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ABSTRACT

We describe the application of genetic programming (GP)
to a problem in pure mathematics, in the study of finite al-
gebras. We document the production of human-competitive
results in the discovery of particular algebraic terms, namely
discriminator, Pixley, majority and Mal’cev terms, showing
that GP can exceed the performance of every prior method
of finding these terms in either time or size by several or-
ders of magnitude. Our terms were produced using the ECJ
and PushGP genetic programming systems in a variety of
configurations. We compare the results of GP to those of
exhaustive search, random search, and algebraic methods.

Categories and Subject Descriptors

1.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis; 1.1.2 [Symbolic and Algebraic Ma-
nipulation]: Algorithms—algebraic algorithms

General Terms

Algorithms, Experimentation, Performance

Keywords
ECJ, genetic programming, finite algebras, PushGP

1. INTRODUCTION

Genetic programming (GP) has the potential for applica-
tion to many areas of mathematics. In particular, any area
in which open questions can be resolved by discovering rela-
tively small equations, terms, or finite structures is a promis-
ing area for the application of GP. For some such questions
the very existence of a constraint-satisfying equation, term
or structure may settle the issue under study, while for oth-
ers the specific properties of discovered solutions may have
additional implications or provide additional insights.
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In this paper we present results from the application of GP
to an area of pure mathematics, the study of finite algebras.
We are not aware of significant prior results in this area.
We document the discovery of particular algebraic terms
that have both theoretical significance and quantifiable dif-
ficulty, and we argue that the results are human-competitive
according to widely promulgated criteria.

In the following section we briefly describe the relevant
mathematical context and the specific problems solved. In
Section 3 we describe the GP techniques that we used to
produce our results. The results themselves are presented in
Section 4. Section 5 discusses the significance of the results,
including our claims of human-competitive performance. In
Section 6 we summarize our findings and discuss prospects
for further applications of the presented methods.

2. FINITE ALGEBRAS

For the sake of this paper, and within the over-arching
area of mathematics known as universal algebra, an algebra
A = (A, F) consists of an underlying set A and an asso-
ciated collection F' of operations f : A" — A on A. The
natural number r is called the arity of the operation f. Uni-
versal algebra is a significant branch of mathematics with a
long history (for example see [8]), important sub-disciplines
such as group theory [20], and applications to several areas
of science and engineering.

We use the term finite algebra to refer to an algebra in
which the underlying set is finite. The finite algebra most
familiar to most computer scientists is the ordinary two-
element Boolean algebra, B := ({0,1},A,V, ), in which
the underlying set is {0,1} and the associated operations
are the Boolean operators AND (A), OR (V) and NOT (—).
These operations can be defined by tables:

A0 1 v] o 1 | -
0|0 O 0|0 1 011
110 1 111 1 110

A well-known and convenient feature of Boolean alge-
bra is the fact that this small set of operations is sufficient
for representing all possible operations on {0,1}. For ex-
ample, consider the (randomly chosen) ternary operation
q : {0,1}* — {0,1} given by q(z,y,2) is 1 if (z,y,2) is
(0,0,1), (1,0,1) or (1,1,1); otherwise ¢q(z,y,z) = 0. Then ¢ is
represented as a term by

gz, y,z) =(rx A—yAz) V(@ A-yAz)V(cAyAz).



More generally, we say that a finite algebra is primal if every
operation on its underlying set can be represented using a
term that is composed only of the operations in the algebra.
For example, B is a primal algebra.

Over the past fifty years universal algebraists have found
that the existence of a number of special kinds of terms on an
algebra tell us a great deal about the properties of the class
of algebras (called a variety) that it generates. For example,
a natural generalization of the classical Jordan Holder The-
orem and the Krull Schmidt Theorem for groups will hold in
the variety generated by an algebra having a Mal’cev term
[17], that is, a ternary term m(z,y, z) satisfying

m(z,z,y) ~ m(y,z,z) ~ y.

A natural analog of the Stone Duality Theorem for Boolean
algebras holds in the variety generated by any finite algebra
having a magority term [2, Theorem 3.3.8], that is, a ternary
term j(z,y, z) satisfying

i@ zy) = j(y,z,z) = j(z,y,z) =z

The Chinese Remainder Theorem for the ring of integers has
a natural extension in the variety generated by an algebra
that has a Pizley term [9, Theorem 3.3.1], that is, a ternary
term p(z,y, z) satisfying

p(z,z,y) ~ p(y,r,r) =y and p(z,y,r) = z.

