
Chapter 1

EVOLVING SQL QUERIES FROM
EXAMPLES WITH DEVELOPMENTAL
GENETIC PROGRAMMING

Thomas Helmuth1 and Lee Spector2,1

1Department of Computer Science, University of Massachusetts, Amherst 01003 USA;
2School of Cognitive Science, Hampshire College, Amherst, MA 01002 USA.

Abstract
Large databases are becoming ever more ubiquitous, as are the op-

portunities for discovering useful knowledge within them. Evolutionary

computation methods such as genetic programming have previously been

applied to several aspects of the problem of discovering knowledge in

databases. The more specific task of producing human-comprehensible

SQL queries has several potential applications but has thus far been ex-

plored only to a limited extent. In this chapter we show how developmen-

tal genetic programming can automatically generate SQL queries from

sets of positive and negative examples. We show that a developmental ge-

netic programming system can produce queries that are reasonably accu-

rate while excelling in human comprehensibility relative to the well-known

C5.0 decision tree generation system.

Keywords: genetic programming, data mining, classification, SQL, Push, PushGP

tomhelmuth

tomhelmuth

tomhelmuth
Helmuth, T., and L. Spector. 2012. Evolving SQL Queries from
Examples with Developmental Genetic Programming. In Genetic
Programming Theory and Practice X, edited by R. L. Riolo, M. Ritchie,
J. Moore, and E. Vladislavleva. New York: Springer. In Press.

tomhelmuth

tomhelmuth

2 Genetic Programming Theory and Practice III

1. Introduction

In the emerging era of “big data,” vast amounts of data are available

in many kinds of databases. Unfortunately, many users who have access

to this data are unable to use it e�ectively because they do not know

how to extract relevant, concise and comprehensible features or sum-

maries of the data; that is, they do not know what queries to formulate

in order to discover novel and useful aspects of the data. This issue can

be addressed in part by a system that takes positive and negative exam-

ple tuples—which it is generally easy for users to provide—and returns

concise, comprehensible SQL queries that classify the provided tuples in

simple and potentially interesting ways.

The creation of queries from examples can be thought of as a data

mining classification problem, which is often one task within a larger

“knowledge discovery in databases” process (Freitas, 2002). In this task

the objective is to create a comprehensible and interesting query that

correctly classifies the given examples. In many cases we have no reason

to expect there to be a simple query that perfectly classifies the examples,

but we would nonetheless like to create a reasonably simple query that

both does a good job at classifying the examples and is concise enough

to be easily interpreted by the user.

To make the general problem more concrete, we seek a system that

takes as inputs a database D and training example tuples E = E+⇧E�

where E ⇤ D and E+ ⌃ E� = ⌅. Here, E+ is the set of positive

examples and E� is the set of negative examples. The goal of the system

is to discover a concise and potentially interesting query Q such that

E+ ⇤ Q(D) and E� ⌃Q(D) = ⌅.
We have developed a system called Query From Examples (QFE) that

takes the set of examples E and searches for a query Q that satisfies

the above properties. It does this by means of developmental genetic

programming. In QFE, each program P creates (or “develops”) a query

QP that is then evaluated on how well it correctly classifies the given

example tuples E.

In contrast to other approaches to the production of database queries

with GP (see below), this form of developmental GP allows QFE to

use standard program representations and genetic operators, along with

standard population and evolutionary control parameters. The only

change required to use this approach in conjunction with most GP sys-

tems is to include new developmental functions in the system’s function

set. The developmental approach makes it easy to implement systems

like QFE on top of existing GP systems and thereby to take advantage of

advances in the general state of the art of GP. In addition, it may make

Evolving SQL Queries from Examples with Developmental GP 3

it easier to evolve queries of arbitrary structure, thereby enhancing the

generality of the system for a wide range of applications.

In the work described in this chapter we ran QFE on a standard

data mining classification task and compared its results to those given

by the decision tree classifier C5.0. We find that although QFE does

not produce quite as accurate a classifier as C5.0, the classifier that it

produces is more concise and comprehensible than the one produced by

C5.0. We therefore believe that developmental GP is competitive with,

and in some ways superior to, other modern data mining systems on the

creation of classifiers.

