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ABSTRACT
We present a new framework for artificial life involving phys-
ically simulated, three-dimensional blocks called Division
Blocks. Division Blocks can grow and shrink, divide and
form joints, exert forces on joints, and exchange resources.
They are controlled by recurrent neural networks that evolve,
along with the blocks, by natural selection. Division Blocks
are simulated in an environment in which energy is approxi-
mately conserved, and in which all energy derives ultimately
from a simulated sun via photosynthesis. In this paper we
describe our implementation of Division Blocks and some
of the ways that it can support experiments on the open-
ended evolution of development, form, and behavior. We
also present preliminary data from simulations, demonstrat-
ing the reliable emergence of cooperative resource transac-
tions.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems; I.2.6 [Artificial Intelligence]:
Learning—Connectionism and neural nets; J.3 [Life and
Medical Sciences]: Biology and genetics

General Terms
Experimentation

Keywords
Division Blocks, breve, artificial life, open-ended evolution,
morphology, development, recurrent networks

1. INTRODUCTION
In 1994 Karl Sims used evolutionary computation to pro-

duce virtual creatures, composed of rectangular blocks con-
nected together by joints, that inhabited three-dimensional
virtual worlds with simulated physics [18]. He also produced
striking animations of these creatures performing a range of
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behaviors including swimming, walking, jumping, and fol-
lowing. Both the morphologies (body forms) and the neural
networks that controlled them were evolved using a genetic
algorithm that measured fitness relative to a desired behav-
ior.

The project described in this paper can be thought of
as an attempt to extend Sims’s idea to a considerably more
open-ended evolutionary and ecological context. Our goal in
doing this is to allow for the exploration, in silico, of some of
the key interactions between development, form, physics, be-
havior (including reproductive behavior), and ecology that
underpin biological evolution. We are particularly interested
in exploring the ways in which these factors interact, under
natural selection, to produce adaptive complexity.

In the framework described here we provide no explicit
behavioral fitness test. This is because the blocks that
constitute our virtual creatures live or die on the basis of
their acquisition and management of energy within a com-
plex ecology. Neither do we manage reproduction and varia-
tion explicitly (as one usually does with genetic algorithms),
since our blocks reproduce or fail to do so by means of
evolved behaviors and using evolved mutation and recom-
bination parameters. In contrast to Sims’s creatures, which
were created as adults and tested for fitness within con-
trolled environments, our creatures (blocks or collections
of blocks) must develop within their dynamic environments
from “birth” to the point at which they can reproduce. And
as in biology, it is sometimes unclear what should count as a
single individual, or what should constitute “reproduction,”
within our system. This is because the connectivity of our
blocks is determined by the behaviors of the blocks them-
selves, and because groups of blocks may sometimes form
structures that are best described as collectives or as multi-
cellular organisms.

Our goal is to provide an environment in which devel-
opment, form, and behavior (including reproductive behav-
ior) can all co-evolve in relatively open-ended ways within a
simulated three-dimensional physical world. To do this we
started with a physical model inspired by Sims but we then
augmented it in several ways to support developmental pro-
cesses and ecological interactions. Our enhanced blocks have
an expanded behavioral repertoire and they are controlled
by loosely constrained (evolved) recurrent neural networks
that are capable of producing a wide range of developmental
processes, morphologies, and ecological strategies.

The primitive elements of our framework, which we call
Division Blocks, combine features of biological systems that
are normally observed at different scales; some are normally



found at the cellular level, some are more characteristic of
organ systems, some resemble features of colonies of mi-
croorganisms, while others resemble features of large ani-
mals with complex bodies. This mixing of scales, like the
mixing of scales in Sims’s creatures, can produce results that
appear strange from a biological perspective, but it is justi-
fied by considerations of computational tractability. We seek
an environment rich in developmental and ecological poten-
tial that is nonetheless sufficiently tractable to permit ex-
periments on reasonably large populations over meaningful
stretches of evolutionary time. We believe that our hybrid-
scale framework achieves this combination and we believe
that this combination, in the context of a physically sim-
ulated three-dimensional world, will permit explorations of
open-ended evolution that cannot be conducted with previ-
ously developed technologies.

