UNCORRECTED PREPRINT of:
Metevier B., Saini A.K., and Spector L. In: Banzhaf W., Spector L., Sheneman L (eds)
Genetic Programming Theory and Practice XVI. Genetic and Evolutionary Computation. Springer, Cham

Lexicase Selection Beyond Genetic
Programming
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Abstract

Lexicase selection is a selection method that was developed for parent selection
in genetic programming. In this chapter, we present a study of lexicase selection in
a non-genetic-programming context, conducted to investigate the broader applica-
bility of the technique. Specifically, we present a framework for solving Boolean
constraint satisfaction problems using a traditional genetic algorithm, with linear
genomes of fixed length. We present results of experiments in this framework us-
ing three parent selection algorithms: lexicase selection, tournament selection (with
several tournament sizes), and fitness-proportionate selection. The results show that
when lexicase selection is used, more solutions are found, fewer generations are
required to find those solutions, and more diverse populations are maintained. We
discuss the implications of these results for the utility of lexicase selection more
generally.

1 Introduction

Lexicase selection is a selection algorithm for evolutionary computation systems,
used to determine which individuals will be permitted to contribute to future gene-
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tations in the evolutionary process. Although it has been used for survivor selection
[La Cava and Moore, 2017], its primary use has been as a parent selection algo-
rithm, selecting individuals to be provided as inputs to genetic operators. The ge-
netic operators, such as mutation and crossover, use the selected parents as source
material out of which to construct children.

Lexicase selection selects individuals by filtering a pool of individuals which, be-
fore filtering, typically contains the entire population. The filtering is accomplished
in steps, each of which filters according to performance on single test case (in-
put/output pair). The test cases are considered one at a time in random order. Lex-
icase selection has been tested most extensively in genetic programming systems,
where it has been shown to outperform other selection methods in several contexts
[Spector, 2012, Helmuth et al., 2014, La Cava et al., 2016, Helmuth et al., 2016b, Helmuth et al., 2016a,
McPhee et al., 2016, Helmuth et al., 2016¢, La Cava et al., 2018]. However, the ef-
fectiveness of lexicase selection in other settings has not been fully explored.

In this paper, we investigate the utility of lexicase selection in traditional genetic
algorithms with linear, fixed-length genomes. We chose this framework in part be-
cause the large literature of traditional genetic algorithms provides context for the
interpretation of our results that is both broad and deep.

The problems to which we apply traditional genetic algorithms, using several
parent selection methods, are randomly generated Boolean constraint satisfaction
problems [Craenen et al., 2003]. Although the problems are derived from Boolean
satisfiability problems, the problem-solvers (in this case, the genetic algorithms) are
not given access to the constraints themselves, or to the variables that they contain.
Rather, the problem-solvers are given access only to a procedure that determines
whether each constraint is satisfied by an assignment of truth values to all variables.
Crucially, the problem-solvers are given no information about which consraints may
depend on which others. This design is intended to allow the problems serve as
abstractions of problems in many real-world domains, in which we can tell whether
or not a candidate solution satisfies a constraint, but we have no further information
about the nature of the constraint, or of the ways in which different constraints might
be interdependent.

In this chapter, we present the results of experiments using the traditional genetic
algorithm, with lexicase selection, to solve Boolean constraint satisfaction prob-
lems. We compare the performance of the algorithm using lexicase selection to the
performance of the same algorithm run with more traditional selection algorithms,
specifically fitness-proportionate selection and tournament selection (with several
tournament sizes).

In the following sections we first describe the lexicase selection algorithm that is
the focus of this investigation. We then describe the Boolean constraint satisfaction
problems that we use for our experiments, and our experimental methods. We then
present our results, and discuss their implications for future work.
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2 Lexicase Selection

Lexicase selection is a method by which individuals can be selected from a popula-
tion for use as the source material out of which genetic operators, such as mutation
and crossover, construct offspring for the following genetation. Lexicase selection is
distinctive in that it allows selection to depend on multiple assessment criteria and
all of their combinations, without requiring that these criteria be aggregated into
overall “fitness” values. This is different from the selection methods used tradition-
ally in genetic programming, which require the assignment of a single scalar value
to each candidate solution in order to guide search.

In most of the prior work on lexicase selection, it has been used in genetic pro-
gramming systems to select parent programs that are then subjected to variation to
produce the next generation of programs. In this context, the assessment criteria are
generally the errors of the program on different inputs, which are often referred to,
in the genetic programming literature, as “fitness cases” or “test cases.”

