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Abstract

This paper describes the application of multi-
type, self-adaptive genetic programming
techniques, implemented in the PushGP and
Pushpop systems, to the automatic program-
ming of multi-agent systems. It includes a
brief case study of the application of PushGP
to a transport network control problem and
a demonstration of self-adaptive modulariza-
tion in a dynamic environment that was de-
veloped by Van Belle and Ackley.

1 INTRODUCTION

Automatic programming technologies hold great
promise for the production of software agents for com-
plex, dynamic environments. Genetic programming
techniques, in particular, can harness the power of
natural selection to produce autonomous agents and
communities of agents well suited to their niches, even
in environments that are too complex or dynamic for
detailed human analysis. In a genetic programming
system solutions emerge from a continuous process of
adaptive engagement with the environment; in some
cases this can produce solutions where other meth-
ods fail. Furthermore, automated methods can be re-
peatedly run and varied, and the results of these runs
can be analyzed to provide detailed information about
the difficulty of the agents’ tasks and the suitability
of the methods for the task environments. The ge-
netic programming literature already describes many
experiments in which systems with agent-like proper-
ties have been automatically generated. However, a
gap remains between the capabilities of current ge-
netic programming technology and those that would
be required to automatically generate robust software
agents for real-world environments. The project de-
scribed here seeks to narrow this gap and to produce

broadly-applicable agent creation tools based on evo-
lutionary computing techniques.

One way to make agent development more replicable
and amenable to formal analysis is to automate the
process so that controlled, repeatable experiments can
be performed. Unfortunately, however, the success-
ful application of genetic programming technology is a
“black art,” often requiring repeated experiments and
sophisticated understanding of interactions among a
genetic programming system’s many parameters. One
goal of the described project is therefore to reduce the
configuration work that a practitioner must do to ap-
ply the technique to a new problem area. The primary
approach is to fold parameters into the representation
over which the evolutionary search is conducted—that
is, to allow the same adaptive process of natural se-
lection to control both the search for agent programs
and the search through the space of system parame-
ters. This approach, of using self-adaptation to control
system parameters, has been studied previously in evo-
lutionary computing, but it has generally been applied
fairly narrowly, for example in the self-adaptation of
mutation rates or other numerical parameters. In the
present project self-adaptive mechanisms are also em-
ployed to automatically develop data representations,
program representations, population structure, and re-
production strategies. When it is adaptive to do so
the resulting system may evolve toward any of a broad
range of genetic algorithm or genetic programming ap-
proaches, but the user need not specify the details of
the strategy or combination of strategies in advance.

Agents must generally interact with a heterogeneous
set of entities, each of which may use a specialized
interface or language. Early genetic programming sys-
tems forced users to restrict all operations to a sin-
gle data type to ensure the semantic validity of pro-
grams undergoing recombination and mutation. More
recently, “strongly typed” genetic programming sys-
tems have been developed that relax this restriction,



allowing the generation of programs that manipulate a
diverse set of data types (Montana, 1995). This capa-
bility is critical for the evolution of agents that must
interact with diverse entities and refer to diverse data.
The described project extends the idea of strongly
typed genetic programming to a more general notion
of “multi-type” genetic programming that has several
advantages. First, it allows the arbitrary intermixing,
without syntactic restrictions, of code that works with
any data type or set of data types. Second, it incorpo-
rates code types that simplify the dynamic evolution
of subroutines, control structures, and other program
representations. Third, it leverages the extended type
system to allow agent programs to contain their own
reproduction procedures, thereby transferring the re-
sponsibility for reproductive strategies from the user
(via global, human-set parameters) to the system itself
(via natural selection operating on the agents them-
selves). The cumulative effect of these developments
is that the user can specify a diverse set of primitives
and related data types while simultaneously specify-
ing relatively little in the way of system parameters or
about the potential architecture of solution agents.

The core technologies developed in this project are the
Push programming language for evolved programs, the
PushGP genetic programming system, and the Push-
pop autoconstructive evolution system. Descriptions
of these technologies have recently been published else-
where (Spector, 2001; Spector and Robinson, 2002;
Crawford-Marks and Spector, 2002). In this paper we
provide only a brief synopsis of the technologies, fol-
lowed by descriptions of two recent experiments with
PushGP. While these two experiments both involved
relatively simple problem environments, we believe
that they nonetheless provide more general lessons
about the use of evolutionary computing for the pro-
duction of agents.

