
Size-Based Tournaments for Node Selection

Thomas Helmuth
Computer Science

University of Massachusetts
Amherst, MA 01003

thelmuth@cs.umass.edu

Lee Spector
Cognitive Science
Hampshire College
Amherst, MA 01002

lspector@hampshire.edu

Brian Martin
Cognitive Science
Hampshire College
Amherst, MA 01002

btm08@hampshire.edu

ABSTRACT
In genetic programming, the reproductive operators of cross-
over and mutation both require the selection of nodes from
the reproducing individuals. Both unbiased random selec-
tion and Koza 90/10 mechanisms remain popular, despite
their arbitrary natures and a lack of evidence for their ef-
fectiveness. It is generally considered problematic to select
from all nodes with a uniform distribution, since this causes
terminal nodes to be selected most of the time. This can
limit the complexity of program fragments that can be ex-
changed in crossover, and it may also lead to code bloat
when leaf nodes are replaced with larger new subtrees dur-
ing mutation. We present a new node selection method that
selects nodes based on a tournament, from which the largest
participating subtree is selected. We show this method of
size-based tournaments improves performance on three stan-
dard test problems with no increases in code bloat as com-
pared to unbiased and Koza 90/10 selection methods.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
Program modification; I.2.8 [Artificial Intelligence]: Prob-
lem Solving, Control Methods, and Search—Heuristic meth-
ods

General Terms
Algorithms

Keywords
genetic programming, node selection, tournaments, cross-
over, mutation, bloat

1. INTRODUCTION
In standard, tree-based genetic programming (GP), the

node selection mechanism determines how nodes are selected
from individuals for genetic operations. Many mechanisms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0690-4/11/07 ...$10.00.

for node selection, while non-deterministic, favor the selec-
tion of certain nodes over others. The method of biasing
node selection has an impact on the size, shape, and lo-
cation of the nodes that are replaced and transfered during
crossover and mutation, which in turn affects the progression
of evolution. We base the performance of a node selection
technique primarily on its effectiveness at finding solutions
and secondarily on its ability to control code bloat.

With a small number of exceptions1, most GP practi-
tioners use one of two common node selection techniques.
The first, unbiased selection, chooses a random node with
uniform distribution from all nodes in the individual. This
method, while conceptually simple, does not differentiate be-
tween nodes of different sizes or locations. Since trees with
average branching factors greater than or equal to 2 have
more terminal nodes than internal nodes, unbiased selection
chooses terminal nodes more frequently than any other size
of node. In general, it is believed that swapping small sub-
trees, or building blocks, through crossover is more likely to
create better children than by swapping terminals.

Many practitioners avoid unbiased selection in order to
select non-terminal nodes more often during crossover and
mutation. The most often used alternative, which we will
call Koza 90/10, was introduced in [7]. This technique se-
lects an internal node with 90% probability, and a terminal
node with 10% probability, biasing the selection towards in-
ternal nodes. When selecting an internal node, all internal
nodes are given equal weight, which means that smaller in-
ternal nodes are selected more than larger ones, for the same
reasons that terminal nodes are selected most often with un-
biased selection. Additionally, the arbitrary choice of 90%
and 10% leaves open the question of better percentages or
additional levels for different sized internal nodes. Despite
these drawbacks, Koza 90/10 remains very popular, even
with little evidence for beneficial effects on performance or
bloat prevention.

We introduce size-based tournaments, a simple node selec-
tion mechanism that differentiates between nodes of different
sizes in order to improve performance and control code bloat.
This mechanism uses tournaments to choose a node, similar
to the tournaments commonly used in tournament selection
of parent individuals. We show that size-based tournaments
improve performance on three standard test problems com-
pared to unbiased and Koza 90/10 mechanisms. Addition-
ally, our selection mechanism does not increase code bloat
compared to the other mechanisms.

1Prior work on less frequently used node selection techniques
is described in Section 3.

799

Helmuth, T., L. Spector, and B. Martin. 2011. Size-Based Tournaments for Node Selection. In GECCO'11 
Workshops, Genetic and Evolutionary Computation Conference. ACM Press. pp. 799-802.



