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ABSTRACT

A recent article on benchmark problems for genetic program-
ming suggested that researchers focus attention on the dig-
ital multiplier problem, also known as the “multiple output
multiplier” problem, in part because it is scalable and in part
because the requirement of multiple outputs presents chal-
lenges for some forms of genetic programming [20]. Here we
demonstrate the application of stack-based genetic program-
ming to the digital multiplier problem using the PushGP
genetic programming system, which evolves programs ex-
pressed in the stack-based Push programming language. We
demonstrate the use of output instructions and argue that
they provide a natural mechanism for producing multiple
outputs in a stack-based genetic programming context. We
also show how two recent developments in PushGP dramat-
ically improve the performance of the system on the digital
multiplier problem. These developments are the “ULTRA”
genetic operator, which produces offspring via “Uniform Lin-
ear Transformation with Repair and Alternation” [12], and
“lexicase selection,” which selects parents according to per-
formance on cases considered sequentially in random order
[11]. Our results using these techniques show not only their
utility, but also the utility of the digital multiplier problem
as a benchmark problem for genetic programming research.
The results also demonstrate the flexibility of stack-based
genetic programming for solving problems with multiple out-
puts and for serving as a platform for experimentation with
new genetic programming techniques.

Categories and Subject Descriptors

1.2.2 [Artificial Intelligence]: Automatic Programming—
Program synthesis

General Terms
Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’13 Companion, July 6-10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1964-5/13/07 ...$15.00.

Lee Spector
Cognitive Science
Hampshire College

Amherst, MA 01002
Ispector@hampshire.edu

Keywords

stack-based genetic programming; Push; PushGP; digital
multiplier problem; lexicase selection; ULTRA operator

1. INTRODUCTION AND RELATED
WORK

A long-term goal of the field of genetic programming is to
provide systems that can produce arbitrary computer pro-
grams automatically, generating software from specifications
without further intervention by human programmers [4].
Most of the work actually being conducted in the field, how-
ever, is focused much more narrowly on the automated dis-
covery of small programs that solve specific, well-constrained
computational problems. While this focus has produced
significant results, both in terms practical problem-solving
technologies and in terms of foundational theoretical under-
standing, many researchers in the field appreciate the need
to improve the genetic programming technique in fundamen-
tal ways in order to reach the stated long term goals for the
field.

It is within this context that recent articles on benchmark
problems for genetic programming suggested that the dig-
ital multiplier problem, also known as the multiple output
multiplier problem, be used to assess the performance of ge-
netic programming systems [20, 7]. In the digital multiplier
problem, we seek a program that takes two sets of boolean
inputs, each of which encodes a number in binary, and pro-
duces a set of boolean outputs that encodes the product of
the input numbers. While this is not an intrinsically difficult
problem—it is regularly solved anew by students of introduc-
tory digital circuit design—it does have several properties
that make it attractive as a benchmark problem for genetic
programming. For example, digital multiplication functions
have been well studied, the problem can be scaled up to in-
volve inputs of any number of bits, and the fitness values are
not chunked in powers of two. These factors make it a good
replacement for “toy” boolean problems, such as the parity
and multiplexer problems, that have been heavily used for
benchmarking in the genetic programming literature.

Of particular interest, however, is the fact that solutions
to the digital multiplier problem must produce multiple out-
puts, one for each bit of the product of the input numbers.
The most common genetic programming systems, which ma-
nipulate and produce programs in the form of function trees,
are most commonly applied to problems that require the
production of only a single output, which is produced by
the function call at the root of the tree.
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It is certainly possible to use tree-based genetic program-
ming to evolve programs that produce multiple outputs.
One technique for doing so is to use functions that act by
“side effect” on multiple global state variables rather than by
returning a value to the function higher in the tree; indeed,
several of the classic examples of genetic programming use
this technique [4].

Nonetheless, the functional-style representations of tree-
based genetic programming have often suggested applica-
tions only to problems with single outputs, and this may
be the reason that multiple-output problems have received
relatively little attention in the field.

In this paper we demonstrate the use of PushGP, a stack-
based genetic programming system, to evolve digital multi-
pliers. Stack-based genetic programming evolves programs
that pass data among instructions primarily by means of
data stacks, rather than by means of return values passed
through syntactically-nested function calls. This change in
perspective makes it easier to imagine ways in which the
technique can be applied to problems that require the pro-
duction of multiple outputs.