Several other projects have explored broadly open-ended
evolution within artificial life systems but not, as far as we
are aware, within a three-dimensional physical simulation
environment of the sort described here. In systems such as
Tierra [14], Avida [1], Echo [7] and Pushpop [20] individuals
evolve in open-ended ways, managing, to some extent, their
own ecological strategies and reproductive behaviors. But
all of these systems “inhabit” abstract computational spaces
rather than simulated three-dimensional physical environ-
ments. If the three-dimensional nature of space or the laws
of physics put important constraints on biological evolution
— and there is ample evidence that they do [13] — then we
will learn more about evolution from artificial life systems
that situate their virtual life forms within three-dimensional
worlds that obey the laws of physics (in simulation or in the
physical world).

Several other projects have also explored evolution within
three-dimensional physical simulations, although generally
with specific evolutionary goals and using highly engineered
genetic algorithms or genetic programming systems. These
projects have produced a variety of remarkable artifacts in-
cluding robots with novel designs and means of locomotion
[10, 11], structures held together by tensegrity forces [12],
and even Lego block constructions [5]. Several researchers
have also replicated Sims’s work more directly [23], with
some building systems, like Framsticks [9], intended to ex-
tend and generalize Sims’s approach in a variety of ways.
Bongard and Pfeifer, in their Artificial Ontogeny system [3],
extended Sims’s approach by adding a division-by-growth
scheme similar to that described here, and by incorporating
a developmental phase into their genetic algorithm.1 But in
their system individuals were evaluated in isolation, assessed
relative to a pre-determined goal, and reproduced and varied
according to fixed, global procedures and parameters.

One project that did couple open-ended behavioral and
ecological evolution with three-dimensional simulation was
the SwarmEvolve 2 project of Spector et. al [21]. But
while the evolving agents in this system inhabited a three-
dimensional world, they also had predetermined simple body
forms (cones) so there was no possibility for the evolution of
physical morphology or development. Furthermore, this sys-
tem involved little physics (no gravity or elastic collisions),

1Their scheme used spherical units that divided into pairs of
smaller spheres. Spheres can be simulated more efficiently
than blocks but their “division” into pairs of spheres does
not conserve volume and it would create physical disconti-
nuities in full ecological simulations.

Figure 1: A schematic view of two Division Blocks,
illustrating some of their features and components:
variable size, joints formed during block division,
photosynthetic skin, identifying tags, repositories of
energy and waste, and recurrent neural networks
that couple sensors to effectors.

so few of the constraints provided by the physical world were
available to guide evolution.

Other systems have combined computational evolution
and development in various ways, for example by evolving
plant growth patterns to maximize sunlight exposure within
a simulated plant ecology under a simulated sun [8], or by
combining evolutionary algorithms and developmental pro-
cesses to evolve “buildable” three-dimensional objects [15].
But as far as we know none of the prior work has integrated
development into the open-ended evolution of form and be-
havior (including reproductive behavior) in complete virtual
ecologies.

Why is it important that we do so? One reason is that
changes in individual development are increasingly coming
to be seen as critical components of evolutionary processes
in general [6, 17]. Furthermore, evolutionary transitions to
greater complexity seem to be linked to changes in modes
of aggregation and reproduction [4, 19]. The lesson for ar-
tificial life may be that our artificial life forms will exhibit
life-like evolutionary processes only when they also exhibit
life-like developmental processes.

Another reason is that an artificial life system must in-
corporate endogenous reproduction and development, and
reproduction and development must to some extent be un-
der genetic control, if that system is to serve as a model
of open-ended evolution in a complete ecosystem. Systems
like Tierra and Avida provide such models but only in ab-
stract one- and two-dimensional spaces. Division Blocks can
provide models with similar properties in three-dimensional
physical worlds.

In the following section we describe the principal elements
of the Division Blocks framework and of our current imple-
mentation. We then present data from preliminary runs,
demonstrating the reliable emergence of cooperative resource
transactions. Finally, we discuss potential enhancements
and additional questions about interactions between devel-
opment, form, and behavior that might be explored with the
aid of the system.



Figure 2: A snapshot of Division Blocks in a world consisting of square islands in a square ocean. A mid-range
view of a portion of the world is shown in the main image and a birds-eye view of the entire world (islands
and ocean) is shown in the lower left corner. In the foreground one can see blocks dying from contact with
the ocean, producing expanding white block-shaped clouds of waste residue.