2 TECHNOLOGIES

2.1 THE PUSH PROGRAMMING
LANGUAGE

Push is a programming language designed to facilitate
the evolution of complex programs. Push is intended
to be the language within which evolved programs
are expressed—a Push-based evolutionary computa-
tion system might itself be written in any language
(e.g. Lisp, C, or Java), but it would search the space
of Push programs and produce a Push program as its
output. A detailed description of the Push language,
including a language reference, can be found in (Spec-
tor and Robinson, 2002).

Push is a stack-based language, similar in some ways to
FORTH (Salman, 1984). The use of stack-based lan-
guages for genetic programming has several historical
precedents upon which Push builds; see (Bruce, 1997)
for a survey. The defining feature of a stack-based lan-
guage is that arguments are passed to instructions and
results are returned from instructions via global data
stacks. Push provides an independent stack for each
data type and Push instructions pop arguments from
and push results onto whichever stacks are appropri-
ate. This allows for the use of multiple data types
in conjunction with complete syntactic uniformity—
every possible sequence of instructions and constants
(and parentheses, as long as they are balanced) is a
valid Push program.

Many of Push’s most powerful features derive from the
provision of a data type (and a corresponding stack)
for Push code. A rich library of code-manipulating
instructions (based on Lisp’s list-manipulation func-
tions) allows programs to transform their own code
and to execute the results of program transformations.
Among other things, this can be used to implement
subroutines, macros, and recursive control structures;
an evolutionary computation system that evolves Push
programs can thereby evolve modular programs with-
out pre-specification of the number of modules and
without the introduction of syntactic constraints. Ex-
plicit code manipulation can also be used to allow pro-
grams to produce their own offspring, rather than hav-
ing offspring produced by hand-crafted genetic opera-
tors; the Pushpop system described below makes use
of this capability.

2.2 THE PUSHGP GENETIC
PROGRAMMING SYSTEM

PushGP is intended to be a fairly standard genetic pro-
gramming system (see, e.g., Banzhaf et al., 1998) with
the exception that it manipulates and produces pro-
grams expressed in the Push programming language.
Figure 1 shows a flowchart for such systems. Details of
the PushGP system, including the random code gen-
eration algorithm and descriptions of the built-in ge-
netic operators, can be found in (Spector and Robin-
son, 2002).

Because PushGP manipulates and produces Push pro-
grams it can, without modification of the basic algo-
rithm, produce programs that make use of multiple
data types and programs containing subroutines and
other possibly novel control structures. Nonetheless,
many techniques that have been developed for more
standard genetic programming systems can be applied
to PushGP as well; for example, a recent study showed
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Figure 1: Flowchart of a standard genetic program-
ming system with tournament selection; PushGP is a
system of this type that manipulates and produces pro-
grams expressed in the Push programming language.

how “size fair” genetic operators, originally developed
for tree-based genetic programming, can effectively
control program bloat in PushGP (Crawford-Marks
and Spector, 2002).

2.3 THE PUSHPOP
AUTOCONSTRUCTIVE EVOLUTION
SYSTEM

In (Spector and Robinson, 2002) we defined an au-
toconstructive evolution system to be any evolution-
ary computation system that adaptively constructs its
own mechanisms of reproduction and diversification as
it runs. Note that autoconstructive evolution systems,
by constructing their own mechanisms of reproduction
and diversification, thereby evolve their own evolution-
ary algorithms.

While a large body of previous work has explored “self-
adaptive” evolutionary computation (Angeline, 1995;
Angeline, 1996; Bäck, 1992; Stephens et al., 1998;

Hart, 2000), autoconstructive evolution represents a
more radical form of self-adaptation. In most previous
work the algorithms for reproduction and diversifica-
tion have been essentially fixed, with only the numer-
ical parameters (such as mutation rates) subject to
adaptation. By contrast, in an autoconstructive evo-
lution system the individuals in the population are en-
tirely responsible for constructing their own offspring.1

Pushpop, the name of which is derived from Push
program population, is an autoconstructive evolution
system that evolves Push programs. Pushpop inher-
its the skeleton of its algorithm from traditional ge-
netic programming—it is a generation-based algorithm
in which individuals are executed sequentially and in
which the higher-performance individuals are allowed
to contribute more children to the following genera-
tion. The basic algorithm of Pushpop is illustrated in
the flowchart of Figure 2.