The ternary operation on an algebra A given by

ey, 2) = {“’ e

zifr=y
is called the (ternary) discriminator operation. A discrimi-
nator term for A is a ternary term that represents t*. If A
has a discriminator term, then every non-trivial finite alge-
bra in the variety generated by A is isomorphic to a direct
product of subalgebras of A, and the variety generated by
A has a decidable first order theory [28].

Very recent work [3] based on the primality theorem pro-
vides a recursive method to construct a term representing
any desired operation on an algebra already known to be pri-
mal. While this is the most time efficient method currently
available for constructing such terms, the resulting terms
are usually extraordinarily long and often involve millions
of operations even in three and four-element algebras.

In order to test the power of GP in this domain we applied
it to the three and four element, single-operator algebras
in Table 1. All of these algebras are known to be primal
as an immediate application of a well known theorem of
Rousseau [21]. But the proof of Rousseau’s theorem is non-
constructive, providing no practical assistance in construct-
ing specific terms. Moreover, previously known methods to
construct terms are not adequate to produce the terms we
have described in a feasible amount of space and time (see
Section 5). We show here that GP can be used to evolve
Mal’cev, majority, Pixley and discriminator terms that are
orders of magnitude shorter than those that could be pro-
duced by prior algebraic methods, and we obtain them in
orders of magnitude less time than the expected or empiri-
cally discovered times for exhaustive or random search.

3. GP TECHNIQUES

In the following subsections we describe the specific GP
techniques that produced the results reported in this paper.

Table 1: Primal algebras in this paper.

Arx |0 1 2 Axx |0 1 2
02 1 2 02 0 2
11 0 0 11 0 2
210 0 1 201 2 1

As+ |0 1 2 Ag+ |0 1 2
01 0 1 01 0 1
11 2 0 1o 2 o0
2/0 0 0 20 1 0

Ass |0 1 2 Bix|0 1 2 3

01 3 1 0
0|1 0 2

113 2 0 1
11 2 0
slo 1 o 210 1 3 1

3/1 0 2 o0

We do this to document our methods and to allow for repli-
cation by others.! We do not argue here for the superiority
of these techniques over any other GP techniques, and we
claim no deep justification for our choices of systems or pa-
rameters (which vary significantly from run to run). We pro-
ceeded in an exploratory mode, trying different techniques
and parameters to see if GP could break new ground in the
study of finite algebras. We found that it could, in many
different configurations, and we describe here the configura-
tions that produced the specific results that we present. The
relative efficacy of particular techniques and parameters is
a subject for future research.

GP fitness cases for all problems were all of the input
combinations for which the target term’s definition specifies
a particular output. The fitness value for a candidate term,
which we sought to minimize, was the sum of the errors
across all fitness cases (although in some cases these errors
were individually scaled; see section 3.6).

3.1 Traditional GP in ECJ

Most of the results presented in this paper were produced
using traditional, “tree-based” GP techniques [13] as imple-
mented in the ECJ evolutionary computation system [29].2
In this method programs are represented as Lisp-like sym-
bolic expressions, in parenthesized prefix syntax. The map-
ping between these expressions and the algebraic terms that
we seek is direct: algebraic operations are “nonterminals” in
the GP representation and variables ranging over members
of the underlying sets are “terminals.” ECJ supports several
advanced GP features, but aside from those described below
we did not use such features in the runs described here.

3.2 PushGP

Push is a stack-based programming language designed
specifically for code evolution [26]. PushGP is a GP system
that produces Push programs rather than Lisp-style expres-
sions. We used Push 3 [25] and the version of PushGP built
in to the Breve simulation environment [10].* Push includes

'Full detail is available in the source code at
http://hampshire.edu/lIspector/gpfa-gecco-2008.
http://www.cs.gmu.edu/ " eclab/projects/ecj/
3http://www.spiderland.org/breve



features that support several novel GP techniques but these
were not used in the runs reported here.

