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Summary. We present new results on the evolution of tag-mediated cooperation,
demonstrating that the use of multidimensional tags can enhance the emergence
of high levels of cooperation. We discuss these results in the context of prior cases
in which work on the evolution of cooperation has led to practical techniques for
improving the problem-solving performance of genetic programming systems.

1 Cooperation and adaptive complexity

In this chapter we explore the conditions under which altruistic cooperation
is produced by natural selection, and we do so as part of an effort to improve
the problem-solving performance of genetic programming systems. But why
would anyone think that the evolution of cooperation would provide clues for
the improvement of problem solving systems? What does cooperation have
to do with the kinds of adaptive complexity that we seek from our genetic
programming systems?

One answer is that this connection—between the study of the evolution of
cooperation and the improvement of problem-solving performance—has been
fruitful in the past, so it might be worth exploring further (see Section 6
below). But a deeper answer might also draw on the observation that many
biological systems appear to make use of cooperative interactions at several
levels of organization, and that these interactions may be important for the
evolution of adaptive complexity.

Adaptive complexity in nature is usually produced not by isolated indi-
viduals but rather by ecosystems that are structured by both genetic and eco-
nomic relationships. Typically many of these relationships involve cooperation
or other forms of mutualism. Indeed, some theorists have credited cooperation
with an essential role in the evolutionary transitions that produced successive
levels of adaptive complexity in the history of life. For example, in discussing
the origin of multicellularity Michod writes:
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We see the formation of cooperative interactions among lower-level
individuals as a necessary step in evolutionary transitions; only coop-
eration transfers fitness from lower levels (costs to group members) to
higher levels (benefits to the group). —[Michod, 2003, p. 292]

So there are reasons to think that cooperation can be important in adap-
tive evolutionary systems. It is therefore reasonable to expect useful insights,
even for practical applications, to emerge from the study of the evolution of
cooperation.

In the remainder of this chapter we discuss these issues in more concrete
terms, focusing on a particular model of cooperation and on ways in which a
new development within this model might be applied to genetic programming
practice. In the next two sections we describe the model (tag-mediated coop-
eration) and then the new development (the use of multidimensional tags).
We then provide quantitative results, a discussion of the meaning of those
results, and several suggestions for incorporation of related mechanisms into
genetic programming systems. These suggestions are speculative but we argue
that they merit further exploration.

2 Tag-mediated cooperation

Altruism and cooperation are behavioral traits that have long drawn the at-
tention of evolutionary theorists. From a naive reading of Darwinian theory
one might expect that natural selection would produce only selfish agents,
and that cooperation would be maladaptive and therefore rare. Early theo-
rists recognized, however, that while natural selection may favor selfish genes
it does not necessarily favor selfish agents. Beginning with Hamilton in the
1960s biologists have built and tested quantitative theories of the evolution
of cooperative behavior among kin, grounded in the understanding that de-
gree of kinship degree of genetic similarity are closely related [Hamilton, 1963,
Hamilton, 1964]. More recent work has expanded the class of conditions un-
der which cooperation can be expected to evolve; such conditions now in-
clude the presence of reciprocating partners [Axelrod and Hamilton, 1981,
Trivers, 1972] and the presence of partners with known good reputations
[Nowak and Sigmund, 1998].

Models of “tag-mediated” cooperation have the potential to explain the
evolution of cooperation in an even wider range of cases. A tag is a simple
marker, represented in most of the prior models as a floating point number,
that is attached to each agent and is visible to other agents [Holland, 1995].
Tags can be used to model a variety of identity-based interactions in biological
systems, some of which have physical implementations that are far simpler
than those that underly judgments of kinship, reciprocation, or reputation.

In the models of tag-mediated cooperation first presented by Riolo et al.
[Riolo et al., 2001] each agent has both a floating point tag and a floating
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point “tolerance,” and one agent will make an altruistic donation to another
if the tags of the two agents differ by no more than the donor’s tolerance. The
simulation proceeds through rounds of donation attempts followed by repro-
ductive tournaments, the winners of which become, after possible mutation,
the agents for the next generation of donations and reproductive tournaments.

