
Ontology-based Web Agents

Sean Luke*
seanl@cs.umd.edu

Lee Spector*
�

lspector@hampshire.edu
David Rager*
rager@cs.umd.edu

James Hendler*
hendler@cs.umd.edu

*Department of Computer Science
University of Maryland

College Park, MD 20742

�
School of Cognitive Science and Cultural Studies

Hampshire College
Amherst, MA 01002

Abstract

This paper describes SHOE, a set of Simple HTML
Ontology Extensions which allow World-Wide Web
authors to annotate their pages with semantic knowl-
edge such as “I am a graduate student” or “This person
is my graduate advisor”. These annotations are ex-
pressed in terms of ontological knowledge which can
be generated by using or extending standard ontologies
available on the Web. This makes it possible to ask
Web agent queries such as “Find me all graduate stu-
dents in Maryland who are working on a project funded
by DoD initiative 123-4567”, instead of simplistic key-
word searches enabled by current search engines. We
have also developed a web-crawling agent, Exposé,
which interns SHOE knowledge from web documents,
making these kinds queries a reality.

Introduction
Imagine that you are searching the World-Wide Web for
the home pages of a Mr. and Mrs. Cook, whom you met
at a conference last year. You don’t remember their first
names, but you do recall that both work for an employer as-
sociated with the Department of Defense funding initiative
123-4567. This would certainly be sufficient information
to find these people given a reasonably structured knowl-
edge base containing all of the relevant facts. At first this
also seems like enough information to find their home pages
by searching the World-Wide Web, but you soon discover
otherwise.

Using an existing man-made web catalog,you can find the
Department of Defense’s home page but learn that hundreds
of subcontractors and research groups are working on initia-
tive 123-4567. Searching existing web indices for “Cook”
yields thousands of pages about cooking, and searching for
“DoD” and “123-4567” provides you with hundreds and
hundreds of hits about the initiative. Unfortunately, search-
ing for all of them together yields nothing, because neither

1To appear in the Proceedings of First International Conference
on Autonomous Agents 1997, AA-97.
Copyright 1996 by the Association for Computing Machinery, Inc. Permission to make digital or
hard copies of part or all of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

person lists the initiative on his or her web page. Aimlessly
surfing the web is fruitless. What can you do?

This scenario is common to many people on the World-
Wide Web. A major problem with searching on the Web
today is that data available on the Web has little semantic
organization beyond simple structural arrangement of text,
declared keywords, titles, and abstracts. As the Web ex-
pands exponentially in size, this lack of organization makes
it very difficult to efficiently glean knowledge from the Web,
even with state-of-the-art natural language processing tech-
niques, index mechanisms, or the assistance of an army of
data-entry workers assembling hand-made Web catalogs. In
short, there is no effective way use the World-Wide Web to
answer a query like:

Find web pages for all x, y, and z such that
x is a person, y is a person, z is an organization where

lastName(x,"Cook"), lastName(y,"Cook"),
employee(z,x), employee(z,y),
marriedTo(x,y), and involvedIn(z,"DoD 123-4567")

Searching the Web
The chief intent of HTML and HTTP is to assist user-
level presentation and navigation of the Internet; auto-
mated search or sophisticated knowledge-gathering has
been a much lower priority. Given this emphasis, relatively
few mechanisms have been established to mark up docu-
ments with useful semantic information beyond document-
oriented information like “abstract” or “table of contents”.
As a result, most common indexing mechanisms and agent
robots for the World-Wide Web have generally fallen into
one of three categories:

� Text-indexing engines.
� Catalogs painstakingly built by hand.
� Private robots using ad-hoc methods to gather limited

semantic information about pages (like “Everyone with
links to me” or “All broken page links”).

Each approach has disadvantages. Text indices suffer
because they associate the semantic meaning of web pages
with actual lexical or syntactic content From our previous
example, searching a keyword index under “Cook” yielded
tremendous numbers of web pages, almost none of which



are about living people named Cook. “Cook” has many
uses besides being a last name. Although text indices are
improving, the amount of information on the Web is also
growing rapidly.

A major disadvantage of hand-built catalogs is the man-
hours required to construct them. Given the size of the
World-Wide Web, and the rate at which it is growing, cata-
loging even a modest percentage of web pages is a Herculean
task. Additionally, the criteria used in building any catalog
may turn out to be orthogonal to those of interest to a user.