Both nonterminals and terminals are rendered in Push as
instructions that take their arguments, if any, from stacks
and do nothing if required arguments are not available. We
represented algebraic operations as operations on integers
although no arithmetic instructions were included in the in-
struction set. Push program results are typically read from
stack tops after execution, but for the runs reported here
we cached and returned the value returned by the last call
to the algebraic operation; hence trailing operands had no
effect. Results were automatically post-processed, removing
ineffectual instructions and converting to infix syntax.

3.3 Code generators and mutation

Some of our runs used non-traditional random code gen-
erators. In particular we sometimes used the PTC1 and
PTC2 algorithms, which provide enhanced control over the
size, shape, and contents of randomly generated programs
[15]. These algorithms take several parameters; those not
provided here are available in the on-line source code. In
some cases we also used a non-traditional mutation opera-
tor — fair mutation — in which the mutant’s new subtree
is guaranteed not to differ in size from the subtree that it
replaces by more than a specified percentage [14].

3.4 Islands and trivial geography

For some of our experiments we launched runs simultane-
ously on many nodes in a Beowulf-style computer cluster and
allowed the runs to proceed asynchronously with occasional
migration of programs between nodes. Each run would ex-
port a set of selected programs to a randomly selected other
run once per generation. Those programs became available
for incorporation into the recipient node’s population during
that node’s next reproduction phase. For related work see,
for example, [6].

Some of our runs used a population-structuring scheme
called “trivial geography” in which the population is viewed
as having a one-dimensional (circular) spatial structure [24].
In this scheme the production of an individual for a partic-
ular location in the population is permitted to involve only
parents from the neighborhood of that location, where the
neighborhood is specified via a radius parameter.

3.5 Alternative selection methods

Some of our runs used ECJ’s parsimony-based tournament
selection method, in which “The comparison of individuals is
based on fitness with probability prob, and it is based on size
with probability 1 — prob. For each pairwise comparsion of
individuals, [it] randomly decides whether to compare based
on fitness or size.”

In some of our runs we determined selection tournament
sizes dynamically, in inverse relation to the size of the popu-
lation’s “alpha group” in the previous generation, where the
alpha group is defined as the set of individuals having the
population’s best fitness. We call this alpha-inverted selec-
tion. Specifically, if A is the alpha group, P is the entire
population, and s is a scaling factor > 1, we calculate « as:

| A
a =min(l, s—
(1, |P‘)

“http://www.cs.gmu.edu/ eclab/projects/ecj/docs/

We then calculate the tournament size 7 using « and a
maximum tournament size parameter m as:

7 =max(2,(m+ 1) — am)

This produces tournament sizes ranging from 2 up to m,
with the largest tournaments used in the context of the
smallest alpha groups and vice versa.

3.6 Historically Assessed Hardness

In some of our runs we scaled the error for each fitness
case based on the proportion of individuals that produced
the correct answer for that case in the previous generation.
This general strategy, of scaling errors by historically as-
sessed hardness, is related to prior techniques such as im-
plicit fitness sharing; see [11]. In the variant of the tech-
nique used here, if the error of an individual on a particular
fitness case is e, and if the solution rate for that case across
the entire population in the previous generation was r, then
the fitness contribution, f, of this case for this individual is
calculated (with scaling factor h, normally 1) as:

f=e(l+h(l-1))

The fitness of an individual (for which lower is better)
is then the sum of these fitness contributions across all fit-
ness cases. The result is that errors are more “expensive”
for rarely-solved cases. As a consequence, individuals that
perform better on those cases will have a fitness advantage.

4. RESULTS

We present here the results of several runs that produced
algebraic terms of interest (see Section 2) using the tech-
niques described in Section 3. We conducted runs in addi-
tion to those reported here, including some that failed to
find the target terms and also others that succeeded. Here
we present only a representative sample of our successes, in-
cluding some of our most significant results; we discuss their
significance in Section 5.