Roberts and Sherratt raised concerns about the original model and noted
that cooperation failed to emerge if tolerances were allowed to drop below
zero, thereby permitting truly selfish agents [Roberts and Sherratt, 2002].
While Roberts and Sherratt were correct in the context of the particular
values that they chose for system parameters, subsequent work has shown
that tag-mediated cooperation does indeed arise robustly under a variety of
equally reasonable parameter settings [Riolo et al., 2002, Axelrod et al., 2004,
Spector and Klein, 2006]. Some of our previous work, in particular, showed
that cooperation readily emerges, even when tolerances are allowed to drop
below zero, if mutation rates are low and/or if agent interactions are geo-
graphically limited [Spector and Klein, 2006]. These results inspired a practi-
cal technique for improving the performance of genetic programming systems,
which we discuss briefly in Section 6. The new work presented in Sections 3, 4
and 5 extends our previous results and may have additional implications for
genetic programming practice (also discussed in Section 6).

3 Multidimensional tags

Our observations of the previous models and their dynamics revealed that
a group of cooperators can be destabilized in a number of ways. Downward
tolerance drift is dangerous for a group of cooperators because a mutation
resulting in low or even negative tolerance produces a selfish agent situated to
exploit its generous neighbors with similar or identical tags. Upward tolerance
drift is also dangerous because it may lead to overly generous agents that
begin to donate to agents outside of the group. Finally, even agents with well-
balanced tolerance values may be invaded by selfish agents that are able to
mimic their tags. Because agents are not able to explicitly manipulate their
own tags, this can occur only as a result of random mutation.

This last possibility is the focus of our current work. Invasions by selfish
mimics can occur only when the invaders successfully “guess,” by means of
mutation, the tags of nearby cooperators. One can think of each cooperator’s
tag as a password and a successful invader as a hacker who has discovered that
password, although the only hacker’s only means for discovery is random mu-
tation. On the other hand, the hacker need not get the password exactly right;
it will succeed if it falls within the cooperator’s tolerance of the cooperator’s
tag.

This analogy leads naturally to a hypothesis that cooperation may be
more easily maintained if tag values are made more difficult to mimic. To
improve the security of a password-secured system we can increase the length
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of the password; by analogy we can increase the “security” of tag-mediated
cooperation by adding additional dimensions to the tags.

In this chapter we explore how the introduction of multidimensional real-
valued tags can lead to improved cooperation in evolving populations. Ear-
lier work on this theme has been conducted by Hales and Edmonds, who
have experimented with multidimensional tags in the form of bit strings
[Hales, D., 2005, Edmonds, 2006]. Some of these models allow only exact tag
matching, while others use the Hamming distance between bit strings as a
measure of tag difference. By contrast, we have retained the real-valued tag
and tolerance scheme from the models of Riolo et al. [Riolo et al., 2001] but
we have extended it to use tags consisting of sequences of real values.3

We begin with a model similar to those used in prior work deriving from
Riolo et al. [Riolo et al., 2001] in which a population of 100 agents is run
through a series of generations (30, 000 in previous work; 400, 000 here). At
each generation, agents begin with a score of 0 and are given the opportunity
to make donations to P = 3 randomly chosen agents. An agent makes a
donation to a recipient if and only if the difference between their tag values is
less than or equal to the potential donor’s tolerance value. If a donation event
occurs then a cost C is deducted from the donor’s score (which is allowed to
go negative) and a benefit B is added to the recipient’s score. In the original
model, the values C = 0.1 and B = 1.0 were used; in this chapter and in
our previous work we investigate a variety of cost to benefit ratios with C =
{0.1, 0.5, 1.0} and B = 1.0.