In contrast to the standard genetic programming algo-
rithm of Figure 1, in Pushpop we do not normally ter-
minate when a solution to the fitness-conferring prob-
lem is found, as we are often interested in observing
the evolutionary dynamics even after such an event.
More critically, evaluation of an organism’s fitness in
Pushpop produces not only a numerical measure of the
organism’s problem-solving ability but also a collec-
tion of potential children. These children are added to
the following generation on the basis of fitness tourna-
ments between their mothers—they themselves have
not yet been tested for fitness, so their own fitness
values cannot be used for this purpose. If there are
not sufficient children to populate the next generation
(in which case we say that the population is not yet
“reproductively competent”) then new organisms are
randomly generated to pad the population. Pushpop
programs can use their own code, randomly generated
code, and the code of other programs in the popula-
tion to construct their offspring. Details on these and
other aspects of Pushpop can be found in (Spector and
Robinson, 2002).

1Several “artificial life” systems in the literature (e.g.
Tierra (Ray, 1991), Avida (Adami and Brown, 1995), and
Amoeba (Pargellis, 1996)) may be considered autocon-
structive in the sense used here, though the use of exter-
nally imposed mutation mechanisms in these systems may
interfere with the evolution of diversifying reproduction.
See (Spector and Robinson, 2002) for more discussion of
this issue.
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Figure 2: Flowchart of Pushpop, an autoconstructive
evolution system that evolves Push programs.

3 EXPERIMENTS

3.1 EVOLVED TRANSPORT NETWORK
CONTROL AGENTS

In collaboration with groups at MIT and BBN2 we
have applied PushGP to the evolution of agents in a
transport network control problem. Similar problems
have previously been investigated using more standard
genetic algorithm techniques (Montana and Czerwin-
ski, 1996). In this problem there are two types of
agents: vehicles and network control agents. Vehi-
cles move along linear corridors through a 2D or 3D
environment, subject to control at intersections by the
network control agents. In our simulations we use sim-
ple, hard-coded vehicle agents and attempt to produce
network control agents that minimize the wait times
of the vehicles across the network. In our first set of
experiments we determined that PushGP could indeed

2Principally Oliver Selfridge and Wallace Feurzeig, as
part of the DARPA ABC (Agent-Based Computing) TASK
(Taskable Agent Software Kit) program.

produce agents that utilized their local sensor inputs
to improve vehicular traffic flow. In our second set of
experiments we looked at the ways in which the choice
of training environments (used in fitness testing during
evolution) impacts the robustness of the evolved agents
across new environments with different characteristics.
In the following paragraphs we briefly summarize this
second set of experiments.

3.1.1 Simulation

The simplest possible transport network was used in
order to maximize the speed of evolution (see Figure
3). The network consisted of four one-way transit cor-
ridors crossing at one location. We designate the flow
directions as North/South/East/West for convenience
only—there is nothing inherently rectilinear or two-
dimensional about the underlying simulation. In this
setup, control agent status can be “green” (meaning
“go”) for North/South (and red/stop for East/West),
or the reverse. Therefore, an agent is only required
to specify the time-green value for North/South corri-
dors.

South

North

EastWest Agent

Figure 3: A simple transport network.

Each corridor is long enough to fit 20 vehicles on it
at one time, and the control agents are located at the
halfway point of each corridor. Until the first time the
evolved agent is called a default value for time-green
is used; this is 0.5 (green for half a control cycle). The
agent’s cycle length is a constant 20 time steps.

The simulation made available to the evolved agent
the following data:

• Time green: amount of time the north/sound sig-
nal is in green mode. Expressed as float from 0.0
to 1.0. Higher means longer green.

• Average windowed wait: the amount of time spent



waiting (instead of moving forward) for the twenty
most recent vehicles to enter each corridor, con-
sidering only those that have been in the grid for
at least 5 time steps. This was gathered in terms
of each vehicle, as well as an aggregate value for all
the vehicles in the network. Expressed as a float
between 0.0 and 1.0, where 1.0 means “yet to have
moved,” and 0.0 means “never had to stop.”

