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ABSTRACT
This paper shows how the performance of a

genetic programming system can be improved
through the addition of mechanisms for non-
genetic transmission of information between in-
dividuals (culture). Teller has previously shown
how genetic programming systems can be en-
hanced through the addition of memory mecha-
nisms for individual programs [Teller 1994]; in
this paper we show how Teller’s memory mech-
anism can be changed to allow for communica-
tion between individuals within and across gen-
erations. We show the effects of indexed mem-
ory and culture on the performance of a genetic
programming system on a symbolic regression
problem, on Koza’s Lawnmower problem, and on
Wumpus world agent problems. We show that
culture can reduce the computational effort re-
quired to solve all of these problems. We conclude
with a discussion of possible improvements to the
technique.

1 Culture and Evolution
In most evolutionary computation systems, individuals are
assessed for fitness independently. Each individual is placed
into an initialized environment, a fitness test is performed,
and the environment is then re-initialized for the next indi-
vidual. By contrast, in biological populations (and in many
Artificial Life systems; see, e.g., [Brooks and Maes 1994])
each individual acts in a shared environment that may bear
the marks of contemporaries and of predecessors. Some an-
imals use these marks to their advantage, and some intention-
ally modify the environment to communicate with others.
Modifications to the environment may be ephemeral (e.g.,
calls, spoken language) or long-lasting (e.g., nests, written
language). Through these mechanisms fitness-enhancing in-
formation may be transmitted to others, including offspring,
by non-genetic means.

We use the term “culture” to refer to any information
transmitted between individuals by non-genetic means. Our
definition is similar to that of Bonner, who describes his use
of the term as follows:

By culture I mean the transfer of information by be-
havioral means, most particularly by the process of
teaching and learning. It is used in a sense that con-
trasts with the transmission of genetic information
passed by the direct inheritance of genes from one
generation to the next. [Bonner 1980, p. 9]

Culture, in this sense, is employed by many animals other
than humans. Higher primates provide many examples, but
one can also argue that much simpler animals, even insects,
make significant use of culture [Bonner 1980].

One can view the evolution of a culture-using species as
a complex interaction between two processes, one genetic
and one cultural. Dawkins coined the term “meme” to serve
the function for cultural transmission that “gene” serves for
genetic transmission; that is, a meme is a unit of informa-
tion transmitted by behavioral means [Dawkins 1976]. The
interactions between cultural and genetic transmission, and
their combined effects on fitness and adaptation, have been
the subject of much discussion in evolutionary biology. For
our purposes we may simply note that the difference in mode
of transmission leads to a significant difference in the speed
with which a new piece of information may spread through
a population. Again, quoting Bonner:

If, for instance, a favorable genetic mutation appears
in one individual, even with reasonable positive se-
lection pressures, it will take many life cycles and
perhaps hundreds of years for the new gene to be
present in an appreciable number of individuals in the
population. It is only in some lethal circumstances
that the genetic structure of a population can change
rapidly.

... On the other hand a cultural change can be exceed-
ingly rapid. A new fad or dress style may take over
a whole nation in a matter of days or weeks. [p. 18]



The difference in speed of transmission leads to a com-
plementary difference in stability; the gene pool is less vul-
nerable to sudden dangerous fluctuations than is the meme
pool. As a result one can expect that a combination of the
two transmission modes will be most beneficial for the evo-
lution of certain complex systems.

Several researchers have previously experimented with
cultural elements in evolutionary computation systems. For
example, Bankes has explored “meme-based” adaptive sys-
tems in multiplayer games, although the bulk of this work
is concerned with the evolution of memes within individu-
als [Bankes 1995]. Reynolds has developed a framework
of dual inheritance “cultural algorithms” in which a “be-
lief space,” containing generalizations of the representations
of individuals, helps to guide the evolution of a population
[Reynolds 1994]. Others have explored related ideas in a
range of evolutionary computation contexts (e.g., [Hutchins
and Hazlehurst 1993]).

In contrast to previous research, this paper describes a cul-
tural mechanism that is a straightforward extension of the
memory mechanisms used by individuals. The same mecha-
nisms that are used by individuals to build and maintain state
information are extended to allow for the communication of
information between individuals within and across genera-
tions. The virtues of this scheme include simplicity, a bet-
ter match to biological notions of culture, and a demonstra-
ble positive impact on the speed of evolution for several test
problems.