The remainder of the chapter is structured as follows. The next sec-

tion describes work that others have done evolving SQL queries. Section

3 describes our QFE system and its implementation. Our experiments

and results are given in Sections 4 and 5. Finally, we discuss limitations

of QFE, possible improvements to QFE (including generalizations that

QFE makes possible but that competing approaches would not), and our

general conclusions.

2. Related Work

A variety of research has been conducted that uses GP either for the

creation of queries (Castro da Silva and Thomas, 2010; Acar and Motro,

2005) or for data mining (Freitas, 2002; Freitas, 1997; Ishida and Pozo,

2002; Doucette et al., 2012; Veeramachaneni et al., 2012, among many

others). Because this literature is quite voluminous and varied we will

comment specifically only on those systems most closely related to QFE.

Castro da Silva and Thomas (Castro da Silva and Thomas, 2010)

directly evolve queries as individuals with the goal of generating queries

for inexperienced SQL users. In order to ensure that evolved queries

are syntactically correct they implement numerous non-standard genetic

operators to combine and mutate individuals. This approach requires

significant re-design of any existing GP system and, we would argue,

limits the system’s generality. Interestingly, this system seems to be

the only prior work in which queries are allowed to include joins across

tables, leaving the joining attribute up to evolution.

Acar and Motro (Acar and Motro, 2005) frame their work as trying

to provide an alternative equivalent query to a given query by creating

the alternative using the results of the original as positive examples.

Although their motivation is di�erent from ours, the resulting system

has many similarities. Their method assumes that the sets of positive

examples and negative examples cover the entire database, instead of

a small subset of it. The user must provide the entire set of example

4 Genetic Programming Theory and Practice III

tuples that are in the database, which is probably impossible without

using an a priori query to fetch them. The given system evolves actual

queries as individuals, but can only handle queries expressible as trees

of relational algebra expressions.

Freitas describes a GP system that evolves programs that can be

interpreted as SQL queries to be used in the data mining tasks of clas-

sification and generalized rule induction (Freitas, 1997). Individuals

are represented as trees that directly correspond to WHERE clauses of

queries. Unlike QFE, this work allows for the evolution of non-binary

classifiers via niches that correspond to classes of the goal attribute.

This paper was pioneering insofar as it introduced the idea of evolving

SQL queries but it presents no experiments or results and it does not

make clear how one can deal with practical issues such as the choosing of

constants, the design of an appropriate fitness function, the alterations

that must be made to standard genetic operators, etc. Because there are

no results one cannot judge the system with respect to query accuracy,

comprehensibility, conciseness, and time. Additionally, this approach is

limited (unlike the developmental approach that we present below) to

the production of queries over a single table with WHERE clauses that

can be expressed as trees. Freitas has continued to produce a great deal

of significant related work but not, so far as we are aware, additional

work on the use of GP to evolve SQL queries.

GPSQL is a data mining system that uses grammar genetic program-

ming (di�erent from grammatical evolution) to create SQL queries for

classification (Ishida and Pozo, 2002). This GP system uses individuals

that are composed of grammar-based derivation trees, where the gram-

mar underlying each tree allows for problem-specific SQL queries to be

formed. The use of derivation trees allows genetic operators to replace a

node in a tree only with a node that is generated using the same produc-

tion rule from the grammar, meaning that the resulting children must

be syntactically correct. In this respect the system is somewhat like

strongly-typed GP (Montana, 1995) with a very large number of types,

one for each production rule. Unfortunately, this means that each prob-

lem requires an extensive BNF grammar to be defined by the user. The

BNF grammars described in this work appear to be highly specialized to

specific problems, defining how each condition is formed and with what

values an attribute may be compared.

3. Evolving Queries from Examples

We used the PushGP genetic programming system to evolve individ-

uals that create queries. Each individual is a program that manipulates

Evolving SQL Queries from Examples with Developmental GP 5

Table 1-1. Instructions used in our PushGP runs.
Stack Instructions

integer add, sub, mult, div, mod, stackdepth, dup, swap, rot

string length, stackdepth

where condition from stack, condition from index, condition -

distinct from index, condition from pos ex, condition -

from neg ex, and, or

a state that can be interpreted as a SQL query after the program termi-

nates. This type of GP system, in which individuals create executable

structures via state manipulation, and in which the resulting structures

are subsequently executed (e.g. as database queries) to produce desired

outputs, is known as developmental GP (Gruau, 1994; Koza et al., 1999).