In lexicase selection, each time a parent is needed, a pool of individuals, which
initially contains the entire population,' is winnowed in successive stages until a
single individual remains and is selected. In the first stage, only the individuals that
perform best over a randomly chosen test case are retained. If more than one in-
dividual remains, a second randomly chosen test case is used for the next stage
of winnowing. This process repeats until only a single individual remains, or until
the test cases have been exhausted, in which case a random individual from the re-
maining pool is selected. Pseudocode for the most commonly used form of lexicase
selection is provided in Figure 1.

Result: Individual to be used as a parent
candidates := the entire population
cases := list of all test cases in a random order
while True do
candidates := candidates performing best on the first case
if only one candidate exists in candidates then
‘ return that candidate

end
if cases is empty then
‘ return a randomly selected candidate from candidates

end
delete the first case from cases

end

Fig. 1: Lexicase Selection

1t is also possible to limit the initial pools in various ways. When the initial pool contains the
entire population, which is the best-studied setting, we refer to the algorithm more specifically as
“global pool” lexicase selection.
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Sometimes, lexicase selection chooses individuals with performance that is good
over only a small number of test cases. Many of these “specialists” would, under
many selection methods that require aggregation of performance on all test cases
into single scalar values, rarely be selected for reproduction and variation. This
would often be the case even if one of the cases solved by the specialist was dif-
ficult for a majority of the population to solve. The reason for this is the assump-
tion of uniformly distributed selection pressure, with all parts of a problem being
equally hard.“Specialists” are ignored even though they are better at certain subsets
of the problem and may contain a partial solution to the task at hand. By allowing
these “specialists” to contribute to the next generation, lexicase selection allows for
offspring that may contain solutions to a particular subset of the problem. Com-
parisons of lexicase selection to other methods developed with similar motivations,
such as “implicit fitness sharing” and “deterministic crowding,” are presented else-
where [Helmuth et al., 2014, La Cava et al., 2018].

Several variants of the lexicase selection method have also been developed and
studied. For example, epsilon lexicase selection, a variant in which candidates that
are not strictly “best” on the current case but which are “close enough” (within
epsilon, for some definition of epsilon) has been developed and shown to be par-
ticularly effective on problems with floating-point errors. Other variants have been
developed and explored in previous instances of the Genetic Programming Theory
and Practice workshop [Spector et al., 2018]. For the present study, however, we
used the simplest and most standard version of the method, as described above.

3 Problems

3.1 Boolean constaint satisfaction

The problems used for the experiments in this study are Boolean constraint satis-
faction problems [Craenen et al., 2003] that are randomly generated based on three
parameters: a total number of variables v, a number of constraints ¢, and a number
of clauses per constraint 7.

Each clause is a disjunction of three literals, each of which is either a variable
or a negated variable. Each constraint is a conjunction of clauses, and a problem
is a conjunction of constraints. An assignment of truth values to the variables is a
solution if all of the constraints evaluate to true in the context of the assignment.

These problems are similar in some respects to Boolian satisfiability problems
expressed in 3-CNF (conjunctive normal form, with three literals per clause), with
the clauses grouped to form constraints. However, unlike the case with standard sat-
isfiability problems, such as those used in SAT-solver competitions [Jédrvisalo et al., 2012],
we do not allow our problem solvers to see the formulae themselves, or to have any
information about which variables appear in which constraints. The problem-solvers
can evaluate an assignment of truth values to the variables with respect to each con-
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Table 1: Problem parameters

Parameter Value
Number of variables (v) 20,30,40
Number of constraints (c) 8,12,16,32
Number of clauses per constraint (7) 20,25,30,35,40
Number of problems per combination of v, ¢, and n 15
Number of runs per method per problem 50
Total number of runs per method per combination of v, ¢, and n 750

straint, determining whether or not each constraint is satisfied by the assignment,
but this is the only information that the problem solver receives about the problem.

3.2 Random problem generation

We generate a problem by starting with a random assignment of truth values to all
variables. This assignment will be a solution to the generated problem, but we will
discard it after generating the problem, and it will be the task of the problem solver
to re-discover the assignment, or to discover another assignment that also satisfies
all of the constraints in the problem.