The remainder of this paper is organized as follows: after a
brief digression on performance in genetic programming we
describe a simple technique for adding cultural transmission
to genetic programming systems. We then show how the ad-
dition of culture can reduce the computational effort required
to produce solutions for symbolic regression, Lawnmower,
and Wumpus world problems. We conclude with a discus-
sion of possible improvements to the technique.

2 Genetic Programming and
Performance

Genetic programming is a technique for the automatic gen-
eration of computer programs by means of natural selection
[Koza 1992]. The genetic programming process starts by
creating a large initial population of programs that are ran-
dom combinations of elements from problem-specific func-
tion and terminal sets. Each program in the initial population
is then assessed for fitness, and the fitness values are used
in producing the next generation of programs via a variety
of genetic operations including reproduction, crossover, and
mutation. After a preestablished number of generations, or
after the fitness improves to some preestablished level, the
best-of-run individual is designated as the result and is pro-
duced as the output from the genetic programming system.

The impact of alternative approaches to genetic program-

ming can only be assessed by measuring performance over a
large number of runs. This is because the algorithm includes
random choices at several steps; in any particular run the ef-
fects of the random choices may obscure the effects of the
alternative approaches.

To analyze the performance of a genetic programming
system over a large number of runs one can first calculate
P(M,i), the cumulative probability of success by generation
i using a population of size M. For each generation i this is
simply the total number of runs that succeeded on or before
the ith generation, divided by the total number of runs con-
ducted. Given P(M,i) one can calculate I(M,i,z), the number
of individuals that must be processed to produce a solution
by generation i with probability greater than z.1 I(M,i,z) can
be calculated using the following formula:

I(M; i; z) = M � (i+ 1) �

�
log(1� z)

log(1� P (M; i))

�

Koza defines the minimum of I(M,i,z) as the “computa-
tional effort” required to solve the problem with the given
system.2

3 Memory and Culture in Genetic
Programming

Teller has developed a simple mechanism that allows pro-
grams produced by genetic programming to make use of
memory. The mechanism, called indexed memory, consists
of a linear array of memory locations and two functions,
READ and WRITE, that are added to the function set. The
memory is initialized (e.g., to 0) at the start of each fitness
case. READ takes a single argument and returns the contents
of the memory location indexed by that argument. WRITE
takes two arguments, a memory index and a data item, and
stores the data item in the memory at the specified index.
WRITE returns the previous value of the specified memory
location. Teller showed that indexed memory can help to
evolve correct programs for certain problems, and that the
combination of indexed memory and iteration allows genetic
programming to produce any Turing-computable function
[Teller 1994]. Others have further examined the utility of in-
dexed memory; for example, Andre has experimented with
problems that require the use of memory, and has explored
the ways in which evolved programs use indexed memory in
solving these problems [Andre 1995].

We implement “culture” through a simple modification
to Teller’s indexed memory: all individuals share the same
memory, and it is initialized only at the start of a genetic pro-
gramming run. This means that the contents of memory at
the end of one fitness evaluation are available for use in the

1For the analyses in this paper a value of z=99% is always used.
2The P(M,i) and I(M,i,z) measures were developed by Koza and are dis-

cussed on pages 99 through 103 of [Koza 1994].



next fitness evaluation. If individual programs are subjected
to multiple fitness cases, an individual program can use this
mechanism to pass information to itself from one fitness case
to the next. In any event, programs that are evaluated later
may use information left in memory by those that were eval-
uated earlier. A program may pass information to itself (in
later fitness cases), to its contemporaries, to its offspring, and
to unrelated members of future generations. The order in
which the population is evaluated for fitness can clearly have
an effect; we randomize evaluation order within each gener-
ation to prevent systematic exploitation of this effect.

Note that the culture is the collective product of all indi-
viduals throughout evolutionary time. On the positive side,
this means that a “good idea” developed by any individual
in any population may be preserved for use by all other indi-
viduals. On the negative side, this means that one destructive
individual can destroy a great deal of valuable information.
For most of the problems that we have studied so far, the pos-
itives outweigh the negatives—the availability of a culture
speeds evolution. One avenue for future work, however, is
to minimize the effects that destructive individuals can have
on the culture (see below).

