learning opportunities.

A simple domain was used for demonstration purposes in
this article, but our method can be applied to more difficult RL
problems. Most, if not all, of the PushGP parameters could
stay the same, although the instruction set would likely have
to be changed. A different subset of instructions would be
chosen based on the data types required and the complexity
of the problem. Although we used a small subset of the total
instruction set in our examples, there is evidence that using a
larger subset does not significantly slow the rate of evolution.
Furthermore, given our results with distractor variables, it
seems reasonable to provide all the available state variables as
input to all the reward functions in the search space and let the
evolutionary process decide which of them are useful. In this
manner, a reward function can be evolved for larger problems.

Evolved reward functions can improve the learning rate and
fitness of agents in a domain, but they may also have more pow-
erful uses in the future. As mentioned earlier, a properly evolved
reward function captures the common features across environ-
ments that an agent may face. Thus, such a reward function may
be able to aid an agent in autonomous skill identification and
learning, allowing the agent to hierarchically decompose and
provide good solutions to problems that cannot be readily han-
dled by current methods. In the options framework [23], tem-
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porally extended actions called options are added to an agent’s
set of primitive actions. If the options are created wisely and
represent useful, reusable skills in a domain, this technique can
greatly facilitate learning and planning. The benefit of using op-
tions has been shown in domains that have hierarchical structure
[24]. However, options are generally either given to an agent
by the designer, created when an event in a prespecified class
of events happens, or automatically created by a generic (i.e.,
problem nonspecific) method such as graph partitioning [25].
Evolved reward functions appear to identify key, problem-spe-
cific features of environments and therefore may be useful for
improving the identification of useful skills for autonomous op-
tion creation and effective hierarchical RL.
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