Ad-hoc robots that attempt to gather semantic informa-
tion from the web typically gather only the limited semantic
information inferable from existing HTML tags. The cur-
rent state of natural language processing technology makes
it difficult to infer much semantic meaning from the body
text itself at a reasonable rate (if at all). In our experience,
even limiting a web robot’s natural language understand-
ing to a small topic like Computer Science Web pages still
proves surprisingly difficult to implement, and like many
ad-hoc methods, such algorithms are extremely brittle.

Further, none of these approaches (except perhaps the
last, for specific domains) allows for inferences about rela-
tionships between web pages, aside from simple facts about
linkage. Sophisticated queries such as our initial “Cook”
example are therefore clearly out of reach.

Solution: Adding Semantics to HTML
Instead of trying to glean knowledge from existing HTML,
another approach is to give authors the ability to embed
knowledge directly into HTML pages, making it simple for
user-agents and robots to retrieve and store this knowledge.
The straightforward way to do this is to provide authors with
a clean superset of HTML that adds a knowledge markup
syntax; that is, to enable them to directly classify their web
pages and detail their web pages’ relationships and attributes
in machine-readable form using HTML.

Using such a language, a document could claim that it
is the home page of a graduate student. A link from this
page to a research group might declare that the graduate
student works for this group as a research assistant. And the
page could assert that “Cook” is the graduate student’s last
name. These claims are not simple keywords; rather they are
semantic tags defined in some “official” set of attributes and
relationships (an ontology). In this example the ontology
would include attributes like “lastName”, classifications like
“Person”, and relationships like “employee”. Systems that
gather claims about these attributes and relationships could
use the resulting gathered knowledge to provide answers to
sophisticated knowledge-based queries.

Moreover, user-agents or robots could use gathered se-
mantic information to refine their web-crawling process.
For example, consider an intelligent agent whose task is to
gather web pages about cooking. If this agent were using
a thesaurus-lookup or keyword-search mechanism, it might
accidentally decide that Helena Cook’s web page, and pages
linked from it, are good search candidates for this topic. This
could be a bad mistake of course, not only for the obvious
reasons, but also because Helena Cook’s links are to the

rest of the University of Maryland (where she works). The
University of Maryland’s web server network is very, very
large, and the robot might waste a great deal of time in fruit-
less searching. However, if the agent gathered semantic tags
from Helena Cook’s web page which indicated that Cook
was her last name, then the agent would know better than to
search this web page and its links.

Related Work
HTML 2.0 (Berners-Lee and Connolly 1995) includes sev-
eral weak mechanisms for semantic markup (the REL,
REV, and CLASS subtags, and the META tag). HTML
3.0 (Ragget 1995) advances these mechanisms somewhat,
though it is not yet an official standard. Unfortunately, the
semantic markup elements of HTML have so far been used
primarily for document meta-information (such as declared
keywords) or for hypertext-oriented relationships (like “ab-
stract” or “table of contents”). Furthermore, relationships
can only be established along hypertext links (using <LINK>
or <A>). It appears that the intent of HTML’s existing set of
semantic markup tags is only to provide semantics for hy-
pertext applications or other document-oriented functions.

To address some of these problems, Dobson and Burrill
(1995) have attempted to reconcile HTML with the Entity-
Relationship (ER) database model. This is done by adding
to HTML a simple set of tags that define “entities” within
documents, labelling sections of body text as “attributes” of
these entities, and defining relationships from an entity to
outside entities. Documents may contain as many entities
as necessary. Dobson and Burrill associate with each entity
a unique key, and establish relationships not between URL
links but between keys.

Although Dobson and Burrill’s ER scheme is a significant
improvement over HTML’s existing mechanism, it does not
provide for any ontological declarations. For example, their
scheme does not give any clear mechanism for classification
through an “is a” hierarchy of classes. Yet one of the most
significant uses for semantics in documents is to categorize
them according to some classification scheme or taxonomy.
For example, paper documents are often classified using
hierarchical schemes like the Library of Congress subject
headings, the Dewey Decimal system, or Universal Decimal
Classification. Similarly, a good semantics mechanism for
World-Wide Web documents needs the ability to do flexible,
hierarchical classification. The ability to establish relation-
ships between Web entities is important, but secondary to
the ability to classify those entities.

Moreover, the ER model does not allow one to specify
inferences that can be drawn from relationships given in
web pages. Even simple specifications such as transitive
closure inferences can be helpful: if Helena Cook’s home
page claims that she works for the PLUS research group,
and this research group is part of the Computer Science
Department, part of the College of Computer,Mathematical,
and Physical Sciences, part of the University of Maryland at
College Park, part of the University of Maryland at College
Park, part of the State of Maryland, she should not have to
declare that she works for all of these entities; such a fact



should be inferable. Invertable relationships are also useful:
if George Cook is known to be married to Helena Cook, the
inverse should be automatically inferable, without George
or Helena having to say it. Through the addition of more
powerful inferential rule capabilities, full knowledge base
semantics could be provided.