A program evolved with culture may function correctly
only when run with a particular initial memory state. The
initial memory state is therefore an intrinsic part of the pro-
gram, and the genetic programming system should report the
appropriate initial memory state along with the best-of-run
program. If one later wishes to run such a program outside
of the context of the evolutionary process, one should first
re-initialize the cultural memory with the reported memory
state.

4 Symbolic Regression

To assess the utility of cultural transmission we ran the lil-
gp genetic programming system [Zongker 1995] on a sym-
bolic regression problem. We compared the performance of
the system on versions of the problem in which the programs
had access to no memory, to ordinary indexed memory, and
to culture.

The goal of the symbolic regression problem, as described
in [Koza 1992], is to produce a function that fits a provided
set of data points. For each element of a set of (x, y) points,
the program should return the correct y value when provided
with the x value. For our experiments we obtained our data
points from the equation y = x4 + x3 + x2 + x. One can
view the task of the genetic programming system as that of
“rediscovering” this formula from the data points used as fit-
ness cases. We used 20 fitness cases, with randomly selected
x values between -1 and 1. A program was considered to be
successful if it returned a value within 0.01 of the target value
for all 20 cases.

For our experiments we used a function set consisting
of the two-argument addition function +, the two-argument

subtraction function -, the two-argument multiplication
function *, the two-argument protected division function %,
two one-argument trigonometric functions SIN and COS,
the one-argument exponential function EXP, and the one-
argument protected logarithm function RLOG (as in [Koza
1992]). We used a single terminal for the independent vari-
able X, and ephemeral random constants between -1 and 1
(also as in [Koza 1992]). We used tournament selection
(tournament size = 5), a 90% crossover rate, a 10% repro-
duction rate, no mutation, a population size of 1000, and a
maximum of 51 generations per run.

For the runs with indexed-memory and with culture we
added a 100-element memory array and READ and WRITE
functions that behave as described above. We mapped the
“index” arguments of these functions to the proper range ([0–
99]) by multiplying them by 100 and by then taking them
modulo 100.

We performed 100 runs with no memory, 100 runs with
indexed memory, and 100 runs with culture. The results can
be summarized as follows:

Condition Computational Effort
No memory 899,000
Memory 1,131,000
Culture 551,000

These results show that the addition of an ordinary in-
dexed memory increases the computational effort required
to solve the regression problem. Presumably this is because
the search space includes many programs that compute the
desired function (y = x4 + x3 + x2 + x) without using
memory. One might additionally conjecture that the unhelp-
ful functions READ and WRITE act as noise in the function
set, contributing little to success while filling positions that
could instead be filled with useful functions. Nevertheless,
when the memory is preserved between fitness evaluations
as culture, the system is able to take advantage of this, and
the computational effort is reduced to 61% of that required
when no memory is available.

5 The Lawnmower Problem
Similar results were obtained for Koza’s 64-square Lawn-
mower problem [Koza 1994]. The goal in the Lawnmower
problem is to find a program for controlling the movement
of an autonomous lawnmower on an 8-by-8 torroidal world.
All values manipulated by functions for this problem are vec-
tors of integers modulo 8 of the form (i; j), where 0 �

i; j � 7. The terminal set consists of the 0-argument func-
tion (MOW), the 0-argument function (LEFT), and ran-
dom vector constants modulo 8 (<v8). (MOW) moves the
lawnmower in the direction it is currently facing, mows the
lawn at the new location, and returns the vector value (0,0).



(LEFT) turns the lawnmower 90� to the left and returns
the vector value (0,0). The function set consists of the op-
erators V8A, FROG, and PROGN. V8A is a 2-argument vec-
tor addition function that adds vector components modulo
8. FROG is a 1-argument movement operator that jumps the
lawnmower to the coordinate produced by adding (modulo
8) its vector argument to the lawnmower’s current location.
FROG acts as the identity operator on its argument. PROGN
is a 2-argument sequencing operator that returns the value of
its second argument.

For the runs with indexed-memory and with culture we
added a 2-dimensional, vector-indexed, 64-element (8-by-
8) memory array along with appropriate READ and WRITE
functions.