We assign fitnesses to individuals based on how many of the positive and

negative example data points the queries that they produce return when

run on the database.

Push and PushGP

PushGP is in many respects a generic GP system except that its

individuals are represented in the Push programming language (Spector,

2001; Spector et al., 2005). Push is a stack-based language in which

instructions fetch arguments from stacks and return results to stacks;

each type has its own stack. In Push, programs consist of nested lists

of intermingled instructions and literals. Strongly-typed instructions

are able to either retrieve the correctly typed arguments if they are

available, or act as “no-ops” (and do nothing) if they are not. Push

has been implemented in many languages; this work uses the Clojure

implementation, which may be freely downloaded at the Push project

page1.

Push allows for many di�erent types to be used within one program,

each of which has its own stack. Common types such as integers, floats,

strings, and booleans are often used, as are “code” and “exec” types

that allow for the evolution of self-modifying programs and novel con-

trol structures. Additional problem-specific types can be added when

necessary. For evolving queries, we have added stacks for the SELECT,

FROM, and WHERE clauses of an SQL query, although we primarily

use the “where” stack along with the standard integer and string stacks.

Table 1-1 contains the instructions used in the runs reported below.

1http://hampshire.edu/lspector/push.html

6 Genetic Programming Theory and Practice III

Programs must also contain literals of the data types that they use.

When the Push interpreter encounters a literal within a program it sim-

ply pushes it onto the stack of the appropriate type. For the evolution of

queries we only use literals that come from ephemeral random constants

(ERCs), which are random number or string generators that produce

constant literals when they are selected for inclusion in new code. For

integer literals, we include two ERCs: one that produces integers uni-

formly in the range [0, 100000), and one that uses more of a logarithmic

scale, in that it chooses a range uniformly from [0, 10), [0, 100), [0, 1000),
[0, 10000), and [0, 100000) and then chooses a constant uniformly from

within the chosen range. The logarithmic ERC makes small integers,

which may be important for use in WHERE clause conditions, more

common than with the ERC over the entire range [0, 100000). Addition-
ally, we include a string ERC that produces strings between 1 and 10

characters long that may include any uppercase or lowercase letters as

well as any numerical digits.

Developmental GP

As described above, QFE creates an SQL WHERE clause by manipu-

lating a state through developmental instructions. The state is kept and

manipulated on the where stack of the Push interpreter state. The where

stack can have any number of items pushed onto it, where each item is

either a single condition on one attribute or any number of conditions

joined by the logical operators AND, OR, and NOT. Each condition

may be over any attribute of the table, and is constructed as described

below. Examples of possible items on the where stack include (age
> 37), (occupation <= ’jP8WKq’), and (((education = ’Masters’)
OR (hours per week < 2999)) AND (sex <> ’h7Fm’)). To create an

SQL query from a Push program, QFE runs the program and takes

the top item on the where stack and uses it as the WHERE clause of

the query. For our experiments, the SELECT clause always just has

“*”, and the FROM clause references the only table in the database. By

adding new instructions, we could generalize QFE so that it could evolve

queries over a database with multiple tables by evolving the SELECT

and FROM clauses, as discussed in Section 6.

The instructions that create and connect conditions are given as the

where stack instructions in Table 1-1. The instructions where con-
dition from stack, where condition from index, and where condi-
tion distinct from index each create a condition and push it on the

where stack. Each of these instructions creates a condition by using three

literals o� of the integer and possibly string stacks. where condition -

Evolving SQL Queries from Examples with Developmental GP 7

from stack first pops an integer o� of the integer stack and uses it as

an index into the attributes of the table, taken modulo the number of

attributes in the table. A second integer is popped and taken mod-

ulo 6 as an index to decide which comparator will be used, from the

set {=, <,>,<=, >=, <>}. Finally, a value is popped o� of whichever

stack is of the same type as the chosen attribute and is compared to that

attribute to create the condition. The condition composed of the chosen

attribute, comparator, and constant is pushed onto the where stack. It

should be noted that if this instruction or any of the others do not find

the number of arguments they require on the stacks, they act as no-ops.