After all donation interactions have been completed, agents are selected
for reproduction based on their scores. Each agent at position N is paired
randomly with another agent; the agent with a higher score (or the agent
at N in the event of a tie) is selected for reproduction at position N . The
child inherits its tag and tolerance from the parent, but each is mutated with
probability m = {0.001, 0.01, 0.1}. When a tag is mutated it is replaced by
a new value, sampled uniformly from [0, 1]. Tolerance values are mutated by
summation with random Gaussian noise with standard deviation 0.01. As in
the work of Roberts and Sherratt [Roberts and Sherratt, 2002], the tolerance
value is clamped to a lower bound of −10−6.

As in our previous work on this model we introduce a simple form of spatial
structure, or geography, that changes the way that agents interact. We model
the population as a one dimensional ring in which agents consider only others
in a local radius R when selecting recipients for donations or competitors for
reproduction. We examine a variety of values for R from 1 up to 50. Note that
the special case of R = 50 is equivalent to the non-spatial populations used
in previous models.

3 Edmonds refers to systems with “multi-dimensional binary and continuous vec-
tors” but we are not aware of published details [Edmonds, 2006].
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In our multidimensional tag model the single floating point tag value is
replaced by a vector of floating point values. The definition of the distance
between two tags, t1 and t2, is generalized for n dimensions as:√√√√ n∑

i=1

(t1[i]− t2[i])2 (1)

As in previous models, tag mutation produces completely new tag values;
each value in the tag vector is replaced by a new random value, uniformly
sampled from [0, 1].

Tolerance values remain as single floating point values and are interpreted
as they were in previous models: an agent shares with another agent if and
only if the difference in their tags is less than or equal to the donor’s tolerance.
We note that while the maximum multidimensional tag distance, given by

√
n,

exceeds the 1.0 limit found in the previous tag models, there is no upper bound
on the tolerance value so that the model allows for cooperation between any
pair of agents, even those with large tag differences. In practice, tolerance
values tend to be far smaller than the maximum distance value.

4 Results

We performed 92 runs for each condition and collected average donation rates
and tolerance values. The results are presented here as averages over all runs
in each condition.

We first discuss the results in the conditions in which the cost (C) charged
to a cooperating agent for a successful donation was 0.1. This is the cost
structure that has received the greatest attention in the literature. As in
the prior work we characterize the amount of cooperation in a condition by
reporting the percentage of donation attempts that are successful across the
entire population and across the entire simulation; we call this measure the
“donation rate.”

Figure 1 shows the average donation rates under all C = 0.1 condi-
tions. The vertical bars show the average donation rates for standard, one-
dimensional tags for each combination of mutation rate and interaction radius.
This data replicates that from our previous studies, although the data plotted
here is from new, independent runs. In line with and generally above each
vertical bar in Figure 1 are symbols plotting the average donation rates for
runs with higher-dimensional tags.

The one-dimensional data demonstrates that cooperation readily emerges
except in a few conditions with high mutation rates and large interaction radii
(the very conditions that formed basis of the critique by Roberts and Sherratt
[Roberts and Sherratt, 2002]). In all but the most recalcitrant of these condi-
tions the levels of cooperation are further boosted by increasing the dimensions
of the tags. Substantial improvements result from the first augmentation to
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Fig. 1. Average donation rates as a function of mutation rate, interaction radius,
and number of tag dimensions. For the data in this graph the cost (C) charged to a
cooperating agent for each donation was 0.1, as in most of the prior research. Each
plotted point represents the average of 92 independent runs.

two-dimensional tags, and significant improvements result from the next sev-
eral augmentations as well. In most cases the payoff for additional dimensions
eventually tapers off, presumably because the advantages that can be gained
by making one’s tag hard to mimic have a natural limit; as the probability of
randomly generating a particular tag approaches zero, little is to be gained
by decreasing the probability further.

Figure 2 shows the average donation rates under all C = 0.5 conditions.
In this higher cost regime cooperation is slightly harder to achieve, but signif-
icant cooperation nonetheless results from most of the parameter sets that we
tested. Note that the levels of cooperation for higher numbers of dimensions
are more spread out, and that in many cases a significant improvement can
be achieved when increasing the number of dimensions from 5 to 6. This may
reflect the fact that invasions by selfish agents, while rare in a simulation with
five-dimensional tags, are highly disruptive when they do occur.

