


Compositional

Autoconstructive Dynamics

Kyle Harrington

DEMO Lab, Brandeis University, Waltham, MA
kyleh@cs.brandeis.edu

Emma Tosch

DEMO Lab, Brandeis University, Waltham, MA
etosch@cs.brandeis.edu

Lee Spector

School of Cognitive Science, Hampshire College, Amherst, MA
lspector@hampshire.edu

Jordan Pollack

DEMO Lab, Brandeis University, Waltham, MA
pollack@brandeis.edu

Autoconstructive evolution is the idea of evolving programs through self-creation.

This is an alternative to the hand-coded variation operators utilized in traditional ge-

netic programming (GP) and the deliberately limited implementations of meta-GP.

In the latter case strategies generally involve adapting the variation operators which

are then used in accordance with traditional GP. On the other hand, autoconstruction

offers the ability to adapt algorithmic reproductive mechanisms specific to individuals

in the evolving population. We study multiple methods of compositional autoconstruc-

tion, a form of autoconstruction based on function composition. While much of the

previous work on autoconstruction has investigated traditional GP problems, we inves-

tigate the effect of autoconstructive evolution on two problems: Order, which models

order-sensitive program semantics, and Majority, which models the evolutionary acqui-

sition of semantic components. In doing so we show that compositional autoconstruc-

tion exhibits surprising dynamics of evolutionary improvement, and that compositional

autoconstruction can be comparable to GP. This advance is a step towards the search

for the open-ended evolution of problem-solving techniques.

856



1 Introduction

Evolutionary computation is a collection of techniques inspired by evolution.

Evolutionary algorithms (EA) operate on populations of individuals. At the

heart of any EA there is a three step loop: evaluate, select, and vary. The de-

tails of these steps and the addition of intermediate steps constitutes the study

of evolutionary computation. In this research we focus on genetic program-

ming (GP) the evolution of computer programs [13]. GP is related to genetic

algorithms (GA) a field that classically studies the crossover and mutation of

fixed-length bitstring genomes. GP moves beyond the fixed-length bitstring rep-

resentation and uses computer programs as genomes. A detailed review of GP

is beyond the scope of this paper, for additional details see [13].

Meta-evolutionary techniques have been plagued by the “meta-meta-

. . . problem” since the proposal of the first meta-evolution algorithm [16]. The

“meta-meta-. . . problem” is: if a meta-population varies a problem solving pop-

ulation, what varies the meta-population? The simplest option is to add

additional meta-layers. However, not only does the addition of meta-meta-

populations not solve the problem, but it also leads to a significant cost in

evaluating the performance of higher-order meta-populations. In practice the

use of more than one layer of meta-evolution is avoided; instead, researchers

investigate various levels of the evolutionary process.

For all intents and purposes, there are three levels at which adaptation may

take place within an EA: populations, individuals, and components. Population-

level adaptation generally involves update rules on evolutionary parameters such

as mutation and crossover rates. Individual-level adaptation involves similar

parametric adjustments; however, the parameters are unique to individuals.

Component-level adaptation associates parameters with individual components

that influence variation. The distinction between levels of adaptative evolu-

tion is fuzzy. Some instances of individual-level adaptation associate values

with components within individuals that bias variation [2], while some forms

of individual-level adaptation may have direct effects upon variation within the

entire population [3]. The distinctions of these levels of adaptation have been

introduced in detail [1]; however, parametric adaptation is not the only option.

The evolution of programs in GP involves the variation of symbolic expres-

sions. Although some of the previously mentioned techniques involve meta-

evolutionary processes working with GP, the first application of GP to itself was

done in the context of a sea of GP programs [14]. In this work a program is capa-

ble of using template-based matching to search the sea of programs for a match

that can be permanently incorporated the program’s structure. Programs are

solutions to simple boolean problems. In concluding, the researcher notes that

although the probability of spontaneous emergence of productive self-replication

is low, the approach of self-improving GP is in fact computationally tractable.

A notable piece of later work on meta-evolution in GP was meta-GP [5].

In this work, a population of variation operators (the meta-population) act on

a population of problem solving programs. The variation operators are tree

857



manipulation programs that are capable of performing recombinatory variation
by using two solution programs to create a new candidate solution. With this
additional meta-population it was shown that meta-GP can perform comparably
to GP. However, the meta-population is evolved with hand-coded algorithms.
This use of human-designed variation operators acting upon the meta-population
circumvents the complications of layered meta-populations, but puts an inherent
limit upon the evolutionary process.