The two instructions where condition from index and where con-
dition distinct from index both operate similarly to where condi-
tion from stack, except in the way they choose a constant to con-

strain the condition. Like where condition from stack, each of these

instructions uses the first two integers on the integer stack to deter-

mine the attribute and comparator to use for the condition. However,

where condition from index and where condition distinct from -
index select a constant not from a value on a stack, but from a tuple

indexed in the database. Both of these instructions use the third integer

on the integer stack as an index to a tuple from the relevant table; then,

the tuples’s value of the selected attribute is used as the condition’s

constant. The only di�erence between these two instructions is that

where condition from index uses the index to select a tuple from the

entire table D, where where condition distinct from index indexes

into a list of distinct values in the table for that attribute. For example,

the entire table may have many tuples where the value of the attribute

age is 35; these are all kept by the first instruction, where the second

only indexes in a list of distinct ages, and therefore only has one index

where age is 35, or any other age for that matter. The first instruction

can be thought of as giving weight to a particular value equal to the

number of times it appears in the database, while the second makes all

values equally likely no matter how often they occur.

Our QFE runs use two other WHERE-condition creation instructions

that act like where condition from index but retrieve the constant

from the positive examples E+ or the negative examples E� instead of

the entire table D. These instructions, where condition from pos ex
and where condition from neg ex, make it so that only values in the

example tuples can be indexed to use for the constant. This bias may

make it easier to create conditions that specifically relate to the positive

or negative examples.

Each of the above instructions creates a single condition and leaves it

on the top of the where stack. The instructions where and, where or,

8 Genetic Programming Theory and Practice III

and where not allow for arbitrarily connected conditions. where and
and where or take the top two items on the where stack, join them

with AND or OR respectively, and push the result onto the where stack.

Similarly, where not takes the top item on the where stack, puts NOT in

front of it, and pushes the result onto the where stack. These instructions

allow for arbitrary combinations of conditions to be formed. Though we

implemented all three instructions, we found where not to be more of

a hindrance than a help, since WHERE clauses tended to be clogged

by nested NOT calls that cancel each other out. We therefore leave

where not out of our instruction set for our experiments.

Fitness Testing

QFE uses the common convention of using error as the fitness mea-

sure, with lower fitness indicating lower error and fitness of zero meaning

a perfect solution. In order to determine the fitness of an evolved Push

program P , QFE first runs the program; after it is finishes executing,

the final state is interpreted as an SQL query QP as described above.

We then run the query over the training examples to get the set of

tuples QP (E). We use the F1 score as a measure of fitness of the pro-

gram. The F1 score, developed to evaluate classification accuracy in

information retrieval settings, is the harmonic mean of precision and re-

call (Van Rijsbergen, 1979). Precision and recall are defined over true

positives, false positives, and false negatives defined as

true positives = ||E+ ⌃QP (E)||
true negatives = ||E� �QP (E)||
false positives = ||E� ⌃QP (E)||
false negatives = ||E+ �QP (E)||.

We can then define precision, recall, and F1 score as

precision =
true positives

true positives+ false positives

recall =
true positives

true positives+ false negatives

F1 =
2 · precision · recall
precision+ recall

.

Some programs, when executed, result in problematic stack states or

queries that must be handled separately. One such degenerate case is

when nothing is left on the where stack of the Push state at the end

of program execution. In this case, the program has not produced a

Evolving SQL Queries from Examples with Developmental GP 9

WHERE clause, and is given a penalty fitness that is a worse fitness

than will be given to any program that produces a non-empty WHERE

clause. A second degenerate case occurs when a query takes more time

to run than is allowed by QFE. These queries also receive a penalty

fitness, worse than any query that finishes running, but better than a

query with an empty WHERE clause.