• Maximum wait: the longest any vehicle has spent
waiting for the entire history of the grid. Gath-
ered in terms of each corridor, and an aggregate
of all corridors. Expressed as a ratio of time spent
waiting to total time spent in the simulation.

3.1.2 Runs

We performed two types of runs, “uniformly variable”
runs and “discontinuous” runs, characterized by the
nature of the environments used for fitness evaluation.
The uniformly variable environments had stochastic
flow patterns but no discontinuous transitions to new,
radically different flow patterns during the course of
the simulation. The discontinuous runs included more
radical, discontinuous changes to flow patterns.

In the uniform runs agents were tested over 20 differ-
ent fitness cases that consisted of different densities of
traffic across the traffic grid. Fitness was measured in
terms of average performance on each of the 20 differ-
ent traffic densities. For each configuration of traffic
density the simulation was run for 200 time steps. At
every 20th time step, the evolved agent was evaluated
to determine what new time-green value to use for the
next 20 time steps. If the agent returned a value that
was not between 0 and 1 then the pervious time-green
value was used instead.

In the discontinuous runs the same 20 sets of traffic
densities were used. The critical difference was that
after running the simulation for 100 time steps the
densities were changed to those of the next fitness case,
without clearing the current vehicles from the grid.
Then the simulation would continue for another 100
time steps before fitness would be assessed. In this
way, every density configuration was used in evolution
for the same total number of time steps, although it
was spread across two different fitness tests.

7 runs, each of 80 generations and population size
2000, were completed for the uniform conditions and
the discontinuous conditions. The best performing in-
dividuals from each run were subjected to a large num-
ber of additional tests in a wide range of environments
to assess their performance and robustness.

3.1.3 Results

Figure 4 shows that the evolved programs, indepen-
dent of the conditions of their evolution, fall into
the same range of performance on 500 new uniformly
variable trials. This cannot be said of discontinu-
ous trials; most programs evolved in discontinuous
conditions do better in discontinuous environments
than do programs that evolved in uniform conditions.
This supports our initial assumption that evolution in
discontinuous environments would produce more ro-
bust agents. Nonetheless, the best performing pro-
gram from the uniform trials performs as well as the
best performing program from the discontinuous trials
when retested in 500 new discontinuous environments.

One somewhat counterintuitive finding that emerged
from detailed analysis of the evolved programs was
that the programs evolved in uniformly variable envi-
ronments were more immediately reactive to changes
in their environments than were those evolved dis-
continuous environments. The programs evolved in
the different environments appeared to adopt differ-
ent control strategies, and those evolved in the discon-
tinuous environments appeared to trade reactivity for
longer-term robustness. More analysis will be required
to understand how features of the Push language sup-
port such trade-offs and how they can be controlled.

A general lesson from this experiment is that consider-
able care must taken in selecting training environments
for evolving agents; while too little variability may re-
sult in over-fitting to the training environments, too
much variability may influence evolutionary dynamics
in unpredictable ways.

3.2 MODULARITY AND ON-LINE
EVOLUTION IN DYNAMIC
ENVIRONMENTS

Terry Van Belle and David Ackley have recently con-
ducted experiments using standard, tree-based genetic
programming on a problem that changes over the
course of evolution (Van Belle and Ackley, 2002). In
particular they looked at symbolic regression of the
formula A∗sin(A∗x) where the constant A is randomly
changed every epoch (5 generations). They found that
ordinary genetic programming is completely stymied
by the changes to A, with the result that significant
adaptation never occurs. They also found, however,
that genetic programming with an architecture that
includes an ADF (automatically defined function) au-
tomatically discovers that the ADF can be used to iso-
late the part of the program responsive to the stable
parts of the environment from the part of the program
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responsive to the variable parts of the environment.
As a result the system with an ADF was indeed able
to adapt, and changes to A became less and less dis-
ruptive as runs progressed.