An advantage of the meta-GP approach is that it introduces less bias than
most adaptive algorithms by evolving the operators of variation. However, the
use of a standard EA on the meta-population is an additional constraint that
is not required. Autoconstructive evolutionary algorithms (AEA) combine all
levels of adaptive algorithms while avoiding the “meta-meta-. . . problem.” In-
dividuals in AEA contain their own variation code. When autoconstructing, a
program may use itself, chosen, or selected individuals from the population as in-
puts when producing a child program. Self-directed selection has been explored
for age- and geographic-based methods [17]. However, efficient autoconstruction
continues to elude researchers [19].

We study a subset of autoconstruction called “compositional autoconstruc-
tion,” where programs are autoconstructively composed by other programs for
the production of offspring. Three forms of composition are explored: self-
composition, asymmetric collision, and collision composition, which are dis-
cussed in detail later in the paper. In this work we present a study of the
dynamics of autoconstructive evolution on two problems that model particular
features of the evolution of program semantics. These problems are Order and
Majority [8]. The Order problem is designed to model the organization of con-
ditional branching, such as the true and false clauses of if-statements. On the
other hand, the Majority problem models a general property of GP: the acqui-
sition of more beneficial code than detrimental code. These problems serve to
characterize the autoconstructive evolution by indicating its performance both
on a problem solving task, and by demonstrating its evolutionary capabilities.

2 The Push Language

Push is a stack-based programming language specifically designed for evolu-
tionary computation [22]. Instructions, such as arithmetic, program flow, and
code manipulation instructions, take (pop) input from and output (push) to
a set of global typed-stacks. Types include integers, floating-points, booleans,
code, and tags (inexactly-matching identifiers that support a form of modular-
ity [21]). A particularly innovative feature in Push is the exec stack [20]. The
exec stack provides instructions for self-modification during execution through
a stack. Aside from the content of the language itself Push has two primary
properties that make it useful for evolution. First, instructions do not enforce
a syntactic structure because of the use of global stacks for instruction inputs
and outputs. Second, when the necessary inputs are not available on the stacks
for an instruction, the instruction simply has no effect and execution continues

858



(the instruction acts as a “NOOP”). As opposed to reiterating a description
of the language we present an example and direct the reader to the detailed
descriptions of the language available in [22, 20, 21].

We begin by showing an example of simple arithmetic (7 INTEGER.+ 3
INTEGER.* 0.5 INTEGER.DUP INTEGER.+). As Push programs are
evaluated left to right we begin with 7, which is pushed onto the integer stack.
INTEGER.+ is evaluated, but because there is only one value on the integer
stack INTEGER.+ has no effect. 3 is then pushed onto the integer stack.
INTEGER.* pops 3 then 7 and pushes 21. 0.5 is pushed onto the float stack.
The instruction INTEGER.DUP takes the top item on the integer stack and
pushes a copy of it onto the integer stack, so now there are two copies of 21 on
the integer stack. Finally, INTEGER.+ pops both copies of 21 and pushes
42. The result of evaluating this expression is 0.5 and 42 on top of the float
and integer stacks, respectively.

The PushGP evolutionary framework has been the primary mechanism for
evolving problem solutions with Push. In general PushGP can act like any GP
system, it is distinguished from standard GP primarily by its Push program-
specific algorithms. Although many forms of variation have been implemented
in PushGP, crossover, mutation, and replacement are the only forms of non-
autoconstructive reproduction used in this study.

Autoconstruction was one of the primary considerations in the design of
Push. The code type was introduced to allow for simple manipulation of pro-
grams and has been the primary datatype involved in autoconstruction studies
thus far [22, 19]. The code type implements a large number of instructions,
many of which are inspired by Common Lisp. This diverse autoconstructive
vocabulary has led to a number of interesting solutions presented in the previ-
ously mentioned studies. However, the combinatorics of evolving programs are
exponentially unfavorable with respect to the number of possible instructions,
even with Push’s evolution-friendly design.

The most recent version of Push has been developed in the programming
language Clojure, a mostly-functional version of Lisp that runs on the Java Vir-
tual Machine [9]. Clojure has revisited the idea of the zipper, a functional data
structure that represents a location within a tree [11]. A zipper allows for simple
tree traversal with directional commands. Zippers have been incorporated into
Push as a reified data type with their own stack. In addition to the traditional
zipper movements, instructions are added that allow for subtree manipulation
and random movement. Although a larger number of zipper instructions have
been added to Push, the subset used in this study are shown in table 1. The
simplicity of these tree-based instructions facilitates autoconstruction.