We initially predicted that overfitting of queries to the training exam-

ples would be a problem, creating very large queries that only classify

the training examples well and do poorly on unseen test data. To combat

this it would be possible to add a parsimony term to the fitness func-

tion, scaling a query’s fitness based on how concise it is. This might force

evolution to focus on su⌅ciently simple queries, avoiding overfitting to

the training data. In practice, we found that QFE evolved su⌅ciently

simple queries without such a term. This may be due to the bounds

placed on maximum Push program sizes, or by other dynamics of the

system that tend to favor concise queries. In any event, we did not use

a parsimony term for the runs described below.

Database Use

Well-designed queries tend to be fast, but poorly designed queries can

take a long time to run. Since GP tends to produce and test many

strange and bad programs while searching for good ones, fitness testing

by running queries can be slow. We extended the implementation of

fitness testing in a few ways to speed up the evolutionary process.

Some GP implementations cache the fitnesses of evaluated programs

so that if the same program is evaluated more than once, the fitness

can be quickly retrieved and not re-calculated from scratch. For the

problem of evolving programs that create queries we found that many

times there are di�erent programs that produce the same query. We

altered the caching so that the system caches the fitness of a query

instead of the fitness of a program. In this way, di�erent programs that

produce the same query can use the same cached fitness value.

Even with these improvements, some queries run for far too long,

significantly slowing down QFE. These anomalous queries, if left to run

until finished, would dominate the time QFE takes to evolve a query.

We decided to give each query only a certain length of time (0.5 seconds)

to run, after which it is cut o� and given a penalty fitness value. We

found this limit to allow most queries to finish without letting extremely

slow queries slow down a run.

10 Genetic Programming Theory and Practice III

Table 1-2. Attributes for the adult data set.
Attribute Type Values

age integer 73

workclass string 9

fnlwgt integer 21648

education string 16

education num integer 16

marital status string 7

occupation string 15

relationship string 6

race string 5

sex string 2

capital gain integer 119

capital loss integer 92

hours per week integer 94

native country string 42

greater 50k string 2

4. Experimental Design

To determine how well QFE finds queries that correctly classify re-

sults we compare QFE with C5.0,2 a modern data mining classification

system that produces decision trees that classify data in a way similar

to the queries produced with QFE. C5.0 is derived from the widely-used

C4.5 system (Quinlan, 1993). C5.0 creates decision trees that identify

patterns in the training examples. Each decision tree’s internal nodes

represent boolean tests over a tuple’s attributes and leaves give the pre-

dicted class of the given tuple. A decision tree can be used to classify

examples or to identify patterns in a way that make sense to a human

user. Even though decision trees di�er from SQL queries in many as-

pects, they o�er a similar enough alternative to compare with QFE’s

evolved queries. We will compare these systems on the accuracy, con-

ciseness, and time metrics presented below.

For our experiments, we used the Adult Data Set from the UC Irvine

Machine Learning Repository (Frank and Asuncion, 2010). This data set

has a single table with 15 attributes and 32561 tuples and is often used

to test classification systems. Each tuple contains census data about

a person, including 6 integer attributes and 9 string attributes, where

string attributes come from discrete sets of options and most integer

attributes have wider ranges. Table 1-2 gives the 15 attributes and

how many discrete values occur for each in the database. Note that

2C5.0 is available at http://rulequest.com/see5-info.html.

Evolving SQL Queries from Examples with Developmental GP 11

Table 1-3. The PushGP parameters used for the 50k-Classification problem.
1See (Spector and Klein, 2005) for information on trivial geography.

Parameter Value

Population Size 1000

Maximum Generations 150

Maximum Program Size 300

Crossover Probability 0.80

Mutation Probability 0.12

Simplification Probability 0.05

Reproduction Probability 0.03

Tournament Size 6

Trivial Geography Radius1 10

Node Selection Unbiased

Fitness Function F1 Score

some tuples are missing values for some string attributes, filled in by the

string ‘?’.

