
Fecundity and Selectivity in Evolutionary Computation

Lee Spector
Cognitive Science
Hampshire College

Amherst, MA 01002 USA
lspector@hampshire.edu

Thomas Helmuth
Computer Science

University of Massachusetts
Amherst, MA 01003 USA

thelmuth@cs.umass.edu

Kyle Harrington
Computer Science
Brandeis University

Waltham, MA 02453 USA
kyleh@brandeis.edu

ABSTRACT
The number of offspring produced by each parent—that
is, the fecundity of reproducing individuals—varies among
evolutionary computation methods and settings. In most
prior work fecundity has been tied directly to selectivity,
with higher selection pressure giving rise to higher fecun-
dity among individuals selected to reproduce. In nature,
however, there is a wider variety of strategies, with different
organisms producing different numbers of offspring under
the influence of a range of factors including not only selec-
tion pressure but also other factors such as environmental
stability and competition within a niche. In this work we
consider possible lessons that may be drawn from nature’s
approaches to these issues and applied to evolutionary com-
putation systems. In particular, we consider ways in which
fecundity can be dissociated from selectivity and situations
in which it may be beneficial to do so. We present a simple
modification to the standard evolutionary algorithm, called
decimation, that permits high fecundity in conjunction with
modest selection pressure and which could be used in vari-
ous forms of evolutionary computation. We also present a
simple example, showing that decimation can improve the
problem-solving performance of a genetic algorithm when
applied to a deceptive problem.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; I.2.2 [Artificial
Intelligence]: Automatic Programming—Program synthe-
sis

General Terms
Algorithms

Keywords
Selection, fecundity, truncation, decimation, Deb’s deceptive
problem

1. DECIMATION
Natural organisms exhibit a wide range of reproductive

strategies. Reproductive strategies vary in several different
ways, with one being that typical members of some species

Copyright is held by the author/owner(s).
GECCO’11, July 12–16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

produce large numbers of offspring while typical members of
other species produce relatively small numbers of offspring.
This is a difference in fecundity. Presumably these variations
in fecundity are adaptive, producing greater overall repro-
ductive success than alternatives would produce in the same
ecological circumstances. Variation of fecundity, and of re-
productive strategy more generally, is widely discussed in
the biological literature (e.g. [3]) but it has not yet received
the same attention in evolutionary computation. To the best
of our knowledge no major approaches in evolutionary com-
putation provide the kind of flexible decoupling of fecundity
and selectivity that nature permits. Most approaches couple
fecundity and selectivity explicitly, with configurations that
exert greater selection pressure leading to higher fecundity
and with low fecundity being an unavoidable by-product of
low selection pressure. We argue, both on the basis of bi-
ological evidence and on the basis of an experiment with a
deceptive problem from the evolutionary computation liter-
ature, that this is a limitation of evolutionary computation
that we should work to overcome.

Here we describe a simple modification to the standard
evolutionary algorithm called decimation.1 Decimation is a
step that occurs during each generation of an evolutionary
algorithm (EA) between fitness testing and reproduction. It
is used for survivor selection (known sometimes as replace-
ment), an aspect of an EA that is highlighted in some di-
alects of evolutionary computing but largely ignored in oth-
ers. Decimation performs survivor selection by discarding
all parents and then substantially decreasing the size of the
offspring population from which new parents will be chosen.
Because the pool of potential parents is significantly smaller
than the pool of created offspring, the surviving individuals
will likely each produce multiple offspring. The reduction of
the population is performed in a way that favors high fitness
individuals but does not rule out the survival of some rel-
atively low fitness individuals. We accomplish this by per-
forming “elimination tournaments” in which some number
of individuals (typically 2) are selected and the individuals
with better fitness are retained while the individual with the
worst fitness is removed from the population. This process
is iterated until the population has been reduced to the re-
quired size (typically 10% of the original population size).
Subsequently, during parent selection, we choose individuals
from the decimated population uniformly at random. This

1This technique is sufficiently similar to the technique called
decimation by Koza [2] that we thought it was reasonable
to use the same name, although there are differences in mo-
tivation and algorithmic details.

Spector, L., T. Helmuth, and K. Harrington. 2011. Fecundity and Selectivity in Evolutionary Computation. In 
GECCO'11 Posters, Genetic and Evolutionary Computation Conference. ACM Press. pp. 129-130.



means that all individuals that survive decimation will have
an equal chance of producing a large “litter.” While overall
selectivity will be relatively low (because of the low tourna-
ment size that we generally use in the elimination tourna-
ments), fecundity will nonetheless be high because each sur-
viving individual—some of which may have relatively poor
fitness—will produce many offspring. Decimation resembles
truncation, a survivor selection method used in various evo-
lutionary algorithms—it is known as (µ, λ) selection in evo-
lution strategies—but in contrast to truncation, decimation
lets some less-fit individuals reproduce.