SHOE
We have developed a small superset of HTML that pro-
vides many of these mechanisms. This scheme is called
SHOE: Simple HTML Ontology Extensions. SHOE is in-
tended to provide user agents with easy access to machine-
readable semantic knowledge on the Web. It does this by
adding to HTML a simple knowledge-representation lan-
guage. SHOE provides the ability to:

� Define ontologies using HTML, which lay out classifica-
tions and entity relationship rules.

� Create new ontologies which extend existing ontologies.
� Declare entities for both whole documents and for docu-

ment subsections.
� Declare relationships between entities.
� Declare entity attributes.
� Classify entities under an “is a” classification scheme.

SHOE intentionally does not have the semantic complete-
ness of more powerful knowledge-representation schemes;
instead, it attempts to strike a balance between full knowl-
edge representation semantics and the unique needs of
World-Wide Web agents which must rapidly collect and
query very large bodies of information in a distributed and
often chaotic domain. The formal specification provides “is
a” classification and simple ground relationships.

A proposed SHOE specification adds inferential rules
in the form of horn clauses without negation; we are
adding semantics conservatively. An abridged speci-
fication of this language is located in the Appendix
at the end of this paper. The most current spec-
ification, including inferential rules, can be found at
http://www.cs.umd.edu/projects/plus/SHOE/spec.html

Exposé
To demonstrate the use of SHOE, we are also developing a
web-crawling agent, Exposé, which parses SHOE-enabled
HTML documents and adds SHOE knowledge to its internal
knowledge-base. Exposé runs on Macintosh Common Lisp
or C, using PARKA (Evett, Anderson, and Hendler 1993),
University of Maryland’s massively-parallel semantic net-
work system, for its knowledge representation.

Exposé is really two agents. The first agent fetches on-
tologies from the web as directed, loading them into its
PARKA knowledge-base. When fetching a SHOE ontol-
ogy whose parent ontologies are unknown to Exposé, the
agent will first fetch the parents in order to properly intern
the ontology in Exposé’s knowledge-base.

The second agent wanders the web in search of SHOE-
enabled HTML documents, adding SHOE knowledge from

these documents to Exposé’s knowledge-base. When it
discovers a SHOE document, Exposé uses its knowledge-
base to interpret the SHOE data in the context of known
ontologies, determine errors and redundant claims, and find
new web sites to visit. If Exposé decides that this SHOE
data is useful, it then adds the data to its knowledge-base.
If the second agent does not have the necessary ontologies
to interpret a SHOE document, it may ask the first agent to
load and intern these ontologies before proceeding.

Exposé needs a knowledge-base to store not only newly-
discovered SHOE knowledge but also a set of ontologies
with which to interpret SHOE knowledge as it is parsed.
This is a very large amount of information: optimistically,
the Web could yield hundreds of commonly-used ontologies
and hundreds of thousands of SHOE-enabled documents.
Exposé must query this knowledge several times for each
document. PARKA provides the horsepower to help Exposé
do this; PARKA has been streamlined to provide real-time
queries on knowledge-bases with millions of data entities
and assertions.

Once Exposé has gathered knowledge from the Web, we
can then use this knowledge to answer sophisticated queries
about these entities and their relationships. For example,
after Exposé has gathered claims from Helena Cook’s web
page, we can query PARKA to find her and her husband.
Figure 1 shows the query we introduced in the beginning
of this paper, as laid out using PARKA’s Graphical Query
mechanism. This is equivalent to querying PARKA with:

(query! ’(:and
(#!instanceOf ?X #!Person) (#!instanceOf ?Y #!Person)
(#!instanceOf ?Z #!Organization)
(#!lastName ?X "Cook") (#!lastName ?Y "Cook")
(#!employee ?Z ?X) (#!employee ?Z ?Y)
(#!marriedTo ?X ?Y) (#!involvedIn ?Z "DoD 123-4567")))

In conjunction with Exposé, we are designing Java ap-
plications (graphical page annotators, query mechanisms,
etc.) to help users to annotate web pages with semantic
knowledge and to query robot servers using SHOE. In con-
junction with this effort, we are investigating the use of
knowledge-representation standards like KQML (Finin et
al. 1994) and KIF (Genesereth and Fikes 1992) to facilitate
communication between clients and servers in retrieving
results or in building up results from a number of sources.