3 Compositional Autoconstruction

We use the phrase “compositional autoconstruction” here to emphasize a view of
autoconstruction as something akin to function composition, in which programs

859



Instruction Description
ZIP.DOWN Move the top zipper deeper in the tree, if possible.
ZIP.LEFT Move the top zipper to the left sibling, if possible.

ZIP.RIGHT Move the top zipper to the right sibling, if possible.
ZIP.RAND Replace the subtree rooted at the top zipper’s location

with a random subtree.
ZIP.ROOT Move the top zipper to the root of the tree.
ZIP.RLOC Move the top zipper to a random location in the subtree

rooted at the top zipper.
ZIP.RRLOC Move the top zipper to a random location in the tree.
ZIP.SWAP Pop two zippers and push them back onto the stack in

reverse order.
ZIP.SWAPSUB Swap the subtrees rooted at the top two zippers.
INTEGER.ERC An ephemeral random integer in: [−16,−1] ∪ [1, 16].

EXEC.NOOP A placeholder instruction used for “padding” that has
no effect.

Table 1: Instruction set used in this study.

are applied to programs in order to produce new programs.1 This usage follows
that of Fontana [7], and it also highlights connections to the “compositional
evolution” work of Watson [23], which emphasizes additional forms of biological
composition such as symbiogenesis.

In the more specific context of autoconstructive evolution “compositional
autoconstruction” emphasizes the nature of the inputs and outputs to programs
that produce offspring in an autoconstructive population. In particular, we will
consider programs that are applied only to their own code in order to produce
offspring (without having access to other programs in the population), programs
that are applied only to the code of single, randomly selected programs in the
population to produce offspring (without having access to their own code), and
programs that are applied both to their own code and to the code of other
single programs in the population. In contrast, many previous autoconstructive
evolution systems have allowed arbitrary access to any code in the population [17,
18], while others have restricted access but without the systematic delineation
of access restrictions that we present here [19].

In the present work, because we are interested in studying the self-organized
dynamics of autoconstructive populations, we also avoid most of the constraints
on reproductive behavior that have been used in prior systems (e.g. the
“improvement-based” constraints on reproduction in [19]). The only constraint

1Note that this is somewhat different from the standard mathematical usage in which
composition refers to the application of a function to the output of another function. In
compositional autoconstruction this kind of composition does occur across generations, with
the outputs of programs (which are themselves programs) serving as the input to the programs
of the next generation. But within the reproductive processes of a single generation programs
are applied to the code of other programs, not their outputs.

860



on autoconstruction in this work, aside from the constraint that programs can-

not exceed the global size limit, is a “no cloning” rule: a child may not have the

exact same program as its parent.

Furthermore, for all experiments presented in this study the zipper instruc-

tions have no direct interaction with the problem-specific instructions, and vice

versa. This is because both the Order and Majority problems are scored via

inspection as opposed to evaluation. This may help to facilitate autoconstruc-

tion, and in any event it helps us to focus our study on the dynamics of au-

toconstructive populations by allowing autoconstructive and problem-specific

instructions to be mostly independent. Although some of the more ambitious

goals of autoconstruction involve code-aware instructions (see [17, 19]), we show

that autoconstruction can have acceptable performance with just simple tree-

based instructions.

3.1 Self-composition

Self-composition is one of the most basic forms of compositional autoconstruc-

tion. A similar approach is taken in [19] where Push’s code stack is used with

a large instruction set. This type of autoconstruction is a type of mutation.

During self-composing autoconstruction a program can perform mutations at

particular locations in a copy of its program in order to create a child. The

reproduction rule for self-composition can be written as

f(f) = h

where f is the parent and h is the child. This form of autoconstruction is entirely

self-contained within an individual, and for this reason there is no external de-

pendency on the GP population. The next form of autoconstruction we consider

is asymmetric collision, which introduces a population-level dependency.