2. DEB’S DECEPTIVE PROBLEM
To demonstrate one case in which decimation may be use-

ful, we present some results using a traditional bit-string
genetic algorithm on a straightforward deceptive problem
from the literature. We use “Deb’s deceptive 4-bit function”
problem [1, p. 269] with a 40-bit genome that is assessed
in consecutive 4-bit blocks.2 For each block an error value
from 0 to 5 is computed, and the error for the entire indi-
vidual (its fitness, where lower is better) is the sum of the
individual block errors. The error of a block is 0 if the block
is all 1s, but otherwise it is higher the more 1s that the block
contains; this is what makes the problem deceptive. In par-
ticular, we assign an error of 2 for a block of all 0s, an error
of 3 for a block with a single 1, an error of 4 for a block with
two 1s, and an error of 5 for a block with three 1s. We con-
ducted 1, 000 runs in each condition with a population size
of 500 and a maximum of 501 generations (the initial, ran-
dom population and then 500 generations of reproduction).
We used only mutation (no crossover), with our mutation
operator flipping one bit chosen at random. Each gener-
ation 95% of the population was produced from selected
parents by mutation while the remaining 5% was cloned,
unchanged, from a selected parent. We conducted runs un-
der three selection regimes: tournament selection (with var-
ious tournament sizes), decimation, and truncation. In the
tournament selection runs each parent was chosen using an
independent tournament among randomly selected members
of the parental generation. In the decimation runs we ran
elimination tournaments to reduce the population to 10% of
its original size and then selected parents randomly from the
surviving individuals. In the truncation runs we randomly
chose parents from among the top 10% of the population.
Figure 1 shows the number of successes achieved over the
1, 000 runs in each condition. Tournament selection works
quite well with the right tournament size—the best is tour-
nament size 4, which succeeded 948 times—but it performs
poorly in with other tournament sizes and abysmally (34
successes) with tournament size 2. Truncation also performs
quite poorly here, succeeding only 165 times. Decimation
performs the best, succeeding 998 times out of 1, 000. Anal-
ysis (not shown here) with respect to Koza’s “computational
effort” statistic [2] supports this conclusion, as do results on
a 5-bit version of this problem.

3. CONCLUSIONS AND FUTURE WORK
Our results (including many that cannot be shown here)

make the case that evolutionary computation researchers
should give greater attention to the relationship between

2Our formulation here is different than that in [1], but the
problem is formally equivalent.

Tourn 2 Tourn 3 Tourn 4 Tourn 5 Tourn 6 Tourn 7 Trunc Dec
Selection Method

0

200

400

600

800

1000

Su
cc

es
se

s 
O

ve
r 1

00
0 

R
un

s

Figure 1: Numbers of successes, over 1000 runs in
each condition, for Deb’s deceptive 4-bit problem
with various selection methods. “Tourn n” is stan-
dard tournament selection with tournament size n.
“Trunc” is truncation to 10% of the population size.
“Dec” is decimation to 10% of the population size.

fecundity and selectivity. We presented a simple method,
called decimation, for adding one type of control for fecun-
dity to an evolutionary computation system. We have also
shown how decimation improved the performance of a simple
bit-string genetic algorithm applied to a deceptive problem
from the literature.

Acknowledgments
Thanks to Daniel Gerow, Brian Martin, Nathan White-
house, Rebecca Neimark , Jordan Pollack, Emma Tosch,
and other members of the Brandeis DEMO lab for feed-
back that helped us to improve this work in several ways,
to Josiah Erikson for systems support, and to Hampshire
College for support for the Hampshire College Institute for
Computational Intelligence. This material is based upon
work supported by the National Science Foundation under
Grant No. 1017817. Any opinions, findings, and conclusions
or recommendations expressed in this publication are those
of the authors and do not necessarily reflect the views of the
National Science Foundation.

4. REFERENCES
[1] A. E. Eiben and J. E. Smith. Introduction to

Evolutionary Computing. SpringerVerlag, 2003.

[2] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

[3] R. H. MacArthur and E. O. Wilson. The theory of
island biogeography. Princeton University Press, April
2001.