One option for approaching the digital multiplier problem
with stack-based genetic programming would be to evolve
programs which take all of the inputs pre-loaded on a stack
and leave all of the outputs on a stack after the program
completes execution. However, prior work on stack-based
genetic programming with the Push programming language
[15, 13] has demonstrated that it is often useful to provide
input instructions that can be called as needed, and possi-
bly repeatedly, to re-push inputs onto stacks. In a similar
spirit, it is natural to provide output instructions that take
arguments from stacks and designate them as program out-
puts. In the present paper we use output instructions to
designate outputs in solving the digital multiplier problem.
The “output instruction” idea could also be applied in tree-
based genetic programming, although the question of what
the output instructions would return to their callers would
have to be addressed, and to our knowledge this has not yet
been investigated.

Prior work has been done to evolve digital multipliers us-
ing a variety of evolutionary algorithms, although none of
them use traditional tree-based programs or stack-based ge-
netic programming. Much of the work has been done using
Cartesian genetic programming, in which designated output
nodes play a role somewhat analogous to output instructions
[18, 19, 8]. Others have used techniques such as genetic al-
gorithms, including multiobjective genetic algorithms [2, 1],
as well as enzyme genetic programming [5] to evolve digital
multipliers. Many of these papers evolve 2-bit multipliers,
and few tackle larger problems. Of particular note is an
approach that uses a genetic algorithm that partitions the
outputs and test cases into multiple different problems to
evolve, and then reassembles a full solution afterward. This
method was used to evolve a 5-bit digital multiplier [16]. We
are not aware of a method that evolves single programs that
has evolved digital multipliers this large.

In addition to demonstrating how output instructions can
be used with stack-based genetic programming to solve the
digital multiplier problem, the present paper also demon-
strates two recently developed enhancements to PushGP.
One of these enhancements is a new genetic operator, called
“ULTRA,” which produces offspring using “Uniform Lin-
ear Transformation with Repair and Alternation” [12]. The

other enhancement is a parent selection algorithm called
“lexicase selection,” which selects parents according to per-
formance on cases considered sequentially in random order
[11]. Each of these enhancements improves the performance
of PushGP on the digital multiplier problem significantly,
and the effect of the two enhancements when combined is
truly dramatic. These results demonstrate not only the util-
ity of the ULTRA operator and lexicase selection, but also
the utility of the digital multiplier problem as a benchmark
problem for genetic programming research.

In the following sections we first describe the PushGP ge-
netic programming system, with which we performed all of
the experiments described in this paper. We then describe
the two innovative techniques that we use in conjunction
with PushGP in our experiments, lexicase selection and the
ULTRA operator. These descriptions are followed by a de-
tailed presentation of the digital multiplier problem and its
implementation in PushGP. We then present and discuss our
experimental results before concluding.

2. PUSH AND PUSHGP

Push is a programming language that was designed specif-
ically for use in genetic programming and other evolutionary
computation systems, as the language in which evolving pro-
grams are expressed [10, 15, 13]. Push is a stack-based pro-
gramming language which is similar in some ways to others
that have been used for GP, e.g. the stack-based language
used in [9]. It is a postfix language in which literals, when
encountered by the interpreter, are pushed onto data stacks,
and instructions, when encountered by the interpreter, act
on data taken from stacks and return results on stacks.

One novel feature of Push is that a separate stack is used
for each data type. Instructions take their arguments (if
any) from stacks of the appropriate types and they leave
their results (if any) on stacks of the appropriate types. This
allows instructions and literals to be freely intermixed re-
gardless of type while still ensuring execution safety. The
convention in Push regarding instructions that are executed
in contexts that provide insufficient arguments on the rele-
vant stacks is that these instructions act as “no-ops”—that
is, they do nothing.

Many of Push’s most unusual and powerful features stem
from the fact that code is itself a Push data type, and from
the fact that Push programs can easily (and often do) manip-
ulate their own code as they run. However, these features
of Push are not used in the experiments presented in the
present paper, so they will not be described here.