We tested QFE on a classification problem presented by the adult data

set. This problem, which we call the 50k-Classification problem, requires

a system to predict the final attribute of each tuple, which is whether the

person represented by that tuple makes more than $50,000 per year. For

QFE to evolve queries from examples, we need as inputs a set of positive

example tuples E+ and a set of negative example tuples E�. For this

problem, the entire training database D is used as the example set E,

with each tuple placed in E+ or E� based on the attribute greater 50k.
Additionally, the evolved query is not allowed to access the attribute

greater 50k, since otherwise the problem would be trivial. PushGP

parameters for the 50k-Classification problem are given in Table 1-3.

Simplification is a genetic operator unique to PushGP, in which sections

from the individual’s program are randomly removed in an attempt to

shorten the program without lowering its fitness (Klein and Spector,

2007). Since each simplification step requires a fitness test, we only used

one simplification step per simplification operator, which likely had a

very small, if any, e�ect on the conciseness of evolved queries.

We use a variety of metrics to evaluate queries produced by QFE

and compare them to the results produced by C5.0. We are primarily

interested in measuring the accuracy and conciseness of a query or de-

cision tree, and the time required by the system. Our primary metric of

accuracy is defined as

accuracy =
true positives+ true negatives

||E|| .

12 Genetic Programming Theory and Practice III

We are interested not only in how well our evolved queries perform on

the training examples, but also how well they generalize to other data.

We present accuracy results over both the example tuples, which we

consider training data, and over a set of test data. The adult data set

comes with separate training and testing sets, where only the training set

is available to QFE and C5.0 during the creation of classifiers. For the

queries we produce, conciseness is a count of the number of conditions in

the query’s WHERE clause; for decision trees produced by C5.0, we give

the number of leaves in the decision tree. Even though these measures

of conciseness are not equivalent they do at least give an idea of the

complexity of the results. Finally, we give a rough estimate of the time

required to produce the results on a modest machine, though it should

be noted that QFE is a rough proof of concept implementation whereas

C5.0 has been highly optimized.

5. Results

While we have run QFE repeatedly we present here the results of just

one representative run. On the 50k-Classification problem, a QFE run

created the following query:

SELECT * (1.1)

FROM adult

WHERE (((((education num >= 10) AND (marital status =

’Married-civ-spouse’)) OR (education num >= 15))

AND (age >= 28)) OR (capital gain > 4787))

Of all the queries examined during the run, this query had the best

fitness on the training data. This query has found some interesting

conditions that are good predictors of whether or not a person makes

more than $50,000 per year. First of all, it returns all tuples where

(capital gain > 4787). It also returns tuples where (age >= 28)
and (education num >= 15). Finally, it returns tuples where (age
>= 28) and (education num >= 10) and (marital status = ’Mar-
ried-civ-spouse’). Each of these three sets of conditions lays out

an interesting description of people who make more than $50,000 per

year. Additionally, this query is easy to break apart into these sets of

conditions, making it easily comprehensible.

Performance results for query (1.1) and the decision tree created by

C5.0 are given in Table 1-4. C5.0 gives slightly better accuracy and F1

score results, but QFE is close behind. Interestingly, QFE’s accuracy

increases between the training and test data, where C5.0’s decreases.

This may indicate that C5.0 is overfitting the training data more than

Evolving SQL Queries from Examples with Developmental GP 13

Table 1-4. Performance measures for the 50k-Classification problem for the solution

query (1.1) evolved by QFE and for the C5.0 decision tree. E columns give measures

over the training examples while T columns give measures over the test database which

is unseen by the algorithms. For descriptions of metrics, see Section 4.

Algorithm QFE C5.0

Table E T E T

Conciseness 5 conditions 124 leaves

Positives in Table 7841 3846 7841 3846

Negatives in Table 24720 12435 24720 12435

Tuples in Table 32561 16281 32561 16281

True Positives 5507 2703 5313 2490

True Negatives 21428 10814 23334 11612

False Negatives 2334 1143 2528 1356

False Positives 3292 1621 1386 823

Accuracy 0.8272 0.8302 0.8798 0.8662

Precision 0.6259 0.6251 0.7931 0.7516

Recall 0.7023 0.7028 0.6776 0.6474

F1 Score 0.6619 0.6617 0.7308 0.6956

QFE. QFE took about 10 hours to produce its query, whereas C5.0

took less than 1 second. Regardless of the optimizations that could be

made to QFE, C5.0 is certainly substantially faster. With respect to

conciseness, QFE produced a query with 5 conditions that are easy to

understand, as described above. On the other hand, C5.0 produced a

decision tree with 124 leaves. Even though this decision tree is more

accurate than query (1.1), it does not provide a concise summary of the

data in a way that is easily understood by humans.