Web Knowledge Representation Issues
In using the World-Wide Web to provide knowledge rep-
resentation (KR) for agents, SHOE must address a number
of issues not normally present in more common KR do-
mains. For example, the body of knowledge on the Web is
in constant flux. Ontologies may be obsolete as soon as they
become popular. SHOE addresses this in two ways. First,
SHOE’s ontology versioning allows ontologies to be up-
dated with newer versions while retaining integrity. Second,
SHOE lets ontologies extend existing ontologies to reflect
more specialized information. In SHOE, one can develop
a hierarchy of ontologies: “parent” ontologies high in the
hierarchy may reflect abstract, standardized classification



Figure 1: A Knowledge-based World Wide Web Query and Its Result in PARKA

and relationships, while “child” ontologies that extend their
parents may reflect current, rapidly changing information in
narrow, specialized fields.

Another important issue is the complete lack of control
over the knowledge on the Web. Unlike more traditional KR
domains, agents on the Web must deal with incomplete, in-
correct, or unavailable information from unknown sources
and of unknown value. SHOE attempts to addresses this
concern in several ways. First, SHOE includes a protocol
for generating unique keys for data entities which ensures
that no entity can counterfeit another entity in a different
document. Second, assertions made with SHOE are as-
sumed to be claims, not facts. That is, if x claims that pred-
icate r is true about y and z, this relation is best expressed
as r(x,y,z), not the traditional r(y,z). This adds the
claim’s source as an additional variable when considering
a claim’s validity. Third, SHOE only allows assertions,
not negations or retractions. Further, all relations are multi-
valued. This ensures that one entity cannot retract or replace
another entity’s claim. Last, SHOE attempts to bring some
sensibility to what claims may be made by specifying the
legal entity classifications and data types for the domain and
range of relationship claims.

A final issue is the sheer size of potential Web data.
Knowledge-representation languages and systems such as
KIF provide a very rich semantics at the cost of computa-
tional complexity — NP-complete or worse algorithms are
not uncommon. Ordinarily the costs associated with this
semantic expressiveness are reasonable because the size of
common KR domains is relatively small. However, such
systems may not scale well: in very large domains, the cost
of comprehensive semantic expressiveness becomes over-
whelming. The Web can easily become such a domain,
conceivably yielding millions of instances and assertions.
SHOE intentionally has less semantic expressivity to help
it handle the very large amounts of data that agents on the
Web might have to work with.

An Introductory Example
To illustrate how SHOE works, we’ll annotate the home
page of George Cook (Helena Cook’s husband). This ex-

ample does not describe all the capabilities of our specifica-
tion, but gives a taste of much of it. Before we can annotate
George’s home page, we need an ontology that provides:

� “Person” classification.
� “Organization” classification.
� “marriedTo” relationship between people.
� “firstName” and “lastName” attributes for people.
� “employee” relationship from organizations to people.

For the sake of this example we’ll build a new ontology
that provides these classifications and relationships. Or-
dinarily we wouldn’t have to do this; instead, we’d rely
on existing ontologies from common libraries on the web.
Such ontologies will offer a unified structure for sharing
knowledge on the World-Wide Web.

Let’s assume that there already exists an ontol-
ogy on the Web called organization-ontology version
2.1, which defines the classifications Organization and
Thing, and that this particular ontology is available at the
URL http://www.ont.org/orgont.html. We’ll extend the
organization-ontology ontology to include our other needed
classifications and relationships. Namely, we’ll borrow Or-
ganization directly, and when we define Person we’ll claim
that Person “is a” Thing. Let’s call our extension the our-
ontology ontology, version 1.0. We write our new ontology
as a piece of HTML:

<ONTOLOGY "our-ontology" VERSION="1.0">
<ONTOLOGY-EXTENDS "organization-ontology"

VERSION="2.1" PREFIX="org"
URL="http://www.ont.org/orgont.html">

<ONTDEF CATEGORY="Person" ISA="org.Thing">
<ONTDEF RELATION="lastName"

ARGS="Person STRING">
<ONTDEF RELATION="firstName"

ARGS="Person STRING">
<ONTDEF RELATION="marriedTo"

ARGS="Person Person">
<ONTDEF RELATION="employee"

ARGS="org.Organization Person">
</ONTOLOGY>



This indicates that Person is a subcategory of Thing as
defined in the organization-ontology ontology, that people
have first and last names which are strings, that people
can be married to other people, and that people can be
employees of organizations. These tags are embedded in an
HTML document, which in turn might be promulgated as
an “official” person-relationships ontology.