In PushGP the architecture of evolved programs (in-
cluding the number of ADFs, if any) is not speci-
fied by the user but rather emerges as a product of
natural selection. If PushGP is truly able to form
modular programs automatically when it is helpful to
do so, then we would predict that it would behave
more like Van Belle and Ackley’s runs with ADFs
than like their runs without ADFs. To test this pre-
diction we replicated the Van Belle and Ackley ex-
periment using PushGP rather than standard tree-
based genetic programming, using parameters simi-
lar to those used by Van Belle and Ackley.3 The

3Because of fundamental differences between the sys-
tems it was not possible to use completely identical param-
eters; for example, the instruction sets could not be identi-
cal because PushGP must have access to list-manipulation

parameters that we used are listed in Table 1; see
(Spector and Robinson, 2002) and documentation
at http://hampshire.edu/lspector/push.html for
the interpretation of these parameters.

As shown in Figure 5 we observed, as predicted, that
PushGP was able to automatically induce modules and
to thereby adapt over time so that changes to A be-
came less disruptive. The graph shows average num-
bers of hits of best-of-generation programs at the start
and end of each epoch, averaged over 144 runs. For
standard genetic programming without ADFs these
graphs would be essentially flat (though noisy); each
change to A would destroy any prior increase in the
number of hits. When an ADF is available Van Belle
and Ackley showed that the hits increase as the epochs
progress. Likewise, we observe here that with PushGP
(and with no pre-specification of a modular architec-
ture) the hits also increase as the epochs progress.

instructions in order to build and use modules.



Table 1: PushGP Parameters for Replication of the
Van Belle and Ackley Experiments.

PARAMETER VALUE

Population size 1000
Tournament size 5
Max generations 200
Fitness cases 50
Mutation % 45
Crossover % 45
Reproduction % 10
Mutation operators standard, fair (0.25),

perturb (50)
Crossover operators standard, fair (0.25),

uniform
Instruction set ephemeral-random-integer,

ephemeral-random-float,
ephemeral-random-boolean,
ephemeral-random-symbol,
convert, =, rep, swap, pop,
dup, max, min, >, <, /, ∗,
−, +, pulldup, pull, exp,
log, cos, sin, not, or, and,
nth, list, cons, cdr, car, quote,
map, if, do*, do, integer,
float, boolean, type, code

PushGP does not appear to perform quite as well
as standard genetic programming with an ADF here,
but this is to be expected; PushGP must discover the
modularization that is given to the standard system,
and because of its larger instruction set (including list-
manipulation instructions, etc.) it is searching a larger
space of programs.

The general lesson from this experiment is that the
capability for automatically creating new modules and
otherwise altering program architectures can be useful
for the on-line evolution of agents in dynamic environ-
ments. The experiment demonstrates that PushGP
provides such a mechanism.

4 CONCLUSIONS

The Push programming language facilitates the evolu-
tion of agent programs using multiple data types, mod-
ules, and potentially novel control structures. Using
PushGP, a genetic programming system that evolves
Push programs, we briefly explored trade-offs in agent
performance that result from greater or lesser dy-
namism in training environments. We also confirmed a

result of Van Belle and Ackley demonstrating that the
availability of modules (or module construction mech-
anisms) can allow an evolving agent to better adapt to
partially stochastic environments.

Acknowledgments

This effort was sponsored by the Defense Advanced
Research Projects Agency (DARPA) and Air Force
Research Laboratory, Air Force Materiel Command,
USAF, under agreement number F30502-00-2-0611.
The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon.
The views and conclusions contained herein are those
of the author and should not be interpreted as neces-
sarily representing the official policies or endorsements,
either expressed or implied, of the Defense Advanced
Research Projects Agency (DARPA), the Air Force
Research Laboratory, or the U.S. Government. This
research was also made possible by generous funding
from Hampshire College to the Institute for Compu-
tational Intelligence at Hampshire College.

References

C. Adami and C. T. Brown (1995). Evolutionary
Learning in the 2D Artificial Life System ‘Avida’, Ar-
tificial Life IV, MIT Press, 377–381.

P. J. Angeline (1995). Adaptive and Self-Adaptive
Evolutionary Computations, in Computational Intel-
ligence: A Dynamic Systems Perspective, IEEE Press,
152–163.

P. J. Angeline (1996). Two Self-Adaptive Crossover
Operators for Genetic Programming, in P. J. Angeline
and K. E. Kinnear, Jr., (eds.), Advances in Genetic
Programming 2, MIT Press, 89–110.
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