We performed 100 runs with no memory, 100 runs with
indexed memory, and 100 runs with culture. In all cases
we used a population size of 500, two automatically-defined
functions (as in [Koza 1994]), and a maximum of 51 gener-
ations. The results can be summarized as follows:

Condition Computational Effort
No memory 12,000
Memory 16,000
Culture 10,000

These results show the same pattern as the results for sym-
bolic regression, although the effect is less extreme. Again,
memory by itself slows evolution, but evolution proceeds
most quickly with culture.

6 Wumpus World
Wumpus world [Russell and Norvig 1995] is a problem en-
vironment that is more complex than those described above
in several interesting ways. The use of genetic program-
ming for the evolution of Wumpus world agents has been de-
scribed elsewhere [Spector 1996]. In this section we present
only an informal description of the problem and the results
of our culture experiments. See [Spector 1996] for more in-
formation on the Wumpus world simulator, the function and
terminal sets, and other parameters.

Wumpus world is cave represented as a grid of squares
surrounded by walls. The agent’s task is to start in a particu-
lar square, to move through the world to find and to pick up
the piece of gold, to return to the start square, and to climb
out of the cave. The cave is also inhabited by a “wumpus” —
a beast that will eat anyone who enters its square. The wum-
pus produces a stench that can be perceived by the agent from
adjacent (but not diagonal) squares. The agent has a single
arrow that can be used to kill the wumpus. When hit by the
arrow the wumpus screams; this can be heard anywhere in
the cave. The wumpus still produces a stench when dead,
but it is harmless. The cave also contains bottomless pits that

will trap unwary agents. Pits produce breezes that can be felt
in adjacent (but not diagonal) squares. The agent perceives
a bump when it walks into a wall, and a glitter when it is in
the same square as the gold.

The wumpus world agent can perform only the following
actions in the world: go forward one square; turn left 90�;
turn right 90�; grab an object (e.g., the gold) if it is in the
same square as the agent; release a grabbed object; shoot the
arrow in the direction in which the agent is facing; climb out
of the cave if the agent is in the start square.

The agent’s program is invoked to produce a single action
for each time-step of the simulation. The program returns
one of the valid actions and the simulator then causes that ac-
tion, and any secondary effects, to happen in the world. The
agent can maintain information between actions by use of a
persistent memory system. The agent’s program has a single
parameter, a “percept” that encodes all of the sensory infor-
mation available to the agent. The agent’s program can refer
to the components of the percept arbitrarily many times dur-
ing its execution; that is, sensing is free.

Agents are assessed on the basis of performance in four
randomly generated worlds. Four new random worlds are
generated for each fitness evaluation; this helps to prevent
the production of agents that are overfitted to a particular set
of worlds. In each world the agent is allowed to perform a
maximum of 50 actions, and the agent’s score is determined
as follows: 100 points are awarded for obtaining the gold,
there is a 1-point penalty for each action taken, and there
is a 100-point penalty for each unit of distance between the
agent and the gold at the end of the run. “Standardized fit-
ness” values (for which lower values are better [Koza 1992])
are the average of the scores from the four random worlds,
subtracted from 100. Agents are not explicitly rewarded for
climbing out of the cave, although less action penalties are
accumulated if an agent climbs out and thereby ends the sim-
ulation. An agent is considered to have solved the problem if
its average score in four random worlds is greater than zero.
To have obtained such a score an agent must have grabbed
the gold in at least one and usually two or more of the four
random worlds. This may be difficult; in many cases it is
necessary to risk death in order to navigate to the gold, and
in some cases the gold may be unobtainable because it is in
a pit or in a square surrounded by pits.

1709 runs of the lil-gp genetic programming system were
performed on the wumpus world problem, 400 without
memory, 509 with ordinary indexed memory, and 800 with
culture.3 A C-language re-implementation of Russell and
Norvig’s wumpus world simulator was used for fitness eval-
uation. The population size was 1,000 and the maximum
number of generations per run was 21. Tournament selec-

3Note that computational effort comparisons are indeed valid between
sets of different numbers of runs. For these computationally expensive runs
we started processes on several machines and stopped them when it was
clear that we had obtained sufficient data; the exact numbers of runs are
therefore arbitrary.



tion was used with a tournament size of 7. The results can
be summarized as follows:

Condition Computational Effort
No memory 1,710,000
Memory 2,100,000
Culture 1,386,000

These results show that when culture is used the com-
putational effort required to produce a successful agent for
this version of Wumpus world is reduced to 66% of that
required when ordinary indexed memory is used. They
also show, surprisingly, that indexed memory once again in-
creases computational effort over the “no memory” condi-
tion. It appears that the reactive strategies are at least as use-
ful as knowledge-based strategies for this domain.