Another somewhat novel feature of Push, in the context
of stack-based languages, is that Push programs may be hi-
erarchically structured with parentheses. This hierarchical
structure affects how code-manipulation instructions work,
and it also affects the ways that genetic operators operate
on programs. For example, in the most standard configura-
tion PushGP uses mutation and crossover operators that are
almost identical to those used in tree-based genetic program-
ming, with mutation replacing a sub-expression (a literal or
a parenthesized code fragment) with a newly generated sub-
expression, and with crossover replacing a sub-expression
with a subexpression randomly selected from another pro-
gram in the population.

Push and PushGP implementations now exist in C++,
Java, JavaScript, Python, Common Lisp, Clojure, Scheme,



To select a parent for use in a genetic operation:
1. Initialize:

(a) Set candidates to be the entire population.

(b) Set cases to be a list of all of the fitness cases
in random order.

2. Loop:

(a) Set candidates to be the subset of the current
candidates that have exactly the best fitness of
any individual currently in candidates for the
first case in cases.

(b) If candidates or cases contains just a single
element then return a randomly selected indi-
vidual from candidates.

(c) Otherwise remove the first case from cases and
go to Loop.

Figure 1: Pseudocode for the lexicase selection al-
gorithm used in the experiments in this paper.

Erlang, Scala and R. Many of these are available for free
download from the Push project page.*

3. LEXICASE SELECTION

Lexicase selection is a parent selection algorithm that was
developed to help solve problems that are “modal” in the
sense that they require solution programs to perform quali-
tatively different actions (or to respond in different “modes”)
for inputs that belong to different classes that may not be
known in advance [11, 17]. We expect lexicase selection to
improve the performance of PushGP on the digital multi-
plier problem, since this problem requires programs to ex-
hibit different behavior on different test cases. As we will
discuss later, a small subset of the test cases require differ-
ent outputs on certain bits, making the search space diffi-
cult to navigate for traditional selection operators that act
on summed errors.

In lexicase selection a parent is selected by starting with a
pool of potential parents—normally the entire population—
and then filtering the pool on the basis of performance on
individual fitness cases, considered one at a time. The “lexi-
case” name stems from the similarity of this sequential con-
sideration of cases to the “lexicographic ordering” of char-
acter strings, in which the first character has the largest
effect, the second matters only for ordering within the set
of strings that are equal in their first characters, and so on.
The lexicase selection algorithm used here, which is called
“global pool, uniform random sequence, elitist lexicase par-
ent selection” in [11], is described in pseudocode in Figure
1.

4. THE ULTRA OPERATOR

“ULTRA,” which stands for “Uniform Linear Transforma-
tion with Repair and Alternation,” is a new genetic operator
that takes two parent programs and combines them in a way
that makes each part of each program equally likely to ap-
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pear in the resulting child and equally likely to be modified
by mutation [12]. ULTRA acts on hierarchically structured
programs but treats them as linear structures while includ-
ing each element of the structures with uniform probability.
It was motivated by theoretical considerations regarding re-
lations between program size, function, and mutability, and
by analogies to the mechanics of mutation and crossover in
biological (linear) genomes.

The ULTRA operator takes two parent programs and pro-
duces from them a single child program. It first “linearizes”
each parent into a flat sequence that includes a token for each
literal, instruction, and parenthesis in the parent program.
It then traverses the linearized parents, building the child
as a linear sequence of tokens taken from the parents. This
traversal begins by adding the first token of the first parent
to the child. After this first step, and after each further token
is added to the child sequence, there is a fixed probability of
alternating between parents; that is, of moving the traversal
index to an index in the other parent program. The prob-
ability of alternating at any given index is specified as the
“alternation rate.” When alternating between parents, the
index within the new parent from which the next token will
be taken is subjected to Gaussian noise and may change to
a higher or lower index; the standard deviation of the noise
is given by the “alignment deviation” parameter. After de-
ciding whether to alternate or not, the next token from the
current parent is added to the child, and the traversal index
is incremented. The construction of the child terminates
when the token index exceeds the size of the current parent
or when it exceeds the maximum program size.

After the child sequence has been created through traver-
sal of the parents, it is subjected to a uniform mutation
during which each token has uniform probability of being
deleted or replaced by any other token, including all literals
and instructions used for the problem and open and close
parentheses. The probability of any one token being mu-
tated is given by the “mutation rate” parameter. In the
absence of mutations or alternations, ULTRA would simply
traverse the first parent and copy all of its tokens to the child;
the child would then be a clone of the first parent. However,
alternation or mutation may create a syntactically invalid
child program; in this case, the program must be repaired
by ULTRA’s repair step.