2. DIVISION BLOCKS
The primitive components of our virtual life forms are

rectangular blocks that can grow and shrink, divide, exert
forces on joints resulting from division, and conduct energy
and waste transactions with other nearby blocks. They have
photosynthetic skin and they may obtain energy not only
from neighbors but also directly from the sun, which cir-
cumnavigates the world producing cycles of day and night.
Energy is consumed by block “metabolism” (a tax on the
maintenance of each cubic unit of body volume for each
unit of time) and by other actions (e.g. the application
of joint forces) and events (e.g. collisions). Our system
of energy flow approximates biological metabolic processes
only very roughly, but within this system energy is con-
served and the sun ultimately provides all of the energy on
which life depends. A system of “waste” flow is also mod-
eled: metabolism produces waste as a byproduct, and ac-
cumulated waste increases the energetic cost of metabolism.
Waste can be transferred among neighbors (as can energy),
and it is dissipated in block-shaped clouds when blocks die
(briefly blocking sunlight in the local area).

Figure 1 shows a schematic view of two connected Division
Blocks, illustrating some of their most important functional
components (which are described in greater detail in the
following paragraphs). Figures 2 and 3 show snapshots of
our system during a run. Color versions of these images,
along with movies and source code for our software, can be
found at the website associated with this paper.2

When a block divides, the two blocks into which it splits
remain connected by a joint on the new faces created by
the split. Forces can be applied to the joint, moving it and

2http://hampshire.edu/lspector/db-gecco-2007

potentially breaking it — the threshold for breaking is under
the control of the blocks. In addition, energy and waste
can be passed through the joint (again, under the control
of the connected blocks). In our current implementation
the blocks resulting from a division event remain connected
by a ball joint that is located on the corner of the division
plane closest to the sun at the time of division, although
many alternatives are possible both for the types of joint
(e.g. they might be hinges or prismatic joints) and for their
placement (e.g. they might be in the centers of the faces
or in locations specified by the dividing blocks themselves).
We have also considered joints that are added dynamically
upon block contact (rather than by division; this would also
be under the control of the involved blocks), but the system
described here uses only joints produced by division.

There are also potential alternatives for the conditions
under which blocks will divide. For example, block division
could be entirely under the control of the blocks, permitting
division at any time and in any dimension. It would proba-
bly be necessary to disallow splits that would produce edge
lengths below some pre-specified minimum, since otherwise
the system might produce huge numbers of extremely small
blocks, presenting difficulties both for physical simulation
and for visualization. This and other schemes deserve ex-
ploration, but in our current implementation we have opted
for a simpler size-based division scheme that was inspired by
the behavior of some kinds of biological cells: when any di-
mension of a block exceeds a certain pre-specified maximum
then the block divides along that dimension (producing a
joint on the corner of the division plane closest to the sun).

When a single, un-jointed block divides, the new joint
is designated as the “stem joint” of both of the new child
blocks that are produced. When a block that already has a



Figure 3: A snapshot of Division Blocks taken slightly later in the same run that produced Figure 2. This
snapshot shows a close-up view of a portion of the world in the main image and a birds-eye view of the
entire world (islands and ocean) in the lower left corner. The ghostly, translucent block in the center is the
dissipating residue of waste from a block that recently died; we can see through it, but it is opaque to the
simulated light that drives photosynthesis.

stem joint divides the designated stem joint of one child (the
one still connected to the existing stem) will be the existing
stem, while the designated stem joint of the other child will
be the new joint that is formed by the division. This system
of stem designation permits the expression of asymmetric
sensing and action strategies, since block sensors and effec-
tors (described in detail below) generally come in pairs, one
for stem connections and one for non-stem connections.