The version of Wumpus world used in this experiment dif-
fers from that used in previous work [Spector 1996]; while
re-implementing the system in C we made other changes as
well. In particular, the new version operates on a true 6-by-6
world. In the old version the world’s “walls” occupied space
so the actual playing area in a “6-by-6” world was only 4-
by-4. In addition, the old version charged an agent an ex-
plicit 100-point penalty for dying. In the new version the
only penalty for death is implicit—after one dies one can no
longer get closer to the gold or pick it up.

Wumpus world can be varied in many other ways as well,
and the relative utility of memory and culture may differ in
each of these variants. We are currently conducting experi-
ments with several variants and it is clear from the prelim-
inary results that culture is not always beneficial in Wum-
pus world. In particular, for a configuration similar to that of
[Spector 1996] it appears that ordinary indexed memory is
best, followed by culture. Further experiments and analysis
will be required to discover the reasons for culture’s utility
in various circumstances.

7 Discussion and Future Work
It is clear from the reported experiments that culture can
have a significant beneficial impact on computational effort
for certain problems. Fortunately, it is easy to add culture
to other genetic programming applications: one simply in-
cludes an indexed memory that is shared between all fitness
evaluations, and arranges for the appropriate memory state to
be returned along with the best-of-run program. If the target
application already includes an indexed memory, then sim-
ply by sharing this memory between all fitness evaluations
the computational effort required to produce a correct pro-
gram may be decreased. If the application does not already
include an indexed memory, then a shared indexed memory
can usually be added with little difficulty.

Although we have examined memory and culture as al-
ternatives in this paper, there is no reason why they can’t

be combined. By providing two versions of the READ and
WRITE functions, one each for ordinary indexed memory
and one each for culture, one can give evolving programs ac-
cess to both mechanisms; for some problems, this may pro-
vide the maximum benefit.

Another avenue for future work is to minimize the effects
that destructive individuals can have on the culture. One way
to do this would be to have each fitness test occur using a
copy of the culture in a local memory. The changes to the
memory could then be transferred to the culture in a fitness-
proportionate way — the greater the fitness of an individ-
ual, the greater its impacts on the culture. Unfortunately, it
may be the case that low-fitness individuals nonetheless con-
tribute to the culture in important ways; fitness-proportionate
impact on the culture would prevent the population from
benefiting from these contributions. An alternative scheme
for minimizing the effects of destructive individuals would
be to use many sub-populations, each of which has its own
sub-culture, and to periodically merge sub-populations and
sub-cultures. Many variations on this theme exist, and many
may be worthy of further exploration.

The possibility also exists that some destructive individu-
als may be highly fit. Some such individuals may in fact be
using destruction to maintain an advantage over others in the
population; they could make use of information in the culture
and then destroy it so that it would not be available to others.4

In order to detect this sort of activity one could collect infor-
mation about access to the culture by individuals of various
fitness levels throughout a run. Such information, combined
with genealogical audit trails [Koza 1992], would also per-
mit one to explore broader questions about how and why in-
dividuals make use of culture.

While culture has been useful in most of the domains to
which we have applied it, further work must be conducted
to characterize the relationship between domain characteris-
tics and the expected impact of the technique. Here again we
may gain insights from biological examples; not all animals
use culture, and there are presumably many niches in which
culture confers no adaptive advantage. On the other hand,
culture appears to be extremely useful in certain situations
(e.g., for humans), and we may expect correspondingly large
impacts in certain genetic programming domains.

8 Conclusions
Culture, the transmission of information between individuals
by non-genetic means, can in some cases improve the perfor-
mance of a genetic programming system. This paper showed
how culture can be implemented as a simple modification
of Teller’s indexed memory mechanism. The paper demon-
strated that culture can improve the performance of a genetic
programming system for three problems: symbolic regres-
sion of y = x4 + x3 + x2 + x, the 64-square Lawnmower

4Frank D. Francone drew this possibility to our attention.



problem, and a version of Wumpus world. Further research
should examine the effects that destructive individuals may
have on a shared culture, delineate the cases in which culture
is helpful, and examine the ways in which culture is actually
employed by successful individuals.
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