41 A,

In this run we used ECJ and the parameters shown in
Table 2 to evolve a discriminator term for A;. The system
found the following 100% correct term containing 39 opera-
tions in generation 3,210:

(@ (yxz)) s z) 5 2) s (z5m) ) (25 (25 (25 (20y)))) *2)) *
2)x2) % (2 (2 x (((zx2) xz)  (zx2)) ) x2) wy)* (((y* (2% (2%
Y ((yry)xz)*2)) # (@ (25 2) x2) * (2% (z* (2%9)))))))))

42 A,

In this run we used ECJ and the parameters shown in
Table 3 to evolve a discriminator term for A,. The system
found the following 100% correct term containing 51 opera-
tions in generation 59, 523:

(@ (2 (((zx2)xy) xx)* (zy))) * ((y* (Y * (y*y)) x2)) *
(@ % (2 * (2% 2))  2)))) % (2% ((x % (2% 2)) *2)))) * (2 ((y *
(((yxa) xy)* (2% (zx2))) * (2 xy))) * (y+ (2 (2 xy)) +y) * (2%
) *(((zx2)*(zx2))* ((y* (2% (y+ (2xy))) * (2%Y))) %2))))

4.3 A

In this run we used ECJ and the parameters shown in
Table 4 to evolve a discriminator term for As. The system



Table 2: Parameters used to evolve a discriminator
term for A; with ECJ.

Population
Population size | 1,000
Processors (islands) | 1
Trivial geography | no
Individuals
Code generator | PTC1
Nonterminals | * (representing A7)
Terminals | x,y, z
Propagation
Maximum generations | 10,000
Crossover rate | 42.5%
Mutation rate | 52.5% (standard)
Duplication rate | 5%
Tournament size | 6 (constant)
Parsimony selection | 2% (only for duplication)
Historically assessed hardness | no

Table 3: Parameters used to evolve a discriminator
term for A, with ECJ.

Population
Population size | 2,000
Processors (islands) | 1
Trivial geography | no
Individuals
Code generator | PTC1
Nonterminals | * (representing Ag)
Terminals | x, y, z
Propagation
Maximum generations | 100,000
Crossover rate | 42.5%
Mutation rate | 52.5% (standard)
Duplication rate | 5%
Tournament size | 7 (constant)
Parsimony selection | 2% (only for duplication)
Historically assessed hardness | no

found the following 100% correct term containing 20 opera-
tions in generation 34:

(e z) *x) % (2% (y + (2 xy) +2)))) * ((zx2) % ((((y* (2%
z)) x @) * (2% 2) xy)) * (y * (y * (y * 2))))))

44 A,

In this run we used ECJ and the parameters shown in
Table 5 to evolve a discriminator term for A4. The system
found the following 100% correct term containing 68 opera-
tions in generation 35, 039:

(((xy)* (2 (((y* (yra)) xy )+ (y+(
()% (y* (%)) * (2% (2%2) ) *
(zxy)))* ((zx (zx2)) x2)) +2))) * (((y
y)*2)* (((zxy)xx)*((yx7) %y))))) * (2% (2%
y)x(zxy))*((y*y)¥y)))))) * (2% (2%2)) *2)

4.5 As

In this run we used ECJ and the parameters shown in
Table 6 to evolve a discriminator term for As. The system
found the following 100% correct term containing 33 opera-
tions in generation 49:

((((Cy* (yx (2 (xxy)))) x ) * (((z x2) * (2 % 2)) *y)
((z*y)* ) * ((((w* ((y * ((zx2) xy)) *2)) * (((((«
((@xy) ) * (y* (y x 2))) * 2) % 2)) x ) * (x % 2)))

y*2))))* ((yx((@*
2)x(((((y*x)*2)*
*((z*((zxx)*2)
z ((y=(2xy)
#(((zx2)*y)*y))))

y*y))*
(

Z*
Z*

(
(
)
)

Table 4: Parameters used to evolve a discriminator
term for As; with ECJ.

Population
Population size | 90,000
Processors (islands) | 1
Trivial geography | yes, radius 20
Individuals
Code generator | PTC2
Nonterminals | * (representing Agz)
Terminals | x,y, z
Propagation
Maximum generations | 51
Crossover rate | 10%
Mutation rate | 70% (fair £30%)
Duplication rate | 20%
Tournament size | alpha-inverted, max 10
Parsimony selection | no
Historically assessed hardness | no

Table 5: Parameters used to evolve a discriminator
term for A, with ECJ.