Table 1: Parameters for experiments.
Parameter Symbolic Regression Artificial Ant 11-Multiplexer
Runs 500 500 500
Population Size 500 500 100
Maximum Generations 51 51 101
Crossover Probability 0.9 0.9 0.9
Mutation Probability 0.05 0.05 0.05
Reproduction Probability 0.05 0.05 0.05
Max Depth 17 17 17
Max Depth for Generated Code 5 5 5
Initialization Procedure Ramped-Half-And-Half Ramped-Half-And-Half Ramped-Half-And-Half

Following this section, we give a brief overview of code
bloat. In the Section 3 we discuss prior node selection mech-
anisms that have been proposed in the literature to improve
performance or control code bloat. The algorithm for size-
based tournaments is discussed in Section 4. In Section 5, we
discuss the testing of node selection methods on three prob-
lems and give our results. Finally, we discuss the results and
give directions for further research.

2. CODE BLOAT
Growth in program sizes during runs, known as code bloat,

has harmful effects on the solution finding abilities of evo-
lution in many domains. Researchers have made many at-
tempts to avoid it [9, 10, 12, 8], as well as posited numerous
explanations for it, including its utility as a defense against
destructive crossover and removal bias.

Code bloat as a defense against destructive crossovers
refers to the fact that as the ratio of viable to inviable code
decreases, crossover is less likely to reduce fitness [1]. Stated
differently, as the number of inviable subtrees – those which
may be exchanged with no effect on fitness – increases, the
likelihood of crossover affecting viable code, and therefore
reducing fitness, decreases. Evolution applies selective pres-
sure for larger programs with more inviable code, which are
less negatively affected by crossover.

Removal bias refers to the tendency for a fitness neutral
offspring produced by crossover to be larger than its parent
[11]. Soule and Foster argue that this occurs because invi-
able subtrees tend to be smaller than average. Thus, the
average-sized subtrees that replace them increase the size of
the offspring.

A more detailed discussion of the causes of code bloat is
beyond our scope; it suffices to say that the usefulness of the
presented technique does not depend on any single cause of
code bloat. In fact, our mechanism’s possible bloat reducing
properties are of secondary importance; we are primarily in-
terested in its performance improvements and provide little
analysis of bloat in our later experiments.

3. PRIOR WORK
Depth-dependent crossover [3, 4] attempts to select a high-

er percentage of building blocks by choosing nodes based on
their depth from the root. A depth is randomly selected,
with a bias towards selecting shallower nodes. After the
depth is selected, a node at that depth is chosen based on a
uniform random selection. Depth-dependent crossover only
partially solves the problem of bias towards selecting small
nodes. Both small and large nodes may be present at the

shallower depths from which many of the nodes are selected
using depth-dependent crossover. The authors try to solve
this problem by revising their algorithm to select a node
from a given depth by using a subtree-size-based selection
ratio, which weights the selection of nodes at a level based
on the size of their subtree. This begins to look like our
size-based tournaments, except that it uses a more complex
and arbitrary mechanism for selection.

In prior work on size fair genetic operators, measures are
taken to ensure that new code introduced into programs by
genetic operators is roughly the same size as old code that it
replaces [8, 2]. This may achieve some of the goals for which
node selection methods are sometimes employed, for exam-
ple with regard to program bloat, but it does not directly
address the size or location of nodes selected for modifica-
tion. Additionally, size fair operators require more compli-
cated implementation techniques, such as the generation of
code of a specific size for size fair mutation.

4. SIZE-BASED TOURNAMENTS
Size-based tournaments take their inspiration from tour-

naments that are commonly used for parent selection in evo-
lutionary algorithms. When a node needs to be chosen for
crossover or mutation, we first randomly choose n nodes
with a uniform distribution to participate in the tourna-
ment. Then, the largest of the n nodes is selected for use by
the genetic operator, where size is defined as the number of
nodes in the subtree.

Size-based tournaments bias node selection toward larger
subtrees, and can be tuned by changing the tournament size.
The motivations for size-based tournaments are the same
those for Koza 90/10 and depth-dependent crossover, while
using a simpler mechanism than these techniques. Size-
based tournaments differentiate between internal nodes of
different sizes, whereas Koza 90/10 treats all internal nodes
equally. Our mechanism favors larger nodes, whereas depth-
dependent crossover prefers shallower nodes, which are not
necessarily larger.

Size-based tournaments are simple to understand and im-
plement, especially for a GP practitioner who is familiar
with parent selection tournaments. Only one parameter is
required, the tournament size n. Unbiased selection can
be seen as a special case of size-based tournament selection
with a tournament size of 1. Furthermore, the simplicity of
size-based tournament selection makes it easier to use, with
fewer parameters that must be fine-tuned to the problem.