Once we have a random assignment of truth values to all variables, we generate
the problem itself with a simple, iterated generate-and-test algorithm: We create a
random set of constraints of the specified size (which may include duplicate clauses,
possibly in different constraints), and we check to see if it evaluates to true with the
given assignment. If it does, then we use the constraints as a problem for our exper-
iments; if it doesn’t, then we randomly generate a new set of constraints, repeating
the process until we find one that is satisfied by the assignment.

For each (v,c,n) triple, we generated 15 different problems. Each problem-
solving method was run 50 times on each of these problems, resulting in 750 runs
per problem-solving method for each combinatation of v, ¢, and n. Results were
evaluated by averaging over all 750 runs for each parameter combination. The spe-
cific parameters used for generating problems, and for the numbers of runs con-
ducted on each problem with each method, are shown in Table 1.

4 Experimental methods

4.1 Genetic algorithm

Our problem-solving methods were all instances of the same genetic algorithm, with
identical parameters (shown in Table 2) except for the parent selection method.
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Table 2: Genetic algorithm parameters

Parameter Value
Population size 200
Number of generations | 500
Mutation operator bit-flip
Probability of Mutation | 0.1
Crossover operator  (one-point
Probability of Crossover| 0.9

Individuals in the population were truth assignments, with genomes consisting of
genes for each variable, indicating whether that variable had a value of true or false
in the specified assignment.

We used a generational genetic algorithm that began with a population of random
individuals, and then entered a cycle in which, for each generation, all individuals
were tested for errors, parents were selected for the production of children on the
basis of those errors, and children were produced by varying the selected parents.

4.2 Variation

At the variation step, individuals selected to serve as parents were first (possibly)
subjected to crossover and then (possibly) to mutation.

The standard one-point method was used as the crossover operator, allowing par-
ent recombination at a randomly chosen crossover point. The crossover rate was 0.9,
meaning that 90% of children were produced by crossover.

For mutation, a bit-flip mutation operator was used, allowing for a randomly
chosen bit in a chromosome to be flipped. The mutation rate was 0.1, meaning that
10% of children were subject to mutation.

4.3 Parent selection

We compared lexicase parent selection, tournament parent selection, and fitness pro-
portionate parent selection. All selection methods performed selection with replace-
ment; that is, the same individual might be selected to be a parent several times in
the same generation.

For tournament selection and fitness proportionate selection, an individual’s total
error value was determined from the number of constraints it satisfied. If an individ-
ual satisfied all constraints, then its error was 0. Otherwise, its error value was the
number of constraints that it did not satisfy.
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For tournament selection with an integer-valued tournament size ¢, we first form
a tournament set of ¢ individuals, each of which is chosen with uniform probabil-
ity (with possible duplication) from the entire population. We then return, as the
selected parent, the individual in the tournament set that has the lowest total error.

Higher tournament sizes make tournament selection more selective, in the sense
that individuals with high total error are less likey to be selected, while lower tour-
nament sizes make it less selective. Because our preliminary experiments showed
that less selective settings appeared to perform better, we wanted to consider meth-
ods even less selective than tournament selection with tournament size 2, which is
normally considered to be the minimum, since with tournament size 1 tournament
selection is equivalent to selecting individuals entirely randomly. For this purpose
we adopted the convention that for a non-integer-valued tournament size ¢ between
1 and 2 we would use tournament size 2 with probability t — 1, and select a par-
ent entirely randomly otherwise. For example, with r = 1.25, 25% of the time we
will choose 2 individuals randomly and return, as the selected parent, the one with
the lower total error; the remaining 75% of the time we will return, as the selected
parent, a parent chosen with uniform probability from the entire population.

We performed fitness-proportionate selection in the standard way: The probabil-
ity of selection for an individual i that satisfies s; constraints is s; divided by sum
of s; for all individuals j across the population. In the degenerate case of no indi-
viduals satisfying any constraints, which would produce a denominator of zero, an
individual is selected at random.

5 Results

5.1 Success rates by parent selection method

Our primary results are shown in Table 3, comparing success rates of the genetic
algorithm when run with fitness proportionate parent selection, tournament parent
selection (with tournament size 2), and lexicase parent selection.

Table 3 contains a row for every combination of number of variables (v) and
number of constraints (c). All runs with a specified value of v and ¢ are aggregated
in the corresponding line, regardless of the number of clauses per constraint (n).
Because we conducted 750 runs with each combination of v, ¢, and n for each parent
selection method, and because we conducted experiments with 5 different values of
n (see Table 1), each row in Table 3 reports data from 5 x 750 = 3,750 runs with
each of the three parent selection methods listed in the table.