Population
Population size | 3,000
Processors (islands) | 1
Trivial geography | no
Individuals
Code generator | PTC1
Nonterminals | * (representing Ay)
Terminals | x, vy, z
Propagation
Maximum generations | 100,000
Crossover rate | 42.5%
Mutation rate | 52.5% (standard)
Duplication rate | 5%
Tournament size | 7 (constant)
Parsimony selection | 2% (only for duplication)
Historically assessed hardness | no

4.6 B,

4.6.1 Mal’cev terms

ECJ.

In this run we used ECJ and the parameters shown in
Table 7 to evolve a Mal’cev term for B;. The system found
the following 100% correct term containing 28 operations in
generation 256:

((w* ((z* ((y* ((z*2) * ((yx2) *y))) * ((((z%2) * (
y)x2)xy)) x2) xy))) * ((yx 2) xy))) * ((((z % 2) *(
Y) * 2) xy)) * 2) xy))

Similar Mal’cev terms were found for two other 4-element
binary algebras.

PushGP.

In this run we used PushGP and the parameters shown in
Table 8 to evolve a Mal’cev term for B;. The system found
the following 100% correct term containing 18 operations
(making it the shortest term we have found for this problem)
in generation 64 on one of the 39 processors:

((2# ((((zx2) * ((((y * y) x )+ 2) 2 7)) 0 )+ y)) * (2 2) %
(((y*y) x2) x2) ¥ 2)) * y) ¥ @



Table 6: Parameters used to evolve a discriminator
term for As; with ECJ.

Population
Population size | 70,000
Processors (islands) | 1
Trivial geography | yes, radius 100
Individuals
Code generator | PTC2
Nonterminals | * (representing As)
Terminals | x,y, z
Propagation
Maximum generations | 51
Crossover rate | 10%
Mutation rate | 70% (fair £50%)
Duplication rate | 20%
Tournament size | alpha-inverted, max 10
Parsimony selection | no
Historically assessed hardness | no

Table 7: Parameters used to evolve a Mal’cev term
for B; with ECJ.

Population
Population size | 70,000
Processors (islands) | 1
Trivial geography | yes, radius 70
Individuals
Code generator | PTC2
Nonterminals | * (representing Bi)
Terminals | x, y, z
Propagation
Maximum generations | 51
Crossover rate | 10%
Mutation rate | 65% (fair £50%)
Duplication rate | 25%
Tournament size | alpha-inverted, max 10
Parsimony selection | no
Historically assessed hardness | no

4.6.2 Majority term

In this run we used ECJ and the parameters shown in
Table 9 to evolve a majority term for B;. The system found
the following 100% correct term containing 63 operations in
generation 289:

(( (@) ((y* (((zxa)x2)xy)) * (2
y)xy) * 2) % ((zxy) * (2% y))) *y)) *
y))))xx))))xy)) * (z* (((z*xz) ((y*(
((yx (((@xz)*2) xy)) * (2 (((
y)x (2 x (z2xy))) * ((y x x) x 2))

#(((zxz)* ((2x (((((2

(z*z)* (((z*2)*y) *
zxx)* (((y*y)* ((((z* (2%
)x (zx (zx2))))*2))))))) * )))

S. SIGNIFICANCE

Over the past fifty years algebraists have found that fi-
nite algebras which have an associated Mal’cev, majority,
Pixley or discriminator term generate varieties of algebras
with many interesting properties. This knowledge has mo-
tivated an ongoing search for each of these terms. Striking
theorems of Davies [5] and Murskii [18] showed that, in an
appropriate sense, most finite algebras harbor all of these
terms. Yet the proofs of these theorems give no indication
as to which algebras these will be or how to construct these
terms if they do exist. Practical and effective methods to
construct these terms would be recognized as very significant
new information by algebraists.

Two approaches encompass the most effective methods

Table 8: Parameters used to evolve a Mal’cev term
for B; with PushGP.

Population
Population size | 50,000/processor
Processors (islands)
Trivial geography | yes, radius 100
Individuals
Code generator | Push standard
Instructions | * (representing Bi), X, Y, Z
Propagation
Maximum generations | 10,000
Crossover rate | 40%
Mutation rate | 40% (fair £200%)
Duplication rate | 5%
Deletion rate | 10%
Migration rate | 5%
Tournament size | alpha-inverted, max 10
Parsimony selection | no
Historically assessed hardness | yes

Table 9: Parameters used to evolve a majority term
for B; with ECJ.