Most ecological transactions between blocks are mediated
by a block-recognition scheme based on “tags” [7, 16]. Each
block has a dynamically modifiable tag, which is just a float-
ing point number, and dynamically changeable tolerances
(also floating point numbers) for various kinds of transac-
tions. In general the transaction will be permitted by a
particular block if the difference between the tags of the two
participants is less than the relevant tolerance of the block
in question. Tags and tolerances, all under the control of
the blocks, mediate energy transfers, waste transfers, and
sexual recombination (although in the case of recombina-
tion each block specifies a “mate tag” that is independent of
its main tag, permitting strategies based on out-breeding).
Transactions are generally consensual in the sense that it
is up to each block (expressed via tag and tolerance val-
ues) whether or not it will donate energy or accept waste
in any interaction. The sizes of energy donations and waste
collections are also under the control of the participating
blocks — the amount transferred is the average of the sizes
specified by the two participating blocks. Transactions may
happen (stochastically) at each joint in each time step of the
simulation, and they may also happen upon each collision.

Each block also contains a sine-wave “pulse” oscillator,
the frequency of which is controlled by the block, that can

be incorporated into the control strategy of the block in a
wide variety of ways. This is similar to the “oscillate-wave”
nodes in Sims’s system, which also provided a saw-tooth
oscillator and a variety of other high-level signal processing
components that might be incorporated into future Division
Blocks systems [18].

The control system of each block is a recurrent neural net-
work with nodes for each sensor input, each effector output,
and some fixed number of “hidden” nodes. We used ten
hidden nodes in the experiments presented below. The ac-
tivation values of nodes range from −1 to 1. The structure
of the neural network is expressed as a matrix of connection
strengths that are also real numbers between −1 and 1.3

At each time step each node produces its next activation
value (and output) by summing its inputs (the activations
of all other nodes weighted by their connection strengths),
passing the sum through a sigmoid activation function, and
then calculating a weighted average of the resulting value
and the node’s previous activation. The weighted averaging
smoothes the transitions of activation values in the network,
providing a sort of activation “persistence”; we currently
weight the new value at 25% and the prior value at 75%.4

The steepness of the sigmoid activation function is itself un-
der the control of the block, via the formula:

3We provide an option to prohibit direct connections from
inputs to outputs, requiring that such connections be me-
diated by hidden nodes. This is done by ensuring that the
strengths for direct connections always have a value of zero.
In the experiments presented here, however, we did not use
this option, so any recurrent architecture was permissible.
4A similar mechanism, called “inertia,” is used in the neural
networks that control Framsticks [9].



Table 1: Sensors available to each Division Block. All values are scaled to [−1, 1] if necessary.
Sensor Description

zero, plus, minus Always provides a value of zero, +1, or −1.
energy The energy reserves of this block.
waste The amount of waste accumulated in this block.

exposure The amount of sunlight incident on this block.
pulse The current state of this block’s sine wave oscillator.

rotx, roty, rotz The x, y, and z components of this block’s rotation relative to the world coordinate frame.
localtag The average tag value of blocks in this block’s neighborhood.

localenergy The average energy level of blocks in this block’s neighborhood.
localwaste The average amount of waste in blocks in this block’s neighborhood.

connectedtag The average tag of blocks joined to this block by non-stem joints.
connectedenergy The average energy of blocks joined to this block by non-stem joints.
connectedwaste The average waste of blocks joined to this block by non-stem joints.

stemtag The tag of the block joined to this block via the stem joint (if any; otherwise 0).
stemenergy The energy of the block joined to this block via the stem joint (if any; otherwise −1).
stemwaste The waste of the block joined to this block via the stem joint (if any; otherwise −1).

σ(s) =
2

1 + e−cs
− 1.

The variable s here is the weighted sum of the node’s
inputs, while c is a compression (steepness) factor obtained
from sigmoidcompression (one of the network’s effector out-
puts, which can range from −1 to 1) and a pre-specified min-
imum and maximum (currently min = 0.1 and max = 100)
by the formula:

c = min +

„
sigmoidcompression + 1

2
× (max−min)

«
In general the new states of a block’s effector nodes will

influence its behavior immediately, although in the case of
the effectors controlling physical size we found it necessary
to provide additional limits on rates of growth (currently
limited to a scaling of 101% per time step) and shrinkage
(currently limited to a scaling of 99% per time step) to pre-
vent radical physical dislocations. This seems reasonable
because the mere “willing” of a size change by a block’s
neural network should not be expected to produce the full
size change in a single moment; objects in the simulated
world, as in the physical world, can only respond gradually.
Our system also allows one to charge metabolic costs for size
changes, although in the experiments presented below we do
not do so.5