The numbers reported in Table 3 are success rates, defined as the proportion of
the total runs that produced a successful solution (with error vector consisting only
of zeros). Lexicase selection produces the highest success rate in every case, and the
improvement provided by lexicase selection is statistically significant in most cases.
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Table 3: Success rate for the genetic algorithm with fitness proportionate, tourna-
ment (size 2), and lexicase parent selection for each studied combination of v (num-
ber of variables) and ¢ (number of constraints). Underlines indicate statistically
significant improvements, determined using a pairwise chi-square test with Holm
correction and p < 0.05.

Number of] Number of] Fitness| Tournament|Lexicase
Variables (v)|Constraints (c)||Proportionate (size 2)
20 8 0.835 0.867| 0.992
20 12 0.940 0.954| 1.000
20 16 0.980 0.987| 1.000
20 32 0.999 1.000{ 1.000
30 8 0.415 0.475| 0.889
30 12 0.614 0.697| 0.995
30 16 0.815 0.869| 1.000
30 32 0.983 0.995 1.000
40 8 0.205 0.257| 0.689
40 12 0.224 0.310 0.927
40 16 0.433 0.576| 0.993
40 32 0.861 0.944|  1.000

The only cases in which the improvement is not significant are those in which all
the selection algorithms approach a perfect success rate.

5.2 Success rates by tournament size

Because the success rate of tournament selection is better or equal to fitness propor-
tionate selection, many of our analyses in the remainder of this paper will compare
lexicase selection only against tournament selection. Furthermore, because tourna-
ment selection is itself parameterized by the tournament size, we conducted addi-
tional experiments to compare performance across settings with different tourna-
ment sizes.

Table shows the results of these runs. We again conducted 3,750 runs for each
combination of number of variables (v) and number of constraints (c¢), across the
range of values for number of clauses per constraint (n) given in Table 1. We con-
ducted runs for tournament sizes ranging from 1.25 to 8, with non-integer-valued
tournament sizes handled as described in Section 4. The runs with tournament size
2 were independent of those conducted for the experiments documented in Table 3,
so the numbers differ between the two tables, but not by much.

From Table 4 it appears that the most effective tournament size is around 1.5 or
2, and that larger tournament sizes perform poorly. None of the tested tournament
sizes performs better than lexicase selection.
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Table 4: Success rate for different tournament sizes. Boldfaced numbers indicate the
highest success rate in a particular row.

Number of Number of || Tournament| Tournament | Tournament| Tournament | Tournament
Variables (v)|Constraints (c) Size 1.25 Size 1.5 Size 2 Size 4 size 8
20 8 0.850 0.860 0.856 0.818 0.777

20 12 0.948 0.955 0.959 0.952 0.934

20 16 0.982 0.987 0.988 0.989 0.979

20 32 1.000 1.000 0.999 1.000 0.999

30 8 0.443 0.485 0.471 0.428 0.367

30 12 0.644 0.702 0.773 0.712 0.618

30 16 0.850 0.888 0.879 0.846 0.766

30 32 0.993 0.996 0.996 0.990 0.974

40 8 0.226 0.271 0.137 0.120 0.105

40 12 0.254 0.322 0.293 0.245 0.213

40 16 0.510 0.614 0.503 0.423 0.335

40 32 0.938 0.958 0.901 0.794 0.680

5.3 Errors over evolutionary time

Other features of the data produced by the runs described above, in Section 5.1, may
be revealing, aside from the success rates described above.

In Figure 2 we show the normalized average error across all runs. Here each error
has been been normalized by the total number of constraints (maximum error) used
for that particular run. For a particular generation, the error has been averaged across
the runs which were active up to that generation.

Here we see that lexicase selection not only produces lower errors, but also that
lower errors are reached earlier in evolutionary time. We also see that both methods
make most of their gains quite early in evolutionary time, with few improvements
occurring after 100 generations.

5.4 Mean least error

Figure 3 shows the mean lest error (MLE) for each combination of number of vari-
ables (v) and number of constraints (c¢). MLE is defined as the average of the error
values of the lowest-error programs in all the runs:

MLE = (1/N)Zerr0r(besl,prog,-),
i
where best_prog; is the program having lowest total error in a given run i.