Fortunately, Push programs are particularly easy to re-
pair. Any sequence of valid instructions, literals, and paren-
theses is a syntactically valid Push program as long as its
parentheses are balanced and as long as its outermost paren-
theses enclose the entire program. This means that UL-
TRA can repair a program by simply adding and/or delet-
ing parentheses. Our repair algorithm traverses the child
until an imbalance is detected and then fixes the imbalance
either by deleting the source of the imbalance or by adding
a matching parenthesis in a random location on the appro-
priate side of the imbalance. The complete repair algorithm
requires two passes through the program (one from front to
back, and then one from back to front) in order to ensure
balance and to avoid bias in the structures produced by re-
pair. After repair, the tokenized child is transformed back
into a hierarchical Push program.

S. THE DIGITAL MULTIPLIER PROBLEM

The digital multiplier problem requires the system to cre-
ate a digital circuit that multiplies two binary numbers. An



Table 1: A list of the Push instructions used in our
digital multiplier experiments. For the n-bit digital
multiplier problem, there are 2n input instructions
and 2n output instructions.

Boolean Stack | and, or, xor, invert_first_then_and,
dup, swap, rot

Input / Output | inO0, ..., in2n, outO, ..., out2n

n-bit digital multiplier circuit takes two n-bit numbers rep-
resented in binary as input and multiplies them together
to create a 2n-bit number as output. As noted above, this
problem was recommended by the authors of recent arti-
cles on genetic programming benchmarks as an alternative
to other boolean problems such as multiplexer and parity,
since it offers difficulties not seen in those problems [7, 20].
In particular, it forces the evolving programs to output mul-
tiple values and allows for trials of problems of varying sizes
without constraining fitness values to powers of two.

The boolean n-bit digital multiplier problem uses each
possible assignment of 0 and 1 to each of the 2n input bits
to produce 22" test cases, each with 2n output bits. The
fitness (error) of each test case is the number of bits that the
program gets wrong compared to the desired output bits.
Thus the error for a test case can be an integer between
0 and 2n. The instruction set recommended in [18] uses
four boolean functions: AND, AND with one input inverted,
XOR, and OR. Human-designed digital multipliers use a
series of full and half adders; adding these as instructions
would presumably make the problem easier. A half adder
can be represented by one AND and one XOR instruction,
so we would expect to see extensive use of these instructions
in our evolved programs.

In our implementation of the digital multiplier problem
in PushGP, we use not only input instructions (which are
common in Push), but also output instructions. In our im-
plementation we provide one input instruction for each input
bit, and one output instruction for each output bit. For ex-
ample, the 2-bit digital multiplier has input instructions in0,
inl, in2, and in3, each of which pushes the test case’s rele-
vant input bit onto the boolean stack. It also uses output
instructions out0, outl, out2, and out3, which set the given
output bit to the top item on the boolean stack and pop that
item. Each time an output instruction is called, the output
for that bit is overwritten by the top item on the boolean
stack so that only the last such instruction executed affects
the behavior of the program. If a specific output instruction
is never called within the program, that bit is considered
wrong in each test case, but no further penalty is given.

Beyond the input and output instructions, we use the
boolean stack instructions found in the top row of Table
1. The first four of these are the instructions recommended
by Walker and Miller [18], and the other three are typical
stack manipulation instructions that are often used in Push.
The boolean_dup instruction duplicates the top item on the
boolean stack, the boolean_swap instruction swaps the top
two items on the boolean stack, and boolean_rot moves the
third item on the boolean stack to the top of the stack.
Our random code generator chooses to either use a boolean
stack instruction or an input/output instruction randomly,
and then selects from the chosen category uniformly. This
ensures that the ratio of boolean stack instructions to in-

Table 2: Parameters for experiments.