3.2 Asymmetric Collision

Asymmetric collision compositional autoconstruction is inspired by the AlChemy

system [7]. In the AlChemy system a collection of objects (programs) are con-

tained within a reactor. The system evolves by iteratively selecting two objects

at random which “interact.” Interaction occurs via function composition, the

result of which is subjected to a collision rule. In practice the collision rule is

used to define boundary conditions, such as evaluation limit (to ensure termi-

nation) and replication of input functions. In our system asymmetric collisions

follows essentially the same algorithm. Two programs are selected from the

population and one is composed by the other. Asymmetric collisions introduce

indirect interaction amongst individuals within a population. Asymmetric colli-

sion composition can be expressed as

f(g) = h

861



where f is the active parent, g is the passive parent, and h is the child. Like

self-composition, asymmetric collision composition is a form of mutation. The

only code available to the autoconstructive process is gs code and code obtained

from the random code generator via ZIP.RAND. In the next section we introduce

collision compositional autoconstruction, which gives programs the ability to

exchange genetic information during the autoconstructive process.

3.3 Collision

Collision compositional autoconstruction is a recombinatory form of autocon-

struction. We present a simple binary form of collision compositional autocon-

struction in the form

f(g, f) = h

where f is the active parent, g is the passive parent, and h is the child. The

composition of two programs allows exchange of genetic information between the

two programs. The importance of recombination in evolutionary computation

has been emphasized in the fields of genetic algorithms and genetic programming

[10, 13]. We now go on to explore the properties of these forms of compositional

autoconstruction.

4 Autoconstruction of Program Semantics

The Order and Majority problems are model problems for studying the evolu-

tion of program semantics in genetic programming [8]. The Order problem is

designed to model conditional structures in programs, such as the ordering of

true and false clauses of if-statements. The Majority problem models evolu-

tionary accumulation of semantically important components. An analysis of the

hardness of these two problems is presented in [4]. When originally presented

these problems were used to model the effects of different types of variation

operations. Within the context of Push and autoconstructive evolution both

problems are of interest; however, the implications of these problems in Push

are slightly different. These implications are presented in the relevent sections.

For both problems the problem size was 16. The lowest fitness possible is

0, while the highest fitness is 16. The problem-specific “instructions” are just

integers in the ranges [−16,−1] and [1, 16]; no other Push instructions are used

aside from the ZIP instructions listed in table 1 and the “padding” instructions

described below. The positive integers represent components that should occur

earlier during evaluation in the Order problem, and beneficial components in

the Majority problem. The negative integers represent detrimental components

in both problems. In these experiments the autoconstructive configurations are

compared to one another and to standard PushGP, using instruction padding

(the inclusion of NOOP instructions) in any configuration with less than the

maximum number of instructions of any configuration. This is done to make

862



Parameter Value

Selection method tournaments of 5

Population size 1000

Maximum program size 500

Maximum number of generations 1001

Number of runs per condition 250

Table 2: Parameters used.

the combinatorics of the problem spaces equivalent2. The parameters used in

the following experiments are presented in table 2. Performance of parameter

settings are measured with the median success generation and computational

effort. Median success generation is the generation in which an individual in the

population achieves a fitness of 16. Computational effort is a metric developed

for GP [13] to quantify the amount of computation required to solve a problem.

It is computed by estimating the probability of a population containing a success

at a given generation. This probability distribution is then used to compute how

many individuals are required to solve a problem with a certain probability, z.
In this study z = 99%. The other metric used is diversity, which is ratio of the

number of distinct programs to the total number of programs in the population.

In this study we show that compositional autoconstruction can be comparable to

GP, which means that the computational effort and median success generation

of autoconstruction are on par with GP.

4.1 Order

The stack-based nature of Push means that the Order problem represents any

order-specific binary stack-based instruction, such as division, subtraction, con-

ditionals, loops, code manipulation, etc.. Although it is possible that intermedi-

ate instructions could interfere with stack contents (i.e. the addition/removal of

stack items), we do not introduce distance between complimentary instructions.

The fitness of an Order solution, r(f), is computed as

∀zi ∈ [1, s], ifM(zi, f) < M(−zi, f) vi = 1

otherwise vi = 0

r(f) =
�

i

vi (1)

where s is the problem size, M(z, f) is the number of elements preceeding

the first occurrence of z within program f in depth-first order. An exam-

ple of program is (ZIP.RRLOC (3 (5) (16 (10) ZIP.RAND 10) -8) -6
(-8 (ZIP.RIGHT 13)) (-1 ((-11 (-6 13 (9)) -15) 8 (12) 8 -15) 10)

2Collision composition uses 2 additional instructions (ZIP.SWAP and ZIP.SWAPSUB)
not accounted for in the instruction set padding.