When a block divides, each new child receives a possibly-
modified version of the neural network from the now-divided
parent. The possible sources of modification are mutation
and sexual recombination. In mutation, which occurs for
each child block for each division, each element of the neu-
ral network’s connection strength matrix may be perturbed,
with a probability derived from a copyfidelity effector out-
put of the parent. The size of the perturbation, if it oc-
curs, is limited by a mutationlimit effector output of the
parent. In other words, the parent can control both the
probability that each connection strength will be mutated
at all and the maximum size of such perturbations. The
actual copy fidelity values and mutation limits used during

5Of course there is still a cost for size itself — the metabolic
charge for each unit of body volume — but we do not charge
separately for size changes in the experiments reported here.

inheritance are determined from the network outputs using
formulae similar to that for sigmoid compression (above),
with boundary conditions that permit highly accurate but
not perfect reproduction. In the experiments presented be-
low, copy fidelity could range from zero (meaning that every
connection strength would be perturbed) to 50, 000 (mean-
ing that only one in 50, 000 connection strengths would be
perturbed), and the mutation limit could range from 0.1
to 1.0. Interestingly, in our experiments to date we have
observed the evolution of replication that is reasonably ac-
curate but we almost never observe the emergence of the
maximal replication accuracy permitted by our boundary
conditions; intermediate levels of replication accuracy are
apparently adaptive.

New blocks formed by division are “born” with their ef-
fector nodes at default levels of activation (zero, which is
the middle of their range), but the activation values of the
hidden nodes of the child networks are inherited from the
parent network in an asymmetric way: one child (chosen in
an arbitrary but consistent way) inherits the activations of
the parent’s odd-numbered hidden nodes, while the other
child inherits the activations of the parent’s even-numbered
hidden nodes. Nodes that do not inherit values are set to
zero. This mechanism of asymmetric state inheritance per-
mits, at least in theory, strategies of differential develop-
ment that are independent of the sensory environments of
the child blocks. While we have not yet measured the ef-
fects of this mechanism we hope that it can support, in a
primitive way, essential elements of development that are
akin to the processes of biological cell differentiation during
embryogenesis.

The sensors available to each block, which are detailed in
Table 1, provide information not only about the block itself
but also about those to which it is connected and others
within a small neighborhood (for which we used a radius of
about four average block widths). The effectors available
to each block are detailed in Table 2. Some of the effector
values require scaling before application in the simulated
environment, as with the copyfidelity and mutationlimit

effectors described above; full details are available in the
source code at the website associated with this paper.

For the purpose of visualization we color the block skins
with patterns that can reveal up to seven internal state vari-



Table 2: Effectors available to each Division Block. All values are scaled from [−1, 1] to appropriate ranges if
necessary (see text).

Effector Description
sizex, sizey, sizez Target x, y, and z sizes for this block.

jointx, jointy, jointz x, y, and z components of the target joint position for non-stem joints.
stemx, stemy, stemz x, y, and z components of the target joint position for the stem joint (if any).

tag The tag of this block.
donationsize Size of energy donations that this block will make to non-stem others.

donationtolerance Maximum tag difference through which this block will donate energy to non-stem others.
stemdonationsize Size of energy donations that this block will make to its stem.

stemdonationtolerance Maximum tag difference through which this block will donate energy to its stem.
collectionsize Size of waste collections that this block will take from non-stem others.

collectiontolerance Maximum tag difference through which this block will collect waste from non-stem others.
stemcollectionsize Size of waste collections that this block will take from its stem.

stemcollectiontolerance Maximum tag difference through which this block will collect waste from its stem.
copyfidelity Probability that a neural network connection strength will be inherited without mutation.

mutationlimit Maximum size of mutations to neural network connection strengths during division.
matecontribution Probability that a connection strength will be taken from a neighbor rather than the parent.

matetag Preferred tag for recombination partner; neighbor with tag closest to this will be chosen.
adhesion Joint strength is the average adhesion value from the two joined blocks. If the forces on the

joint exceed this then the joint will break.
pulserate Frequency of this block’s sine wave oscillator.

sigmoidcompression Compression parameter to the sigmoid activation function used for this block.

ables. We use a dotted texture pattern and encode one
variable in the density of the dots and six variables in the
red, green, and blue color channels of the dot and of the
background field. In the experiments described here we dis-
played energy via dot density, with a dense pattern of small
dots indicating high energy, a sparse pattern of large dots
indicating low energy, and intermediate densities indicating
intermediate levels of energy. We used the red channel of
the dots to display light exposure, the green channel to dis-
play the (non-stem) waste collection tolerance, and the blue
channel to display the (non-stem) waste collection size. We
used the red channel of the background field to display level
of waste, the green channel to display (non-stem) energy do-
nation tolerance, and the blue channel to display (non-stem)
energy donation size.