Digital Multiplier Problem 2-bit | 3-bit
Runs Per Condition 100 100
Population Size 1000 | 2000
Max Generations 500 | 500
Max Program Size 400 | 800
Max Inital Program Size 200 | 400
Max Size for Mutation Code 30 30

Table 3: Genetic operators used in the “Normal” and
“Lexicase” runs. Crossover and mutation are the
normal PushGP operators which are nearly identical
to the standard operators in tree-based genetic pro-
gramming; they replace one sub-expression in the
program with another subexpression taken from an-
other individual (crossover) or generated randomly
(mutation). Crossover and mutation use unbiased
node selection. Simplification [3] is an operator
on one parent program that attempts to create a
smaller program by randomly deleting instructions
and/or removing parentheses; it retains the simpli-
fied program only if it has the same error vector as
the parent program. Otherwise the parent is itself
copied to the child population.

Crossover 80%
Mutation 10%
Simplification | 5%
Reproduction | 5%

put/output instructions remains 50% for different sizes of
the problem, even though there are more input and output
instructions in larger versions of the problem.

Note that for the digital multiplier problem as defined
here and with this instruction set, parentheses within pro-
grams have no semantic effect. Since ULTRA also does not
require parentheses, we could have entirely left them out of
our evolving programs for those runs. But, since the genetic
operators crossover and mutation that we use for compari-
son require them in PushGP, we left them in our ULTRA
runs as well.

6. EXPERIMENTS AND RESULTS

To test PushGP on the digital multiplier problem, we per-
formed runs on both the 2-bit multiplier and 3-bit multiplier
problems. The major parameters that we used in our exper-
iments can be found in Table 2. In our runs, we used either
tournament selection with tournament size 7 or lexicase se-
lection. For genetic operators, we either used the “normal”
genetic operators with the probabilities in Table 3, or UL-
TRA with the parameters found in Table 4. For program
initialization, we created random programs with sizes uni-

Table 4: In the runs where we used ULTRA, we
used it as the only genetic operator. These are the
ULTRA parameters we used for those runs.

ULTRA Mutation Rate 1%
ULTRA Alternation Rate 1%
ULTRA Alternation Alignment Deviation | 10




Table 5: Results on the 2-bit digital multiplier prob-
lem. Each condition used 100 runs. CE is the
computational effort and MBF is the mean best fit-
ness of the run. The last column gives 2-tailed p-
values from unpaired t-tests that examine whether
the MBF differs from that of lexicase + ULTRA,

shown in the last row of the table.
Condition Successes CE | MBF | p-value
Normal 12 | 6,893,000 | 0.144 | < 0.001
Lexicase 90 595,000 | 0.006 0.005
ULTRA 57 | 2,440,000 | 0.056 | < 0.001
Lex+ULTRA 99 192,000 | 0.0006 -

formly chosen between 1 and the max initial program size
found in Table 2. We conducted sets of runs using four dif-
ferent parameter conditions: normal (tournament selection
and normal genetic operators), lexicase (with normal genetic
operators), ULTRA (with tournament selection), and lexi-
case + ULTRA.

In order to test the performance of each condition, we
measured the success rate, computational effort, and the
mean best fitness for each set of runs. Mean best fitness is
the mean of the best individual fitnesses attained in each
run. For all runs described here, fitness is defined as a mea-
sure of error with lower numbers being better and solutions
having fitness values of zero. The fitnesses given here are the
mean errors across test cases, not the sums of those errors.
As recommended in [6, 7], we conducted t-tests comparing
the mean best fitnesses of each condition with the best set
of runs.

We also present the success rate and computational effort
of each run. The success rate is the number of runs that
find a perfect solution. Computational effort measures the
expected number of individuals that the genetic program-
ming algorithm needs to evaluate in order to have a 99%
confidence of finding a solution. A lower computational ef-
fort means that fewer fitness evaluations have to be made in
order to find a solution. Computational effort was computed
as described by Koza [4, pp. 99-103]: We first calculate
P(M,i), the cumulative probability of success by genera-
tion i with population size M; this is the number of runs
that succeeded on or before the ith generation, divided by
the number of runs conducted. I(M,i,z), the number of
individuals that must be processed to produce a solution by
generation i with probability greater than z (here z = 99%)
is then calculated as:

I(M,i,2) = M (i + 1) % { log(1 — 2) 1

IOg(l - P(M7 Z))

The minimum of I(M, i, z) over all generation values of ¢ is
defined to be the “computational effort” required to solve the
problem. The measures of success rate and computational
effort give an idea as to how efficient the algorithm is at
finding full solutions to a problem.