Population
Population size | 100,000
Processors (islands) | 1
Trivial geography | yes, radius 20
Individuals
Code generator | PTC2
Nonterminals | * (representing B1)
Terminals | x, y, z
Propagation
Maximum generations | 51
Crossover rate | 20%
Mutation rate | 60% (fair £30%)
Duplication rate | 20%
Tournament size | alpha-inverted, max 10
Parsimony selection | no
Historically assessed hardness | no

previously known to find these terms: uninformed search
and construction via the primality theorem. In this section
we review these approaches and demonstrate that our GP
results are human-competitive because they surpass all pre-
vious techniques in significant ways.

5.1 Uninformed search

The problem of finding the different terms we are seeking
can be described uniformly as follows. Assume that we are
given defining tables for the operations of a finite algebra A,
an integer r > 0, asubset B C A" of the set A" of all r-tuples
of elements of A and a function f: B — A that is known in
advance to be a term operation. Our goal is to find some par-
ticular term defining f on B. For example, a Mal’cev term is
a term that agrees with the function f(a,a,b) = f(b,a,a) =
b on the set B = {(a,a,b), (b,a,a) | a,b € A} C A3

A direct approach to finding a term for f is to enumerate
all r-ary terms in an infinite sequence of increasing size,
starting with the smallest terms and testing each one to
see if it represents f. We call this ezhaustive search. As
we do the search, each term defines a choice of one of the
n := |A|'Bl different functions from B to A, where |A| and
|B| are the numbers of elements in A and B, respectively.
A popular tool that enumerates terms in this way is the
UACalc program [7].



An alternative is to generate terms in random order, for
example by first picking a size and then generating a term
of that size using an algorithm such as Knuth’s “R” [12]. We
call this random search. Because exhaustive and random
search are equally uninformed — in the sense that we know
nothing about how the different functions are distributed in
the sequences of terms generated by these methods — our
mathematical analysis will apply to both. But exhaustive
and random search provide different opportunities for em-
pirical verification (see below).

Our aim is to find a reasonable estimate of the expected
number of trial terms we will need to construct and test be-
fore finding f. Let t1,t2,ts3,... be any enumeration of terms
produced by either an exhaustive search, a random search,
or any other uninformed search. Let X be the random vari-
able whose value is the smallest k such that tx represents f.

The difficult part of computing the expected value Exp(X)
of X is finding, for each k, the probability that ¢, repre-
sents f. This is the proportion, among all possible defining
tables for the operations of A, of choices which result in
representing f. Computing this value appears to be extraor-
dinarily difficult, even — with a few exceptions — for a single
term 5. In order to get a rough estimate of Exp(X), we
make the simplifying assumption that the terms ¢1, t2, %3, ...
are uniformly distributed among the n possible functions
they might represent, that is, that each ¢, represents f with
probability % Thus ¢t fails to represent f with probability

n=1_ For each j,k € N, we have

pj := Prob(X = j) =~ (%)j_l

3=

and
k—1

Py, := Prob(X > k) ~ (2=1)
Since Exp(X) is the weighted sum of the values of X,

Exp(X) = jpi=>.% pi=> P~ (=)
j=1 k=1

k=1 j=k k=1
p— 1 —
= 1At n.

n

We recapitulate this conclusion as follows.

The expected value Exp(X) of the number X of trials
required to find a term representing the function f is ap-
proximately the size n, = |A|l®! of the search space AP of all
functions from B to A.

We first apply this result to the search for a Mal’cev term.
Notice that a ternary operation m® : A%> — A is a Mal’cev
function if and only if it takes the Mal’cev value on the set

B = {(a,a,b), (b.a,a) | a,b € A).
Here we have 7 = 3 and we count |B| = 2|A|*> — |A|.

EXAMPLE 5.1. If A has a Mal’cev term, then the ex-

pected number of trials required to find one is Exp(X) =
| AR =14l

Similarly, a ternary operation on A is a majority function
or a Pixley function if and only if it takes the majority value
or Pixley value, respectively, on each triple in the set

B = {(a7 a7 b)’ (a’7 b7a/)7 (b7 a7 a) | a7b e A}‘
Here again r = 3 and we count |B| = 3|A|*> — 2|A|.

Table 10: Approximate times required to find terms
by uninformed search and by GP.