863



(a) Computational effort (b) Median success generation

(c) GP (d) Self-composition

(e) Asymmetric Collision (f) Collision

Figure 1: Comparison of compositional autoconstruction to GP on Order. Fitness

changes are normalized to range from 0 to a maximum of 1.

(ZIP.RLOC) (ZIP.ROOT) 12). This autoconstructive mutation program has
fitness of 7 and produces a child using standard subtree replacement mutation
(which is implemented by the first two zipper instructions, with the subsequent
zipper instructions having no effect).

864



Overall performance on the Order problem is shown in figure 1. It is clear
from the computational effort scores that Order is a fairly easy problem for all of
the evolutionary techniques to solve. While GP outperforms autoconstruction
in computational effort, autoconstruction performs similarly when considering
the median success generation. Autoconstruction’s higher metrics are not sur-
prising for two reasons. First, good variation operators are used consistently,
beginning with the first generation in GP, while the autoconstructive compo-
nents of programs are initialized randomly. Second, Order is a simple problem
that standard GP operators are known to work well on. However, this should
not discount from the informativeness of this model problem.

Fitness dynamics for the Order problem are shown in figures 1c-1f. Each
point represents a generation in one of the experimental conditions. In the stan-
dard GP condition (figure 1c) there are moderate increases in fitness with a high
and consistent level of diversity. The consistently high level of diversity is due to
the variation operators used in GP. Generally solutions are not repeatedly eval-
uated due to the small changes that frequently do not significantly decrease the
fitness of individuals, allowing them to survive in subsequent generations. Figure
1d shows the performance of self-composition, which sometimes produces larger
improvements in fitness, but suffers from lower levels of diversity. Of particular
note is the cluster of generations with high diversity that have large improve-
ments in fitness. This may either be due to the ease of improving the initially
random and diverse population or speciation. In figure 1e asymmetric collision
compositional autoconstruction is shown. This form of autoconstruction exhibits
particularly interesting dynamics. There are many changes in fitness that lead
to near optimal and optimal individuals. This method of autoconstruction also
appears to maintain consistent levels of diversity, albeit not as consistently high
as standard GP. Collision compositional autoconstruction (figure 1f) behaves
similarly to self-composition while producing outliers with large improvements
in fitness that are similar to the results of produced by asymmetric collisions.
However, this form of binary collision appears to suffer from complications in
diversity. This is most likely due to its relation to self-composition. Potential
explanations are suggested in the discussion.

The Order problem is designed to model order-based semantic dependencies
within programs. As such, Order primarily serves to model the ability of an
EA to produce problem solutions. The results support the hypothesis that au-
toconstruction is in fact capable of facilitating the search for problem solutions
in ways that are notably different than traditional GP. Now we consider the
Majority problem, which models properties of the evolutionary process itself.

4.2 Majority

The Majority problem awards fitness for maintaining at least as many beneficial
components as detrimental components. Majority has been described as a weak
property of GP solutions. The primary property modeled by Majority in Push
is the ability of a program to have the capability to push a sufficient amount of

865



(a) Computational effort (b) Median success generation

(c) GP (d) Self-composition

(e) Asymmetric Collision (f) Collision

Figure 2: Comparison of compositional autoconstruction to GP on Majority. Fitness
changes are normalized to range from 0 to a maximum of 1.

correct information onto the stacks. This is of interest for considering the proba-
bility that an individual can be used to produce a new and better individual. In
the context of autoconstruction this is a particularly important question: how
well does autoconstruction improve individuals?

866



The fitness of a Majority solution, r(f), is computed as

∀zi ∈ [1, s], ifN(zi, f) ≥ N(−zi, f) ∧N(zi, f) > 0 vi = 1

otherwise vi = 0

r(f) =
�

i

vi (2)

where s is the problem size, N(z, f) is the number of instances of integer z in
program f . The example program presented in the previous section on Order
has a Majority fitness of 1.

Overall performance of Majority is shown in figures 2a and 2b. Self-
composing autoconstruction performs comparably to GP, both in terms of com-
putational effort and median success generation. This is most likely because
the Majority problem is focused on programs that have more of a certain set of
components. This implementation of the problem simply has 32 problem-specific
components, all in the form of terminals. Many programs in the population will
contain all these components. In such situations, a self-composing autoconstruc-
tive program can easily evolve to preserve a beneficial set of components.