These plots show that tournament selection not only fails to solve problems in
many cases, but also that the best errors achieved in the failing runs are often quite
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Fig. 2: Average error per generation for runs with lexicase selection and tournament
selection with tournament size 2, with 50% confidence intervals.

high. This effect is particularly pronounced for runs with large numbers of clauses
per constraint.

5.5 Success generations

Figure 4 shows the success generation—that is, the generation in which the genetic
algorithm was able to find a zero-error solution—for each combination of number
of variables (v) and number of constraints (c), averaged over the runs in which the
genetic algorithm was able to find a solution.

Here we see that even when the genetic algorithm with tournament selection was
able to find a solution, it generally required more generations to do so than did the
genetic algorithm with lexicase selection.
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Fig. 3: Mean Least Error (MLE) for each combination of parameters. The number
C denotes the number of constraints used for the corresponding plot.

5.6 Diversity over evolutionary time

Figure 5 shows the average number of unique chromosomes (individuals) in the
population over evolutionary time, aggregated over all parameter combinations, and
grouped by selection method and whether the found a solution or not. We see from
these plots that, with the exception of brief periods at the starts of runs, lexicase
selection maintains relatively high diversity throughout the process of evolution,
both in successful and in unsuccessful runs.

6 Discussion

The results presented above show that, for the Boolean constaint satisfaction prob-
lems studied here, the traditional genetic algorithm performs better with lexicase
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Fig. 4: Success Generation for each combination of parameters. The number C de-
notes the number of constraints used for the corresponding plot.

parent selection than with tournament parent selection or fitness proportionate par-
ent selection. In these experiments, lexicase selection found solutions more fre-
quently and in fewer generations than did the other parent selection methods.

In addition, more diverse populations were maintained under lexicase selection,
although the results here do not say anything definitive about the causal relations that
may hold between diversity, success rate, and the number of generations required to
find solutions.

With respect to the central question of this study, about whether lexicase selection
has utility outside of genetic programming, these results suggest a positive answer:
Lexicase selection does appear likely to have broader applicability than has been
demonstrated previously.

The problems studied in this investigation were artificial, but they were designed
to have features that resemble those many real-world problems. More specifically,
the problems studied here were designed to be resemble real-world problems in
which the goal is to satisfy many constraints simultaneously, but in which both the
constraints themselves, and their interdependencies, are opaque.
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Fig. 5: Average number of unique chromosomes (individuals) in the population,
over evolutionary time, under different conditions.

For the problems studied here, the problem-solver is given access to a procedure
that indicates whether or not each constraint is satisfied by a candidate solution,
but it has no other information about the nature of the constraints or about shared
components or structure among multiple constraints. To the extent that a real-world
problem fits this characterization, the results here suggest that lexicase parent selec-
tion could help to solve it.

Nonetheless, lexicase parent selection is probably not appropriate for all prob-
lems. For example, it seems unlikely that it would work well on problems that
involve only a single constraint. In these cases, only the single individual in the
population with the best performance on that constraint (or other individuals with
the same performance) could be selected to serve as a parent. It seems reasonable
to assume that this would undermine population diversity, making it more difficult
to find solutions. Problems with more than a single constraint, but not many more,
may be a poor match to lexicase parent selection for the same reason.

Previous work has also shown that lexicase parent selection sometimes performs
poorly on problems with floating-point error values. The epsilon lexicase selection
method appears to address this problem quite well [La Cava et al., 2016], and it
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seems reasonable to assume that it would also work well on floating-point versions
of the constraint satisfaction problems presented here.

One exciting avenue for future work would be an investagation of whether lexi-
case selection may have even broader applicability, perhaps extending beyond evo-
lutionary compuation altogether. Other machine learning methods might also be
able to take advantage of the core idea of lexicase selection, that whenever we must
make a decision based on the quality of candidate solutions, instead of aggregat-
ing multiple measures of quality into single, scalar values, we may instead consider
them one at a time, in random order.

The ways in which this core idea of lexicase selection can be fleshed out will
differ from one machine learning method to another, and we cannot yet provide
definitive guidance on how it should be done for any specific methods outside of
evolutionary computation. The results presented here, however, lead us to speculate
that some such efforts will be rewarded with improvements in the problem-solving
capabilities of the machine learning methods to which they are applied.
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