We must consider why the queries evolved by QFE are so concise

despite there being no incentive for more concise queries in the fitness

function. Program sizes in PushGP bloat for most problems, and this

is no exception; the mean program size increased during the run that

produced query (1.1). Throughout the run, the Push program generating

the best query tended to be larger than the average program size; even

so, the best found query remained relatively concise. We believe the

developmental approach taken by QFE allows programs to bloat while

using a small number of developmental instructions, resulting in a small

evolved query. There is probably also some evolutionary pressure against

overly large queries, which may be more likely to be degenerate.

6. Conclusions and Future Work

We have presented a system called Query From Examples (QFE) that

takes, as input, a database and sets of positive and negative examples

14 Genetic Programming Theory and Practice III

and produces, as output, an SQL query that characterizes the classifi-

cation implied by the examples in a concise and human-readable form.

We used developmental GP to implement QFE on top of an existing GP

system (PushGP) with little modification. Compared to the well-known

C5.0 decision tree system, QFE is substantially slower and slightly but

not unreasonably less accurate. On the other hand QFE can produce

queries that are far more concise and comprehensible to humans and

that are expressed in the widely understood and practically useful form

of SQL queries. For many conceivable applications the latter criteria

are of paramount importance; this argues for continued exploration of

approaches like that taken with QFE.

Certainly the performance of QFE must be improved to support some

kinds of applications, but we are confident that evolutionary search times

can be reduced from hours to minutes through the use of modern hard-

ware and straightforward software optimizations. This will enable many

applications in which a human-comprehensible insight about the struc-

ture of a data set has substantial value.

Our current implementation of QFE has several limitations, but the

developmental GP approach will make it easy to remove many of these.

For example the current implementation does not allow for the evolution

of queries that perform joins across multiple tables, create projections by

selecting specific attributes in the SELECT clause, use SQL’s GROUP

BY or HAVING clauses, or use aggregate functions such as COUNT() or

AVG(). But each of these capabilities could be provided simply by writ-

ing additional developmental instructions; no other changes would have

to be made to Push program representations and no changes would have

to be made to the evolutionary algorithm or to the fitness assessment

procedures. Of course the addition of such capabilities would change the

evolutionary space, and it is possible that some of these changes detract

from, rather than enhance, the system’s ability to find good queries. But

the developmental framework makes it simple to add additional query

components and to conduct runs to explore their e�ects.

QFE should have no problem with a database that has an extremely

large number of tuples, as long as the example training set is not also

extremely large. We have seen that QFE performs well on a prob-

lem in which the example set contained over 30,000 tuples in the 50k-

Classification problem. If the example set were orders of magnitude

larger, then QFE may take prohibitively long to run, particularly if

individual queries take a long time. However, this problem could be

ameliorated by using a high-performance distributed system, conduct-

ing multiple fitness tests in parallel and also submitting queries to a

parallel database server. We performed our runs using a local SQLite

Evolving SQL Queries from Examples with Developmental GP 15

database because it was easiest to set up for our proof-of-principle runs,

and a parallel database server would speed things up dramatically. A

di�erent limitation may stem from example sets that are too selective.

For example, if a database has a limited number of positive examples,

there may not be enough examples to accurately evolve a query that sat-

isfies those examples in a general way. Nonetheless our work indicates

that developmental GP has the potential to contribute to the discovery

and exploitation of knowledge in databases in significant ways.

Acknowledgment

We thank Gerome Miklau for advice regarding databases and the

UCI Machine Learning Repository for use of the adult dataset; see

http://archive.ics.uci.edu/ml/index.html. This material is based upon

work supported by the National Science Foundation under Grant No.

1017817. Any opinions, findings, and conclusions or recommendations

expressed in this publication are those of the authors and do not neces-

sarily reflect the views of the National Science Foundation.