Fitness dynamics for the Majority problem are shown in figures 2c-2f. The
performance of standard GP on Majority (figure 2c) is similar to that seen on
the Order problem. A high level of diversity is maintained with moderate im-
provements in fitness. In figure 2d, the performance of self-composition on the
Majority problem appears to be markedly poorer than on the Order problem
when noting the low levels of diversity and moderate improvements in fitness.
However, as can be seen in both the computational effort and median success
generation, self-composition is still the best performing method of compositional
autoconstruction. Also, there is the recurrence of the distinct cluster of genera-
tions where at a relatively high level of diversity large improvements in fitness
are made. Asymmetric collisions (figure 2e) follow a similar trend to the one seen
on the order problem, with a higher density of generations being at high levels
of diversity with large improvements in fitness. Collision compositional auto-
construction (figure 2f) performs particularly poorly on the Majority problem.
This is surprising, due to the ability of this form of composition to mimic both
self-composition and asymmetric collision. Nevertheless, aside from a number
of outliers collision composition leads to lower levels of diversity and produces
smaller increases in fitness, even than standard GP. It is clear from these re-
sults that self-composition possesses some unique capabilities to perform well
under certain circumstances, yet suffers from complications of diversity. On the
other hand, asymmetric collisions tend to support higher levels of diversity while
producing large improvements in fitness.

5 Discussion

We show that autoconstruction can perform comparably to GP on problems
that model program semantics. The initial randomization of autoconstructive

867



programs should slow evolution, but surprisingly the extent to which it does so
appears to be reasonably bounded. One of the primary expectations of autocon-
struction is that it will be of greatest use for difficult problems for which standard
GP fails to find solutions. While this may still be true because GP does out-
perform autoconstruction, the comparable performance of autoconstruction on
problems of program semantics elucidates the benefits of autoconstruction. Our
data shows that the AEAs considered here often produce larger jumps in pro-
gram space than traditional GP search, which can be seen in the large increases
in fitness produced by compositional autoconstruction.

On the Order problem we observe that compositional autoconstruction can
generally find successful programs in a similar number of generations to standard
GP. This observation is substantated by median success generations. Compu-
tational effort metrics are important to present because of their use as a gold-
standard of GP performance. However, when autoconstruction is not subjected
to techniques for reinforcing diversity it is not uncommon for diversity to crash
within a population. For this reason it is important to primarily draw conclu-
sions based upon the median success generation results.

The consistent diversity and significant improvements seen for asymmetric
compositional autoconstruction in both the Order and Majority problems is
of particular interest to practitioners of autoconstruction. The only difference
between asymmetric collisions and self-composition is the subject of the compo-
sition. However, because of the implementation of these problems there is little
linkage between autoconstructive functionality and the inspection-based fitness
score. Thus, the primary difference between self-composition and asymmetric
collisions is the source of the input during autoconstruction. This leads us to
suggest that not only can the diversity in a population be increased by the ap-
plication of a wide range of variation operators, but significant improvements
in fitness can also be achieved with this strategy. It may be possible to fur-
ther improve the performance of co-dependent autoconstruction mechanisms by
increasing the amount of children produced within any given generation.

Aside from a no-cloning rule we do not introduce any reproduction-based
selection pressures on the population. This decision is justified by the previous
finding of the diversification capabilities of autoconstructive evolution [18] and
the goal of studying autoconstruction in its most simple form. We suggest that
crowding-based techniques can be used as a method for increasing diversifica-
tion. Alternatively, autoconstructive improvement metrics [19] can be treated
as additional objectives for use with coevolutionary techniques [12, 6, 15].

One reason that the autoconstructive instruction set used here may out-
perform instruction sets used in previous studies is that the zipper-based in-
structions provide the ability to express powerful operations with a small set of
operators. This allows for the representation of useful variation operators with
relatively few instructions. That being said, the combination of code-stack based
autoconstruction and zipper instructions may support even more powerful forms
of autoconstructive evolution

We have shown that compositional autoconstruction can perform compara-

868



bly to GP and that some forms of autoconstruction produce significantly higher
improvements in fitness. By exploring problems that model program semantics
we can see that autoconstruction supports the evolutionary acquisition of ben-
eficial components, as well as the ordering of problem-solving components. By
allowing algorithmic mechanisms of variation to evolve within individuals the
dynamics of GP-comparable compositional autoconstruction is a step closer to
the open-ended evolution of problem-solving techniques.