The floor on which our blocks reside can be configured
in a variety of ways. For the experiments described here
we used a pattern of small square “island” floors of various
sizes, situated within a square “ocean” that cannot support
blocks; blocks touching the ocean are charged a large en-
ergy cost, and blocks landing on the ocean will sink into it
and be consumed. Islands limit the sizes of local populations
and seem to support richer patterns of diversity. Collections
of blocks can spread from island to island either by reach-
ing long “arms” of joined blocks from one to another or by
“flinging” blocks into the air (via strong joint forces that
break their joints) in ways that send them long distances.

At the beginning of a run we create new blocks in random
locations and with random neural networks, and the large
majority of these blocks fail to effectively manage their re-
sources, to grow, and to divide into child blocks that are
themselves viable. We therefore continue to pump random
blocks into the world until a self-sustaining, “reproductively
competent” population is produced. In the experiments de-
scribed below we set the threshold for reproductive compe-
tence to 250; whenever there were fewer than this number
of blocks new random blocks would be added to the world.

Note that energy is not conserved prior to reproductive com-
petence; we collected data and drew inferences from the be-
havior of the system only well after reproductive competence
had been established.

Our implementation includes additional features that can-
not be documented fully here, many of which are intended
to enhance ecological realism in ways that may influence the
emergence of adaptive complexity. For example we model a
local resource that is roughly analogous to air, associating
an energy cost with crowding. We also include mechanisms
to produce mountain-like barriers, to model catastrophic
events such as comet impacts and epidemics, and to link
mutation rates to sun exposure. We have described the sys-
tem’s most characteristic features here; for full details please
refer to the materials at the website associated with this pa-
per. Our implementation of Division Blocks runs within the
open source breve simulation environment.6

3. PRELIMINARY RESULTS
Experiments with Division Blocks produce large volumes

of data that can be used, in conjunction with the systematic
variation of parameters, to explore a variety of evolutionary
hypotheses. In this paper we present quantitative results
primarily as an illustration of the type of data that can be
obtained, and we do so only in the context of a single set
of system parameters (although we report on results from
many independent runs). Nonetheless, the data from this
set of runs exhibit some interesting features that may have
more general implications.

We conducted 40 independent runs of our implementation
using the parameter settings described above.7 We config-
ured the system to collect and print population-wide block
state data every 10 time steps, and we calculated statistics

6http://www.spiderland.org/breve
7Values of parameters not discussed explicitly above were
as specified in the source code available at the website asso-
ciated with this paper.



on the basis of the first data that was printed after 1000
time steps of reproductive competence (see above). The av-
erage age of blocks at the time of this reporting, averaged
over all 40 runs, was 39.1 time steps, so our data generally
reflect the state of the system from at least 25 generations
beyond the achievement of reproductive competence. The
average time step at time of reporting was 6911, meaning
that it took nearly 6000 time steps, on average, to achieve
reproductive competence. The average number of blocks at
the time of reporting was 392.

Figure 4 shows some of this data, displaying the cross-run
averages of the population-wide averages of seven variables
of interest. Error bars indicate the range of variation (one
standard deviation above and below) across the 40 runs.
The plot marked “A” displays the average tag values which,
as expected, are widely distributed with an average value,
across all runs, of about 0.0 (the center of the range). There
is no reason for any particular tag value to be more generally
adaptive than any other, so what we see here is a random
distribution across runs.8 Plot A therefore provides a stan-
dard to which other plots can be compared; any which differ
significantly from A probably reflect adaptations.