The “official” location of our ontology is the HTML doc-
ument at http://ont.org/our-ont.html. George Cook can now
use this ontology to describe his home page. Assume that,
using this ontology, Helena Cook’s page has already been
classified as a Person, and that its unique key is the same as
its official URL: http://www.cs.umd.edu/ ˜helena. Further-
more, the place Helena and George work for, the University
of Maryland’s Computer Science Department, has its home
page classified as an Organization, and that its unique key is
the same as its official URL: http://www.cs.umd.edu.

To annotate George’s home page, we begin by assign-
ing his home page a key that is the same as its official
URL: http://www.cs.umd.edu/˜george In the HEAD section
of George’s web page, we add:

<META HTTP-EQUIV="Instance-Key"
CONTENT="http://www.cs.umd.edu/˜george">

<USE-ONTOLOGY "our-ontology" VERSION="1.0"
PREFIX="our" URL="http://ont.org/our-ont.html">

This declares George’s web page to be a data entity with
a unique key, and indicates that it will use the ontology
our-ontology to describe itself. Furthermore, every time
elements from our-ontology are used, they will be labelled
with the prefix our.

In the BODY section we now declare facts about George’s
home page, namely George’s name, that George is a person,
that he is married to Helena, and that he works for the
University of Maryland’s Computer Science Department:

<CATEGORY "our.Person">
<RELATION "our.firstName" TO="George">
<RELATION "our.lastName" TO="Cook">
<RELATION "our.marriedTo"

TO="http://www.cs.umd.edu/˜helena">
<RELATION "our.employee"

FROM="http://www.cs.umd.edu">

The category declaration says that George is a Person.
The first two relations declare that George’s name is “George
Cook”. The next relation declares that George is married to
Helena. The last relation declares the relationship employee
from George’s employer to George.

If George didn’t have his own web page but instead
resided on a small part of his wife’s web page, it would
still be possible to provide George with his own unique
identity and describe these relationships. In this case, we’ll
use http://www.cs.umd.edu/ ˜helena#GEORGE as George’s
unique key. We add to the HEAD section of his wife’s web
page (if it’s not already there):

<USE-ONTOLOGY "our-ontology" VERSION="1.0"
PREFIX="our" URL="http://ont.org/our-ont.html">

And in the BODY section we declare George to be an
entity instance by adding (near the section on Helena’s page
that deals with George):

<INSTANCE "http://www.cs.umd.edu/˜helena#GEORGE">
<CATEGORY "our.Person">
<RELATION "our.firstName" TO="George">
<RELATION "our.lastName" TO="Cook">
<RELATION "our.marriedTo"

TO="http://www.cs.umd.edu/˜helena">
<RELATION "our.employee"

FROM="http://www.cs.umd.edu">
</INSTANCE>

Future Work
Although we feel our current specification provides much
of the expressiveness needed for more advanced World-
Wide Web agents, it still lacks important features found in
sophisticated knowledge-representation systems. We are
adding such features conservatively, seeking a compromise
that provides some of the power of sophisticated knowl-
edge representation tools while keeping the system simple,
efficient, and understandable to the lay HTML community.

For example, the formal specification does not yet pro-
vide for annotations that describe inferences such as transi-
tive closure or invertable relations. In a proposed addition
to the specification, we have refined a small set of tags
that will provide conservative inferential capabilities. The
knowledge representation literature provides many insights
into the design of such tags, but the unique demands of the
World-Wide Web (such as the distribution of knowledge and
the varying authority of authors) require that this literature
be examined in a new light.

Conclusion
The Web is a disorganized place, and it is growing more
disorganized every day. Even with state-of-the-art indexing
systems, web catalogs, and intelligent agents, World-Wide
Web users are finding it increasingly difficult to gather in-
formation relevant to their interests without considerable
and often fruitless searching. Much of this is directly at-
tributable to the lack of a coherent way to provide useful se-
mantic knowledge on the Web in a machine-readable form.

SHOE gives HTML authors an easy but powerful way to
encode useful knowledge in web documents, and it offers
intelligent agents a much more sophisticated mechanism
for knowledge discovery than is currently available on the
World-Wide Web. If used widely, SHOE could greatly
expand the speed and usefulness of intelligent agents on
the web by removing the single most significant barrier to
their effectiveness: a need to comprehend text and graphical
presentation as people do. Given the web’s explosive growth
and its predominance among Internet information services,
the ability to directly read semantic information from HTML
pages may soon be not only useful but necessary in order
to gather information of interest any reasonable amount of
time.