Uninformed Search GP
Expected Time (Trials) Time

3 element algebras

Mal’cev 5 seconds (31° =~ 107) 1 minute
Pixley /majority 1 hour (32! =~ 1010) 3 minutes
discriminator 1 month (327 ~ 1013) 5 minutes

4 element algebras

Mal’cev 103 years (42® ~ 10'7) | 30 minutes
Pixley/majority | 1010 years (440 ~ 102%) 2 hours
discriminator 102* years (454 =~ 10%8) ?

EXAMPLE 5.2. If A has a majority term or a Pizley term,
then the expected number of trials required to find one is
Exp(X) ~ |A|3‘A|272|A‘.

If we search for some specific ternary operation, such as
the ternary discriminator operation, on a primal algebra A,
we have r = 3 and B = A3,

EXAMPLE 5.3. If A is primal, then the expected number
of trials required to find a term representing a given opera-
3
tion (such as the discriminator) is Exp(X) ~ |A|A".

The values of Exp(X) grow dramatically as a function
of |A] in each of these examples. In Table 10 we list these
values for three and four element algebras. For each case we
list a plausible estimate of the time that a 3 GHz computer
would require to conduct the search, conservatively estimat-
ing that the average term will require 1,000 computer cycles
to generate and test. Within this range we see that searches
move from those that can be done quickly to those that are
unlikely to ever become computationally feasible. On the
right we estimate the times required for single-processor GP
runs to find these terms, based on the run times of the spe-
cific GP searches documented in this paper.

In favor of exhaustive search we note that it is parsimo-
nious. Since it enumerates the terms from shortest to longest
it is guaranteed to produce a shortest term representing the
given function. We conducted such an exhaustive search
looking for a Mal'cev term for the three-element algebra
A;. We found a minimal size term with 11 operations, and
our search revealed exactly 2 such 11-operation terms. Such
searches rapidly become impractical, however, and we have
conducted exhaustive searches only up to size 14 (which re-
quired at least 2 months of CPU time). By comparison GP
quickly found A; Mal’cev terms of various sizes; one run on
a single CPU took one minute to evaluate 840,000 terms
and found a Mal’cev term of size 12, while an independent
run quickly found a term of size 24.

To empirically test our analytical results we also con-
ducted random searches for discriminator and Mal’cev terms
on A;. In our first test we generated approximately 10!
terms with sizes uniformly distributed from 12 to 50, us-
ing Knuth’s tree-generation algorithm “R” [12]. We tested
each term to see if it was a discriminator term for A;. Ex-
ample 5.3 predicts that a successful search would require
approximately 327 ~ 10*? trial terms. Our test of approxi-
mately 1% of this number indeed revealed no discriminator
term. This search required over a week of CPU time on
hardware in the 2.4GHz-3.0GHz range.



Table 11: Sizes of terms for A; from the primality
theorem and from GP.

Term Type Primality Theorem | GP
Mal’cev 10,060,219 | 12
Majority 6,847,499 | 49

Pixley 1,257,556,499 | 59
Discriminator 12,575,109 | 39

In our second test of random search, we looked for A;
Mal’cev terms. Example 5.1 predicts the first success coming
after about 3'® &~ 1.4 x 107 trials. We generated and tested
approximately 2.2 x 10'° terms, using the same size distri-
bution and generation algorithm as in the first test. This
required roughly one day of CPU time. This test produced
64 Mal’cev terms requiring an average of about 3.4 x 10® tri-
als each, one order of magnitude more than our theoretical
estimate, and suggesting that the Mal’cev function is repre-
sented by about 4% as many terms as an average function.

These results are altogether consistent with our predic-
tions. A; discriminators are quite hard to find, and their
routine and relatively speedy discovery by GP is therefore
notable. A; Mal’cev terms are comparatively easy to find,
and the actual run-times of our tests support our assertion
of the conservatism of the time estimates in Table 10.

5.2 Comparison to algebraic methods

Algebraists have put significant effort into finding effective
methods to produce a term representing an arbitrary oper-
ation on a finite algebra from a small set of building block
operations. In 1939 Stupecki did this using unary operations
and a surjective binary operation that was not essentially
unary [22, 23]. Werner [27](1970) used the ternary discrim-
inator operation together with constants. Other methods
were described in [28](1978) and [4](1991). The most time
efficient algebraic method found to date is that of Clark,
Davey, Pitkethly and Rifqui [3](2008) based on their primal-
ity theorem. These authors give an explicit formula to build
a term for an arbitrary operation, and draw on UACalc [7]
to generate the required building blocks.