Figure 3 shows the average donation rates under all of the C = 1.0 con-
ditions. In these “zero sum” conditions the cost to a donor is equivalent
to the benefit gained by a recipient, and cooperation is significantly harder
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Fig. 2. Average donation rates as a function of mutation rate, interaction radius,
and number of tag dimensions. For the data in this graph the cost (C) charged to a
cooperating agent for each donation was 0.5, which is five times the cost used in most
of the prior research. Each plotted point represents the average of 92 independent
runs.

to achieve. As was reported previously, significant levels of cooperation can
nonetheless be achieved even with one-dimensional tags, with donation rates
exceeding 12% in one of our tested configurations. As can be seen in Fig-
ure 3, however, one can achieve significantly higher levels of cooperation with
higher-dimensional tags. Indeed, with a mutation rate of m = 0.01, an inter-
action radius of R = 1, and six-dimensional tags we observe a donation rate
of 75.7%.

Figures 4, 5, and 6 show the average observed tolerances in the conditions
with donation cost C = 0.1, C = 0.5, and C = 1.0 respectively. Note that
cooperation is possible even with a tolerance of zero, although a zero-tolerance
agent will cooperate only with others that have identical tags. The presence
of larger tolerances indicates agents that will donate to a wider range of recip-
ients. Note also that while negative tolerances are possible, all of the average
tolerance values that we observed were non-negative; this is why no negative
tolerances appear in our graphs.
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Fig. 3. Average donation rates as a function of mutation rate, interaction radius,
and number of tag dimensions. For the data in this graph the cost (C) charged to a
cooperating agent for each donation was 1.0, the same as the benefit to the recipient.
Each plotted point represents the average of 92 independent runs.

In nearly all cases the observed tolerance is higher with higher-dimensional
tags. This can be explained as resulting from the fact that multidimensional
tags increase the size of the “tag space” and thereby reduce the risk of outside
invasion. By doing this they allow groups of cooperating agents to safely raise
their tolerance values and thus protect themselves from the secondary threat
of self-destruction due to a crash in tolerance values.

5 Discussion

In our previous analysis of the one-dimensional case we suggested that the
mechanism behind tag-mediated cooperation can be thought of as a kind of
“probabalistic kin selection” [Spector and Klein, 2006]. While the agents in
the model have no access to explicit kinship information, and therefore cannot
be certain that they are donating to kin, successful tag-mediated cooperation
can nonetheless arise because kin are more likely to have similar tags.
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Fig. 4. Average tolerances as a function of mutation rate, interaction radius, and
number of tag dimensions. For the data in this graph the cost (C) charged to a
cooperating agent for each donation was 0.1, as in most of the prior research. Each
plotted point represents the average of 92 independent runs.

Our findings here bolster this notion by clarifying the evolutionary dy-
namic behind the perpetuation of cooperating subpopulations. The tag mu-
tation scheme in our model, which was taken from the previous work in the
literature [Riolo et al., 2001], does not generally produce new tag values that
are close to those of their ancestors. Instead, tags mutate spontaneously to
entirely new values, meaning that agents with a common ancestor have either
identical tag values or, following a mutation event, tag values that are no
more similar than those of completely unrelated agents. Tolerance values, on
the other hand, are subject to incremental drift. Were it not for incremental
tolerance drift a population of cooperating agents would probably settle on
an infinitesimally small “optimal” value which would allow for cooperation
with identically tagged agents while avoiding invasion from defectors. The
incremental drift of tolerance values, however, creates a more complex evolu-
tionary dynamic in which, on the group level, a subpopulation of successful
cooperating agents must strive for higher tolerance values in order to avoid
an accidental self-destructive tolerance drop below zero. At the same time, on
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Fig. 5. Average tolerances as a function of mutation rate, interaction radius, and
number of tag dimensions. For the data in this graph the cost (C) charged to a
cooperating agent for each donation was 0.5, which is five times the cost used in most
of the prior research. Each plotted point represents the average of 92 independent
runs.

the individual level, tolerance values must be kept low to avoid exploitation
by unrelated agents.