Acknowledgements
This research was supported in part by grants from NSF(IRI-
9306580), ONR (N00014-J-91-1451), AFOSR (F49620-
93-1-0065), the ARPA/Rome Laboratory Planning Initiative
(F30602-93-C-0039), the ARPA I3 Initiative (N00014-94-
10907) and ARPA contract DAST-95-C0037.

References

Dobson, S.A. and V.A. Burrill. 1995. Lightweight
Databases. In Proceedings of the Third International World-
wide Web Conference (special issue of Computer and ISDN
Systems). v. 27-6. Amsterdam: Elsevier Science. URL:
http://www.igd.fhg.de/www/www95/papers/54/darm.html

Evett, M.P., W.A. Andersen, and J.A. Hendler. 1993. Pro-
viding Computational Effective Knowledge Representation
via Massive Parallelism. In Parallel Processing for Artifi-
cial Intelligence. L. Kanal, V. Kumar, H. Kitano, and C. Sut-
tner, Eds. Amsterdam: Elsevier Science Publishers. URL:
http://www.cs.umd.edu/projects/plus/Parka/parka-kanal.ps

Finin, T., D. McKay, R. Fritzson, and R. McEntire. 1994.
KQML: An Information and Knowledge Exchange Proto-
col. In Knowledge Building and Knowledge Sharing. K.
Fuchi and T. Yokoi, Eds. Ohmsha and IOS Press. URL:
http://www.cs.umbc.edu/kqml/papers/kbks.ps

Genesereth, M. R., and R. E. Fikes, Eds. 1992. Knowl-
edge Interchange Format, Version 3.0 Reference Man-
ual. Technical Report Logic-92-1. Computer Sci-
ence Department, Stanford University. URL: http://www-
ksl.stanford.edu/knowledge-sharing/papers/kif.ps

Berners-Lee, T. and D. Connolly. 1995. Hypertext
Markup Language - 2.0. IETF HTML Working Group.
URL: http://www.cs.tu-berlin.de/ ˜jutta/ht/draft-ietf-html-
spec-01.html

Ragget, D. 1995. HyperText Markup Language Specifi-
cation Version 3.0. W3C (World-Wide Web Consortium).
URL: http://www.w3.org/pub/WWW/MarkUp/html3/Cov-
erPage.html

Appendix: An Abridged SHOE Specification
This specification describes basic features of SHOE, an
extension to HTML which provides a way to incorporate
machine-readable semantic knowledge in HTML or other
World-Wide Web documents. This specification does not
describe all of the SHOE declarations, including proposed
inferential declarations. A current version of this spec is at
http://www.cs.umd.edu/projects/plus/SHOE/spec.html

Terms

Terms not described here may be found in the HTML 2.0
specification.

Category An element under which HTML page instances
or subinstances can be classified. Category names are
element names, and may be prefixed. Categories may
have parent categories. Categories define inheritance: if
an instance is classified under a category, it is eligible to
be in the domain or range of relations defined for that
category or any of its parent (or ancestor) categories.

Data Non-instance data in the domain or range of a rela-
tionship. This includes:

Strings (STRING) HTML 2.0 String Literals.
Numbers (NUMBER) Floating-point numerical con-

stants like 2, 2.0, -1.432e+4, etc.
Dates (DATE) Date/Timestamps following RFC 1123,

the HTTP/1.0 specification, section 3.3.1.
Booleans (TRUTH) HTML String Literals of the form

YES or NO, case-sensitive.
Categories (CATEGORY) Category names.
Relationships (RELATION) Relation names.

Element A category or relationship name, or one of the
following reserved keywords (all caps): STRING, NUM-
BER, DATE, TRUTH, CATEGORY, or RELATION. Ele-
ment names are case-sensitive, and may contain only
letters, digits, or hyphens.

Instance An element which may be classified under cate-
gories, and included in the domain or range of relation-
ships (along with other data). Page instances are World-
Wide Web documents. Page instances are automatically
of the category Page. Subinstances are subsections of
HTML page instance documents. Subinstances are au-
tomatically of the category PageSubinstance, and have a
parentPage relationship with their parent page instance.
A document which has not declared itself as an instance
may still be used as one: see Key.

Key A string which uniquely defines a page instance
or a subinstance. It is up to you to decide on
the keys for your documents. For page instances
of SHOE-conformant documents, the proper method
is to use a single absolute URL for the document.
For example, http://www.cs.umd.edu is a valid key for
the document located at that URL. To create keys
for subinstances, add to the page instance’s unique
key a pound-suffix such as #MyDog. For example,
http://www.cs.umd.edu#MyDog is a valid key for a subin-
stance located at http://www.cs.umd.edu. It’s good style
for this unique key to correspond with an actual an-
chor in the document. The unique key of a non-SHOE-
conformant document is defined to be one particular ab-
solute URL of the document, chosen for the document by
a SHOE-conformant document which references it.