The results of our runs on the 2-bit digital multiplier prob-
lem can be found in Table 5. Using both lexicase selection
and ULTRA resulted in the best performance, which found
100% correct programs in almost every run. The computa-
tional effort for lexicase + ULTRA is much lower than with
lexicase selection only, ULTRA only, or neither. The mean
best fitness of the lexicase + ULTRA runs is better than

Table 6: Results on the 3-bit digital multiplier prob-
lem. Each condition used 100 runs. MBF is the
mean best fitness of the run. No runs found per-
fect solutions. The last column gives 2-tailed p-
values from unpaired t-tests that examine whether
the MBF differs from that of lexicase + ULTRA,

shown in the last row of the table.
Condition MBF | p-value
Normal 0.89 | < 0.001
Lexicase 0.39 | < 0.001
ULTRA 0.53 | < 0.001
Lex+ULTRA 0.12 -

any of the other conditions. We conducted unpaired t-tests
between the lexicase + ULTRA runs and all other condi-
tions’ mean best fitnesses, and found the differences to be
significant at the 0.01 level each time.

Table 6 presents the results of our runs on the 3-bit digital
multiplier problem. In this case, no runs found perfect so-
lutions, so we do not report solution rates or computational
effort. Lexicase + ULTRA produced the best mean best
fitness, with the differences between it and the other runs
significant at the 0.01 level. We did conduct a small set
of runs on the 3-bit problem using a larger population size
(5000) and larger max generations (4000). Many of these
runs did find perfect solutions, but we were unable to per-
form enough runs with these larger parameters to produce
meaningful results in the time that we had available prior
to the deadline for this paper.

7. DISCUSSION

Based on our results, both lexicase selection and ULTRA
significantly improve the performance of PushGP on the dig-
ital multiplier problem. Let us consider each of their effects
and why they may improve performance.

Lexicase selection puts equal pressure on solving each test
case, which in turn makes it helpful on “modal” problems
where different test cases require qualitatively different ac-
tions to solve them [11]. In the digital multiplier problem,
some output bits should return False in almost every test
case. For example, in 2-bit digital multiplier, the first bit
is False in every test case besides when both binary inputs
represent the number 3, in which case it is True. So, a
program can achieve near-perfect fitness on the first bit by
simply outputting False for it in every test case. Using nor-
mal summed-error fitness with a selection method such as
tournament selection, a program can essentially ignore this
first bit and get a fitness of 1 by just solving the other three
bits perfectly. This leads evolution into a local optimum,
where it is difficult to solve the 3 times 3 test case without
disrupting another test case more significantly.

Lexicase selection avoids this problem by putting equal
selection pressure on solving each test case. Programs that
correctly compute the first bit of the 3 times 3 test case
perfectly will be selected for when that test case is near the
front of the lexicase random test case ordering. This helps
evolution avoid the local optimum where the first output bit
is essentially ignored, leading to a solution much more easily.
We believe this modal effect is responsible for the improved
performance of lexicase selection over tournament selection
on the digital multiplier problem.
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digital multiplier runs over evolutionary time.

ULTRA’s contribution to the improved performance of
PushGP on the digital multiplier problem may stem from a
variety of sources, from the way it changes evolutionary dy-
namics to how it seems to inhibit code growth. Figures 2 and
3 plot the mean program sizes of our 2-bit and 3-bit digital
multiplier problem runs against evolutionary time. In both
of these figures we see that program sizes are much larger in
the runs using normal genetic operators than in runs using
ULTRA as the only genetic operator. In fact, program sizes
tend to decrease or remain relatively constant using ULTRA,
whereas we see large amounts of code growth that levels off
near maximum program sizes when using normal genetic op-
erators. From these figures and the performance measures
of our runs, we infer that ULTRA guides evolution toward
programs that perform well on the problem while maintain-
ing reasonable program sizes. We discuss ULTRA’s ability
to avoid code growth elsewhere [12]; in short, we believe
the way ULTRA treats any given part of the program uni-
formly makes it difficult for bloated programs to reproduce
successfully.