Invasion of a population of cooperators requires that a would-be freeloader’s
tag value mutates to be close to that of the cooperators, while maintaining a
tolerance value close to zero. As discussed above, tag values can be thought of
as passwords shared among kin, albeit passwords with “fuzzy” interpretations
due to the effects of tolerance values. With multidimensional tags, the pass-
words become exponentially more difficult to guess. Note that the exponential
nature of the “password guessing problem” means that multidimensional tags
cannot be exploited simply by increasing the mutation rate: the complexity
of the passwords grows too quickly for mutation to keep up. Note also that
there is a tradeoff between the advantages of multidimensional tags and the
need for more sophisticated mechanisms (cognitive, chemical or otherwise) to
maintain and recognize them.

Although we feel that our findings support the notion of “probabalistic kin
selection” in this model and similar models, our findings do not preclude the
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Fig. 6. Average tolerances as a function of mutation rate, interaction radius, and
number of tag dimensions. For the data in this graph the cost (C) charged to a
cooperating agent for each donation was 1.0, the same as the benefit to the recipient.
Each plotted point represents the average of 92 independent runs.

possibility that other mechanisms can also support tag mediated cooperation.
For example, Hales has shown that tag-based models can lead to coopera-
tion among groups of unrelated agents with diverse skills [Hales, 2002]. Our
probabalistic kin selection interpretation is also compatible with other recent
analyses of tag mediated cooperation (e.g. [Jansen and van Baalen, 2006]).

6 Cooperation and genetic programming

Researchers have previously drawn several connections between work on the
evolution of cooperation and work on evolutionary computation. One exam-
ple comes from our own prior work on tag-mediated cooperation, in which we
highlighted the ways in which a particularly simple form of spatial structure
can enhance the evolvability of cooperative behavior [Spector and Klein, 2006].
Spatial structure has also long been applied to evolutionary computation, of-
ten as a mechanism to preserve population diversity [Collins and Jefferson, 1991,
Pettey, 1997, Fernandez et al., 2003, Folino et al., 2003]. But the models of
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spatial structure previously employed in evolutionary computation have gen-
erally been more complex than the simple one-dimensional geographic scheme
we used in our study of cooperation, and we were curious about whether the
our scheme, which we called “trivial geography,” would provide benefits for ge-
netic programming. In our contribution to last year’s meeting of the Genetic
Programming Theory and Practice workshop we presented results showing
that, indeed, trivial geography can enhance the problem-solving power of ge-
netic programming systems, at least on the symbolic regression problems that
we studied [Spector and Klein, 2005].

In the context of the new results presented above we are also curious
about ways in which tags themselves might contribute to advances in genetic
programming practice. Our comments about such possibilities here are spec-
ulative, but we believe there are several avenues worth pursuing.

One possibility is that tags, like trivial geography, might be used to
better control the diversity of an evolving population. We have seen that
tags can be used as surrogates for kin identifiers, and therefore as eas-
ily computed probabilistic indicators of genetic similarity or diversity. A
great deal of recent work in genetic programming has focused on diversity
metrics that may form the basis of mechanisms for diversity management
[Burke et al., 2002]. A number of specific mechanisms for diversity manage-
ment have also been developed, for example mechanisms based on mate se-
lection [Fry and Tyrrell, 2003, Fry et al., 2005]. We speculate that multidi-
mensional tags, which we have shown to facilitate the formation of clusters
of cooperatively interacting agents, might also be used as the basis of mate
selection schemes that combine in-breeding and out-breeding to balance ex-
ploration and exploitation.