Ontology As defined in this specification, a description of
valid classifications for HTML page instances and subin-
stances, and valid relationships between instances and
elements.

Prefix A small string attached with a period at the begin-
ning of an instance, category, or relation name. For exam-
ple, cs is a prefix in cs.junk. Prefixes may also be attached



to already-prefixed elements, forming a prefix chain. For
example, foo.bar.cs is a prefix chain for foo.bar.cs.junk.
A prefix indicates the ontology from which the element
(or prefixed element) following it is defined.

Relation (Relationship) An element which defines a rela-
tionship between two other elements. Relation names are
element names, and may be prefixed. Relations may be
between two instances, or between an instance and data.
In this specification, all relations are binary relations. Re-
lations have a domain (the element the relation is “from”)
and a range (the element the relation is “to”).

Rule A formal rule in an ontology defining valid clas-
sifications (categories) or valid relationships that can be
asserted.

Unique Name A string which uniquely defines an ontology.
Unique names are different from keys in that they do not
uniquely define instances but rather the ontologies which
the instances may use. Different versions of an ontology
may have the same unique name so long as they have
different version numbers.

Version (Version Number) A string which describes the
version of an ontology. Versions are case-sensitive, and
may contain only letters, digits, or hyphens.

Declaring Ontologies
Except as specified, all declarations must be made in the
BODY section of an HTML document.

Declaring An Ontology Definition An HTML document
may contain any number of ontology definitions. Each on-
tology definition should use a unique name. Ontology def-
initions are accompanied with a version number. If an on-
tology completely subsumes previous versions of the same
ontology (it contains all the rules defined in those versions),
it may declare itself to be backward-compatible with those
versions. To begin an ontology definition, use:

<ONTOLOGY "ontology-unique-name"
VERSION="Version"
[BACKWARD-COMPATIBLE-WITH="Version List"]>

“ontology-unique-name” (mandatory) The ontology’s
unique name.

VERSION (mandatory) The ontology’s version.

BACKWARD-COMPATIBLE-WITH A whitespace-
delimited list of previous versions which this ontology
subsumes.

To end an ontology definition, use:

</ONTOLOGY>

All rules and extensions in an ontology must appear be-
tween the beginning and ending declarations. Ontologies
may not be nested or overlap.

Extending An Existing Ontology An ontology may be
declared to extend one or more existing ontologies. This
means that it will use elements in those ontologies in its
own rules. To distinguish between those elements and its

own elements, an ontology must provide a unique prefix for
each ontology it extends. This will be prefixed to elements
borrowed from each particular ontology whenever they are
referred to. To declare that an ontology is extending another
ontology, use:

<ONTOLOGY-EXTENDS "ontology-unique-name"
VERSION="Version" PREFIX="Prefix" [URL="URL"]>

“ontology-unique-name” (mandatory) The extended on-
tology’s unique name.

VERSION (mandatory) The extended ontology’s version.

PREFIX (mandatory) The prefix you are assigning the ex-
tended ontology. All categories and relations from the ex-
tended ontology which are used in your ontology must be
prefixed with this prefix. Within an HTML document, a
prefix must be different from all prefixes declared with ei-
ther <USE-ONTOLOGY ...> or <ONTOLOGY-EXTENDS
...> tags.

URL A URL that points to a document which contains the
extended ontology.

Declaring Classification Rules Inside an ontology defini-
tion, an ontology may declare various new categories which
instances can belong to. Categories should descend from
one or more parent categories. To declare a new category,
or to add new parent categories for a category, use:

<ONTDEF CATEGORY="category-name"
[ISA="parent-category-list"]>

CATEGORY (mandatory) The newly declared category,
or the one being given more parent categories. Newly
declared categories should be distinct from all other cat-
egories and relationships declared in the ontology.

ISA A whitespace-delimited list of categories to define as
parent categories of this category.

A particular category should not be defined more than
once within an ontology’s declaration.

Declaring Relationship Rules Inside an ontology def-
inition, an ontology may declare various new valid rela-
tionships between category instances or between category
instances and data. To declare a relationship, use:

<ONTDEF RELATION="relation-name"
ARGS="element-list">

RELATION (mandatory) The newly declared relationship
name. This should be distinct from all other categories
and relationships declared in the ontology.