Based on a brief scan of both 2-bit and 3-bit solution
programs that our system found, our system did not pro-
duce much programmatic modularity. That is, we did not
see much use of the boolean_dup instruction, which is the
only instruction we used in our instruction set that allows
for reproducing work done previously in the program with-
out repeating the same instructions. On the other hand,
we did not check for evolutionary modularity, in which a
program segment (such as a few instructions that imple-
ment a half adder) appears many times throughout both
single programs and the population as a whole. Based on
the results found in Cartesian GP [18], we would expect that
modularity-improving features such as tags [14] may improve
the system’s performance. Surprisingly, in experiments not
presented here the addition of tags to the instruction set
actually decreased the performance of PushGP on both the
2-bit and 3-bit digital multiplier problems.

8. CONCLUSIONS

We have used the stack-based PushGP genetic program-
ming system to search for solutions to the 2-bit and 3-bit
digital multiplier problems. We have shown how output in-
structions can be used in finding solutions to these problems,
which require multiple bits to be output during each pro-
gram execution. Our efforts have included using two recent
developments in PushGP, lexicase selection and the ULTRA
genetic operator, both of which significantly improve the
performance of PushGP on the digital multiplier problem.

At this point we have only evolved perfect solutions to the
2-bit and 3-bit digital multiplier problems, with the 3-bit
version requiring many extra fitness evaluations. We hope
that future work on this problem will allow us to solve the
3-bit and 4-bit multiplier problems more readily, and pos-
sibly the 5-bit problem. As the problem difficulty seems to
grow exponentially with the size of the problem, new tech-
niques will likely have to be used to solve 5-bit or greater
problems. In particular, since human designs of digital mul-
tiplier circuits rely on large amounts of modularity, we pre-
sume that modularity-encouraging techniques such as tags
[14] and code manipulating instructions may dramatically
help PushGP to more efficiently solve these larger problems.
The work that has evolved the largest digital multiplier to



our knowledge used separately evolved output chromosomes
to evolve a 5-bit digital multiplier [16].

In our comparison runs that used tournament selection
and normal genetic operators such as crossover and muta-
tion, we chose typical parameters for those methods but did
not try variants that may have led to improved performance.
Since the main focus of this paper is not to argue for lexicase
selection and ULTRA, we consider this to be sufficient. But,
future work arguing for lexicase selection or ULTRA versus
more traditional approaches should make more effort to find
more optimized parameter settings for these methods.

We believe that tree-based genetic programming could be
adapted to evolve solutions for this problem. The main hur-
dle for tree-structured programs is that they often only re-
turn a single value, whereas this problem requires multiple
output bits. This limitation may be avoided in a variety of
ways. One such way would be to include output instruc-
tions similar to the ones used here. In trees, these instruc-
tions would need to return values, which would likely just
be the value that they output. Another possibility is to use
multi-chromosomal evolution, in which each chromosome is
a function that returns the value for a single output bit [19].
This allows each chromosome to be evolved independently,
such that tree-based programs can remain entirely stateless
while still returning multiple output bits.
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ERRATUM NOTICE:

Subsequertb the publicationof this paperwe discovereda bugthatlimited the numberof instructionseachprogramcould
executeo 150,whereit shouldhavebeen400to matchthe maximumprogramsize.We havererunthe experimentandachieved
similarresults.

Thefollowing resultsreplacethosein Table5:

Tourney& Subtree= 18 successel10,325,00@omputationakffort | 0.126MBF | p-value< 0.001

Lexicase& Subtree= 99 successel332,000computationakffort | 0.001MBF | p-value=0.318

Tourney& ULTRA =61 successefl,752,000computationakffort | 0.041MBF | p-value< 0.001

Lexicase& ULTRA = 100successell70,000computationakffort | 0.0 MBF | -
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ERRATUM NOTICE:
Subsequent to the publication of this paper, we discovered a bug that limited the number of instructions each program could execute to 150, where it should have been 400 to match the maximum program size. We have rerun the experiments and achieved similar results.
The following results replace those in Table 5:
Tourney & Subtree = 18 successes | 10,325,000 computational effort | 0.126 MBF | p-value < 0.001
Lexicase & Subtree = 99 successes | 332,000 computational effort | 0.001 MBF | p-value = 0.318
Tourney & ULTRA = 61 successes | 1,752,000 computational effort | 0.041 MBF | p-value < 0.001
Lexicase & ULTRA = 100 successes | 170,000 computational effort | 0.0 MBF | -
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