The plot marked “B” displays the average values of ef-
fectors that control energy donation: donationsize (on the
left) and donationtolerance (on the right). The relatively
high values for these variables indicate that most blocks, in
most runs, are donating energy in relatively large quantities
and without much discrimination. The relatively narrow
range of variation of these variables indicates that this co-
operative energy donation behavior emerges fairly reliably.
Why might this be the case? Possibly because donations
produce disparities that increase the chances that one mem-
ber of a pair of connected sibling blocks will survive to divide
again, or for other reasons that have been discussed in the
literature of the evolution of altruism (e.g. [16]); more re-
search will be required to sort this out.

The plot marked “C” displays stemdonationsize (on the
left) and stemdonationtolerance (on the right). The fact
that these values are lower than those for non-stem donation
indicate a tendency for blocks to adopt asymmetric donation
strategies, although the stinginess toward stem blocks is less
reliable than the altruism toward non-stems. Plot D displays
the average values of matecontribution, demonstrating a
strong and reliable tendency against sexual recombination,
at least at this stage of a run and with the parameters that
were used. Plot E displays the average value of adhesion,
indicating the high adaptive value of strong joints in the
system as it was configured.

One can speculate about adaptive explanations for each
of these results, but as with the energy donation results in
plot B a variety of explanations may be available and addi-
tional experiments would be required to draw firm conclu-
sions from plots C–E . The important point at this stage,
however, is that the Division Blocks system produces data
such as these that can be compared among differently pa-
rameterized runs; for example one might explore theories
about the adaptive benefits of recombination by changing
various parameters and by observing changes to plot D.

8Tag distributions within runs may not be random and they
may display complex dynamics involving drift, founder ef-
fects, adaptation, etc. But because no tag value has any
intrinsic meaning we would expect the tag values involved
in such dynamics to be distributed randomly across runs.

Figure 4: Averaged data from 40 runs of
the Division Blocks system, collected after 1000
time steps of reproductive competence. Er-
ror bars indicate ±1 standard deviation. A:
average tag values; B: average donationsize

(left) and donationtolerance (right); C: average
stemdonationsize (left) and stemdonationtolerance

(right); D: average matecontribution; E: average
adhesion.

4. DISCUSSION
There is much more that can be explored with Division

Blocks than we have been able to present here, even in the
context of the current implementation and even with a single
set of configuration parameters. For example it would be in-
teresting to track the variables shown in Figure 4, along with
other variables (including the numbers, sizes, and distribu-
tions of blocks, the other effector values in Table 2, etc.),
across long periods of evolutionary time. It would also be
interesting to analyze the behavior of the system relative
to measures of “evolutionary activity” that have been de-
scribed in the literature [2, 22]. Additional insights might be
gleaned from variation of environmental conditions and from
incorporation of extensions such as the ability to form new
joints when blocks collide. An extension that is currently
under development involves parallelizing the system by al-
lowing block transport between simulations that are running
asynchronously on many computers in a high-performance
cluster. Simulations with over one or two thousand blocks
become unmanageably slow on current desktop hardware,
but with cross-simulation block transport (occurring, for ex-
ample, at the edges of the simulated world) we should be
able to connect many machines to support simulations with
numbers of blocks that are bounded only by the amount of
available hardware.

The really intriguing possibilities for future work, how-
ever, concern ways in which Division Blocks might be used
to explore new questions about the relations between de-
velopment, form, and behavior in open-ended evolutionary
processes. For example, what environmental conditions are
required for the emergence of various kinds of morphological
or developmental complexity? What patterns of resource



sharing and flow — involving resources such as sunlight,
space, energy, and waste — accompany the emergence of
such complexity? Under what physical and ecological con-
ditions do collective activity and multicellularity emerge?

One more radical direction for future work concerns the
possibility of building truly physical (not simulated) Divi-
sion Blocks. This may be possible, in principle, because
the Division Blocks framework is grounded on the princi-
ple that energy is conserved. Of course, energy conserva-
tion is only crudely approximated in the current simulation,
and many features of the current Division Blocks frame-
work would present extreme engineering challenges for phys-
ical construction. Systems of self-organizing physical blocks
have recently been demonstrated, however [24], and it is pos-
sible that such systems could be enhanced to incorporate the
key features of the Division Blocks framework: growth, divi-
sion, and inheritance of behavior. Such developments are a
long way off at present, but their possibility may nonetheless
serve to guide continuing experiments in simulation.
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