Another way that these results might be exploited in genetic programming
concerns work on the evolution of cooperative multiagent systems. Several re-
searchers have previously used genetic programming to produce teams of co-
operating agents, using a variety of mechanisms for team-member recognition
and coordination [Luke and Spector, 1996, Soule, 2000, Brameier and Banzhaf, 2001].
The prospect raised by new theoretical work on tag-mediated cooperation
is that the very simple mechanisms used for team-member recognition and
coordination in these models might also serve as a solid foundation for co-
operation in much more complex systems. We have previously shown that
tag-mediated cooperation readily emerges in evolving multiagent swarms
[Spector et al., 2005], and more recently we have seen tag-mediated cooper-
ation emerge in evolving populations of blocks that can grow and divide.
To the extent that any such multiagent systems can benefit from tag-based
cooperation we might expect multidimensional tags to provide even greater
advantages.

Finally, there is a sense in which genetic programming systems are them-
selves multiagent systems within which the “agents” — in this case the indi-
vidual programs in an evolving population — might benefit from cooperation
with one another. For example, in some of our prior work we allowed all of the
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individuals in a population and across evolutionary time to access a shared
indexed memory, or “culture” [Spector and Luke, 1996]. Several researchers
have experimented with shared code in the form of automatically defined
library functions [Racine et al., 1998, Ryan et al., 2004, Keijzer et al., 2005].
And several fitness sharing, niching, and crowding schemes involve the sharing
or distribution of positions in fitness space [McKay, 2000, Gustafson, 2004].
Where there are common resources there are probably also opportunities for
cooperation and coordination, for example to arbitrate the retention of com-
monly useful data or code fragments. Tags might provide a simple yet effective
mechanism for achieving the requisite cooperation and coordination, and if
they do so then again one would expect multidimensional tags to have even
greater utility.

More generally the study of the evolution of cooperation, insofar as it chal-
lenges naive perspectives on Darwinian mechanisms, has helped to lay bare
some of the fundamental dynamical properties of interdependent populations
under natural selection. It would not be surprising, therefore, for such studies
produce models with features that are applicable to evolutionary computation
in general, and to genetic programming in particular. We note also that this
research strategy, of borrowing specific pieces of theory from recent work in
evolutionary biology and using them to enhance genetic programming sys-
tems, follows our general methodological suggestion from the first Genetic
Programming Theory and Practice workshop [Spector, 2003].

7 Conclusions

We have presented the results of new experiments on computational models
of tag-mediated cooperation. Our results demonstrate that the evolution of
tag-mediated cooperation can be facilitated by the use of multidimensional
tags. We analyzed these results as a form of “probabilistic kin recognition”
and used the analogy of password-guessing to explain the observed patterns
of cooperation and tolerance.

We discussed possible applications of these results to genetic program-
ming. While our suggestions for application were speculative we noted that
similar efforts have already borne fruit and that there are good reasons to
be optimistic about future results. More generally, we argued that coopera-
tive exchanges build networks of interaction that can support the evolution of
adaptive complexity. For this reason we expect that the study of the evolution
of cooperation will continue to produce important insights that can be applied
to genetic programming.

Acknowledgments

This material is based upon work supported by the United States National
Science Foundation under Grant No. 0308540 and Grant No. 0216344. Any



14 Lee Spector and Jon Klein

opinions, findings, and conclusions or recommendations expressed in this pub-
lication are those of the authors and do not necessarily reflect the views of the
National Science Foundation. The authors also thank Jason Daida, Michael
Korns, and the other participants in the Genetic Programming Theory and
Practice IV Workshop for many helpful suggestions.

References

[Axelrod and Hamilton, 1981] Axelrod, R. and Hamilton, W. D. (1981). The evo-
lution of cooperation. Science, 211:1390–1396.

[Axelrod et al., 2004] Axelrod, R., Hammond, R. A., and Grafen, A. (2004). Al-
truism via kin-selection strategies that rely on arbitrary tags with which they
coevolve. Evolution, 58:1833–1838.

[Brameier and Banzhaf, 2001] Brameier, M. and Banzhaf, W. (2001). Evolving
teams of predictors with linear genetic programming. Genetic Programming and
Evolvable Machines, 2(4):381–407.

[Burke et al., 2002] Burke, E., Gustafson, S., and Kendall, G. (2002). A survey and
analysis of diversity measures in genetic programming. In Langdon, W. B., Cantú-
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