ARGS (mandatory) The arguments of the relation. This
should be a whitespace-delimited list of exactly two el-
ements (this specification currently supports only binary
relations). The first element defines the domain of the
relationship, and the second element defines the range of
the relationship. Elements can be either declared cate-
gories, or the following keywords (all caps): STRING,
NUMBER, DATE, TRUTH, CATEGORY, RELATION.



CATEGORY establishes a relationship not with category
instances but with categories themselves. RELATION es-
tablishes a relationship not with instances but with other
relationships. These last two elements are rare and should
only be used in special circumstances.

A particular named relationship should not be defined
more than once within an ontology’s declaration.

Renaming Rules To reduce the number of prefixes, an
ontology may rename a category or relation (plus its prefix
chain) to a simpler name, so long as this name is not used in
any other category or relation in the ontology. For example,
an ontology could rename the category cs.junk.foo.person
to simply person, so long as person is not defined elsewhere
in the ontology.

Ontologies are not permitted to rename (or rename el-
ements to) the following keywords: STRING, NUMBER,
DATE, TRUTH, CATEGORY, or RELATION. To rename a
category or relation, use:
<ONTDEF RENAME="element-name"

TO="new-element-name">

RENAME (mandatory) The element’s old name.

TO (mandatory) The element’s new name.

Marking Up HTML Documents Using Ontologies
Except as specified, all declarations must be made in the
BODY section of an HTML document.

Declaring a Page Instance SHOE-conformant HTML
documents must declare themselves page instances and pro-
vide a unique key for themselves. To declare an HTML
document to be a page instance, add the following text to
the HEAD section of the document:
<META HTTP-EQUIV="Instance-Key" CONTENT="Key">

“Key” The page instance’s unique key.

Declaring a Subinstance A document may declare zero
or more subinstances. Subinstances may not overlap or be
nested in each other. To declare the start of a subinstance,
use:
<INSTANCE "Key">

“Key” (mandatory) The unique key for the instance.

To mark the end of the section of a subinstance, use:
</INSTANCE>

All relationship and category declarations made within a
subinstance belong to that subinstance. All relationship and
category declarations made outside a subinstance belong to
the page instance.

Declaring Ontology Usage Before you can classify doc-
uments or establish relationships between them, you’ll need
to define exactly which ontologies these classifications and
relations are derived from, and associate with each of these
ontologies some prefix unique to that ontology. An HTML
document may declare that is using as many ontologies as
it likes, as long as each ontology has a unique prefix in

the document. To declare that a page instance and all its
subinstances use a particular ontology, use:

<USE-ONTOLOGY "ontology-unique-name"
VERSION="Version" PREFIX="Prefix"
[URL="URL"]>

“ontology-unique-name” (mandatory) The ontology’s
unique name.

VERSION (mandatory) The ontology’s version.

PREFIX (mandatory) The prefix you are assigning the
ontology. All categories and relations from this ontology
which are used in this document must be prefixed with this
prefix. Within this document, the prefix must be different
from all prefixes declared with either <USE-ONTOLOGY
...> or <ONTOLOGY-EXTENDS ...> tags.

URL A URL that points to a document which contains the
used ontology.

Declaring Categories Instances may be classified, that is,
they may be declared to belong to one or more categories in
an ontology, using the CATEGORY tag:
<CATEGORY "prefixed.category"

[FOR="Key"]>

“prefixed.category” (mandatory) A category with full pre-
fix chains showing a path through used and extended on-
tologies back to the ontology in which it was defined.
This is the category the instance is declared to belong to.

FOR Contains the key of the instance which is being de-
clared to belong to this category. If FOR is not declared,
then the key is assumed to be that of the enclosing subin-
stance, or (if there is no enclosing subinstance) the page
instance. If FOR is declared, then it provides the key.

Declaring Relationships Instances may declare relation-
ships with elements:
<RELATION "prefixed.relationship"

[FROM="Key"] [TO="Key"]>

“prefixed.relationship” (mandatory) A relationship with
full prefix chains showing a path through used and ex-
tended ontologies back to the ontology in which it was
defined. This is the relationship declared between from
the FROM element and to the TO element.

FROM Declares the element in the domain of the relation-
ship. This element must be of the type declared as the
domain of the relationship.

TO Declares the element in the range of the relationship.
This element must be of the type declared as the range of
the relationship.

If a tag (FROM or TO) is not declared, the element type
for that tag must be INSTANCE, and the key for the instance
is assumed to be that of the enclosing subinstance, or (if
there is no enclosing subinstance) the page instance. If the
tag is declared, and the type of the tag’s argument is an
instance, then it provides the key.