While the primality theorem represents a significant the-
oretical advance, the price it extracts for simple building
blocks is very large resulting terms. Using this theorem and
the building block terms generated in [3] for our primal al-
gebra A, we calculated the sizes of four resulting terms and
listed them in Table 11. Juxtaposed to these are the sizes of
some of the equivalent terms we generated by GP. Sizes are
measured as the number of operation symbols in the term.

5.3 Human-competitiveness

Since the discoveries of the significance of Mal’cev func-
tions [16](1954), majority functions [1](1975), Pixley func-
tions [19](1963) and the discriminator function [27](1970),
there has been a keen interest among algebraists to find
terms that represent these functions on individual algebras.

Two approaches embody the most effective methods pre-
viously developed for finding these terms. The first is unin-
formed search, of which we explored two variants: exhaus-
tive search, in which terms are enumerated systematically
from smallest to largest, and random search, in which terms
within a range of sizes are generated in random order. Ex-
haustive search is guaranteed to produce a smallest term of

the required type if such a term exists, but it has the disad-
vantage of requiring astronomical amounts of time, except
for the very smallest algebras or the very simplest terms.
Random search has the same abysmal performance but with-
out any guarantees concerning size or success. The second
approach is construction via the primality theorem of [3],
which gives the most time efficient method known to de-
scribe these terms that applies to any primal algebra. But
it has the disadvantage that, except for the very smallest
algebras, the terms it produces have astronomical length.

We have used GP to significantly expand the range of fi-
nite algebras for which we can produce, within a few hours,
terms that can be written on a few lines. We have exhib-
ited examples of such algebras for which these terms would
require many orders of magnitude more time to find by ex-
haustive or random search and many orders of magnitude
more space to write down the terms produced by the pri-
mality theorem. In this respect we have established that GP
has surpassed, by a considerable margin, all known methods
of generating practical terms for these algebras. Because
there were no prior methods for generating practical terms
in practical amounts of time, GP has provided the first so-
lution to a previously open problem in the field.

According to the rules® for the 2007 “Humies,” which
are “awards for human-competitive results produced by ge-
netic and evolutionary computation,” a result is human-
competitive if it satisfies at least one of eight listed criteria.
Of these, five appear to be satisfied by our results:

(B) The result is equal to or better than a result that was
accepted as a new scientific result at the time when it
was published in a peer-reviewed scientific journal.

(D) The result is publishable in its own right as a new sci-
entific result independent of the fact that the result
was mechanically created.

(E) The result is equal to or better than the most recent
human-created solution to a long-standing problem for
which there has been a succession of increasingly better
human-created solutions.

(F) The result is equal to or better than a result that was
considered an achievement in its field at the time it
was first discovered.

(G) The result solves a problem of indisputable difficulty
in its field.

6. CONCLUSIONS AND PROSPECTS

The results presented here suggest that further work in
this area will advance knowledge both in algebra and in GP.
We have seen that GP can improve significantly on extensive
past efforts of both humans and machines to solve the al-
gebraic problems we have posed. Further refinement of our
GP techniques will surely improve these solutions. At the
same time, these particular algebraic problems allow us to
precisely quantify our successes with GP algorithms. This
offers the prospect of further developing our GP techniques
by providing a critical context in which they can be tested
and compared.

We used a few advanced GP techniques in producing the
results reported here (see Section 3) but we have not yet

®http://www.genetic-programming.org/hc2007 /cfe2007. html



experimented systematically with these or with other well-
known techniques. Some, like automatically defined func-
tions in traditional GP or the automatic modularization ca-
pabilities of PushGP, may allow us to scale up our results
significantly if the algebraic domain shares features (in this
case, regularity) with those for which these techniques have
previously proven useful.

We also expect there to be many other qualitatively dif-
ferent applications of GP to research on finite algebras. The
mapping between algebraic terms and GP representations
is direct, and we expect that many open problems will be
re-framable as searches for algebraic terms having certain
specified properties.
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