References

Acar, Aybar C. and Motro, Amihai (2005). Intensional encapsulations

of database subsets by genetic programming. Technical Report ISE-

TR-05-01, Information and Software Engineering Department, The

Volgenau School of Information Technology and Engineering, George

Mason University.

Castro da Silva, Bruno and Thomas, Philip (2010). Automatic query

generation. “Unpublished manuscript”.

Doucette, John A., McIntyre, Andrew R., Lichodzijewski, Peter, and

Heywood, Malcolm I. (2012). Symbiotic coevolutionary genetic pro-

gramming: a benchmarking study under large attribute spaces. Ge-
netic Programming and Evolvable Machines, 13(1):71–101. Special

Section on Evolutionary Algorithms for Data Mining.

Frank, A. and Asuncion, A. (2010). UCI machine learning repository.

Freitas, Alex (2002). A survey of evolutionary algorithms for data min-

ing and knowledge discovery. In Ghosh, A. and Tsutsui, S., editors,

Advances in Evolutionary Computation, chapter 33, pages 819–845.

Springer-Verlag.

Freitas, Alex A. (1997). A genetic programming framework for two data

mining tasks: Classification and generalized rule induction. In Koza,

John R. et al., editors, Genetic Programming 1997: Proceedings of the
Second Annual Conference, pages 96–101, Stanford University, CA,

USA. Morgan Kaufmann.

16 Genetic Programming Theory and Practice III

Gruau, F. (1994). Neural Network Synthesis using Cellular Encoding and
the Genetic Algorithm. PhD thesis, Laboratoire de l’Informatique du

Parallilisme, Ecole Normale Supirieure de Lyon, France.

Ishida, Celso Yoshikazu and Pozo, Aurora Trinidad Ramirez (2002). GP-

SQL miner: SQL-grammar genetic programming in data mining. In

Fogel, David B. et al., editors, Proceedings of the 2002 Congress on
Evolutionary Computation CEC2002, pages 1226–1231. IEEE Press.

Klein, Jon and Spector, Lee (2007). Unwitting distributed genetic pro-

gramming via asynchronous JavaScript and XML. In Thierens, Dirk

et al., editors, GECCO ’07: Proceedings of the 9th annual conference
on Genetic and evolutionary computation, volume 2, pages 1628–1635,

London. ACM Press.

Koza, John R., Andre, David, Bennett III, Forrest H, and Keane, Martin

(1999). Genetic Programming 3: Darwinian Invention and Problem
Solving. Morgan Kaufman.

Montana, David J. (1995). Strongly typed genetic programming. Evolu-
tionary Computation, 3(2):199–230.

Quinlan, J. Ross (1993). C4.5: programs for machine learning. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA.

Spector, Lee (2001). Autoconstructive evolution: Push, pushGP, and

pushpop. In Spector, Lee et al., editors, Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2001), pages 137–

146, San Francisco, California, USA. Morgan Kaufmann.

Spector, Lee and Klein, Jon (2005). Trivial geography in genetic pro-

gramming. In Yu, Tina, Riolo, Rick L., and Worzel, Bill, editors,

Genetic Programming Theory and Practice III, volume 9 of Genetic
Programming, chapter 8, pages 109–123. Springer, Ann Arbor.

Spector, Lee, Klein, Jon, and Keijzer, Maarten (2005). The push3 exe-

cution stack and the evolution of control. In Beyer, Hans-Georg et al.,

editors, GECCO 2005: Proceedings of the 2005 conference on Genetic
and evolutionary computation, volume 2, pages 1689–1696, Washing-

ton DC, USA. ACM Press.

Van Rijsbergen, C.J. (1979). Information retrieval. Butterworths, Lon-
don.

Veeramachaneni, Kalyan, Vladislavleva, Ekaterina, and O’Reilly, Una-

May (2012). Knowledge mining sensory evaluation data: genetic pro-

gramming, statistical techniques, and swarm optimization. Genetic
Programming and Evolvable Machines, 13(1):103–133. Special Section
on Evolutionary Algorithms for Data Mining.