6 Acknowledgements

We thank the DEMO lab and the Hampshire College CI lab. This material is
based upon work supported by the National Science Foundation under Grant
No. 1017817 and 0757452. Any opinions, findings, and conclusions or recom-
mendations expressed in this publication are those of the authors and do not
necessarily reflect the views of the National Science Foundation. Thanks also to
Hampshire College for support of the Hampshire College Institute for Compu-
tational Intelligence.

Bibliography

[1] Angeline, P.J., “Adaptive and self-adaptive evolutionary computations”,
Computational Intelligence: A Dynamic Systems Perspective, (1995).

[2] Angeline, P.J., “Two self-adaptive crossover operations for genetic pro-
gramming”, Advances in genetic programming , (1995).

[3] Angeline, P.J., and J.B. Pollack, “The evolutionary induction of sub-
routines”, Proc. of the 14th Annual Conf. of the Cognitive Science Society ,
Lawrence Erlbaum (1992), 236–241.

[4] Durrett, G., F. Neumann, and U.M. O’Reilly, “Computational com-
plexity analysis of simple genetic programming on two problems modeling
isolated program semantics”, Proc. of the 11th Workshop Proc. on Foun-
dations of Genetic Algorithms, (2011).

[5] Edmonds, B, “Meta-genetic programming: Co-evolving the operators of
variation”, Turk J. Elec. Engin (2001).

[6] Ficici, S., and J. Pollack, “Pareto optimality in coevolutionary learn-
ing”, Advances in Artificial Life (2001), 316–325.

[7] Fontana, W, “Algorithmic chemistry”, Artificial life II (1991).

[8] Goldberg, D., and U.M. OReilly, “Where does the good stuff go, and
why? How contextual semantics influences program structure in simple
genetic programming”, Genetic Programming (1998), 16–36.

869



[9] Hickey, R., “The Clojure programming language”, Proc. of the 2008

Symp. on Dynamic Languages, (2008), 1.

[10] Holland, J.H., Adaptation in Natural and Artificial Systems, (1975).

[11] Huet, G., and I.R. France, “Functional pearl: The zipper”, J. Functional

Programming , (1997).

[12] Juille, H., and J.B. Pollack, “Co-evolving intertwined spirals”, Proc.

of the 5th Annual Conf. on Evolutionary Programming , (1996).

[13] Koza, JR, Genetic programming: on the programming of computers by

means of natural selection, (1992).

[14] Koza, J.R., “Spontaneous emergence of self-replicating and evolutionarily

self-improving computer programs”, Artificial life III , vol. 17, Citeseer

(1994), 225–262.

[15] Popovici, E., A. Bucci, R.P. Wiegand, and E.D. de Jong, “Coevolu-

tionary Principles”, Proc. of the 11th Workshop Proc. on Foundations of

Genetic Algorithms, (2011).

[16] Schmidhuber, J., Evolutionary principles in self-referential learning. (On

learning how to learn: The meta-meta-... hook.), PhD thesis Institut für

Informatik, Technische Universität München (1987).

[17] Spector, L., “Autoconstructive evolution: Push, pushGP, and pushpop”,

Proc. of the Genetic and Evolutionary Computation Conference, (2001),

137–146.

[18] Spector, L., “Adaptive populations of endogenously diversifying pushpop

organisms are reliably diverse”, Proc. of Artificial Life VIII , (2002), 142.

[19] Spector, L., “Towards Practical Autoconstructive Evolution: Self-

Evolution of Problem-Solving Genetic Programming Systems”, Genetic

Programming Theory and Practice VIII (2010), 17–33.

[20] Spector, L., J. Klein, and M. Keijzer, “The Push3 execution stack

and the evolution of control”, Proc. of the 2005 Conf. on Genetic and

Evolutionary Computation, ACM (2005), 1689–1696.

[21] Spector, L., B. Martin, K. Harrington, and T. Helmuth, “Tag-

based modules in genetic programming”, Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO-2011), (2011).

[22] Spector, L., and A. Robinson, “Genetic programming and autoconstruc-

tive evolution with the push programming language”, Genetic Programming

and Evolvable Machines 3, 1 (2002), 7–40.

[23] Watson, R.A., Compositional Evolution: Interdisciplinary Investigations

in Evolvability, Modularity, and Symbiosis, PhD thesis (2002).

870