800



Table 2: Performance results for symbolic regression
with 500 runs. Methods labeled “Tourn n” represent
size-based tournaments of size n.

Method Computational Effort Successes
Unbiased 120,000 146
Koza 90/10 123,500 138
Tourn 2 77,000 206
Tourn 3 96,000 175
Tourn 4 136,000 151
Tourn 5 288,000 85

5. EXPERIMENTS AND RESULTS
We have tested size-based tournaments with a range of

tournament sizes against unbiased node selection and Koza
90/10 selection on three standard problems: symbolic re-
gression, artificial ant, and 11-multiplexer. We conducted
these runs using ECJ and the parameter settings in Table 1.
All problems come from the standard formulations described
by Koza [7].

In order to compare the performances of the node selec-
tion methods, we computed the number of successes and
the computational effort for each set of runs. Computa-
tional effort is a measure of the expected number of fitness
evaluations that the algorithm would have to perform to
have a 99% confidence of finding a solution. A lower com-
putational effort signifies a more efficient algorithm, in that
it will likely be able to find a solution using fewer fitness
evaluations. We also collected and analyzed the mean best
fitnesses of the runs. The results are consistent with the
conclusions presented below, but space limitations prevent
us from presenting a full discussion of this data here.

5.1 Symbolic Regression
We tested the node selection methods on symbolic regres-

sion using the function f(x) = x4+x3+x2+x. Each run used
20 randomly selected test cases from the range [−1, 1]. Only
one terminal, x, was used in this problem, along with eight
internal operators: Add, Mul, Sub, Div, Sin, Cos, Exp, and
Log. The first four operators have arity 2, and the remainder
have arity 1. Since the average arity of the operators is 1.5,
program trees in this domain may have more internal nodes
than terminals. Accordingly, unbiased selection is expected
to perform similarly to Koza 90/10 for this problem.

The number of successes and computational efforts for this
problem are given in Table 2. Size-based tournaments of size
2 and 3 do best on this problem, as shown by their success
rates and computational efforts. Tournaments of size 5 have
the worst performance. The remaining methods, including
unbiased and Koza 90/10, fall in between.

Figure 1 shows mean program sizes throughout each set
of runs. All node selection methods display code bloat, with
some more resistant than others. It is important to note
that the majority of solutions found for all selection mecha-
nisms fall between generations 4 and 14. This indicates that
this symbolic regression problem favors small program sizes.
But, this does not explain the differences in performance
between different node selection mechanisms. All methods
have small programs near the beginning and experience code
bloat, yet performance does not appear to correlate with
mean program sizes. For example, Koza 90/10 and size-
based tournaments of size 2 have very similar mean size

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0 10 20 30 40 50

Generation

M
e
a
n
 N

o
d
e
s
 p

e
r 

In
d
iv

id
u
a
l

Unbiased Koza TS2 TS3 TS4 TS5

Figure 1: Mean program sizes during each set of
runs. TSn represents size-based tournament selec-
tion with a tournament size of n.

Table 3: Performance results for the artificial ant
problem with 500 runs. Methods labeled “Tourn n”
represent size-based tournaments of size n.

Method Computational Effort Successes
Unbiased 2,203,500 22
Koza 90/10 4,560,000 12
Tourn 2 2,214,000 24
Tourn 3 2,016,000 27
Tourn 4 4,368,000 12
Tourn 5 5,461,000 9

growth curves, yet have significantly different numbers of
successes and computational efforts. Thus a node selection
method’s influence on program sizes is not the primary cause
of changes in performance.

5.2 Artificial Ant
Next, we used the node selection methods on the artificial

ant problem on the Santa Fe trail. The terminals for this
problem are Left, Right, and Move, and the operators are
IfFoodAhead and Progn2 with arity 2, and Progn3 with arity
3.

Table 3 shows the performance measures of the different
node selection methods on the artificial ant problem. We
found that unbiased selection and size-based tournament se-
lection with tournament sizes of 2 and 3 produced approx-
imately double the number of solutions and had about half
of the computational effort compared to Koza 90/10 and
size-based tournament selection with tournament sizes of 4
and 5.

The mean program sizes curves look very similar to those
for the symbolic regression problem, and are therefore omit-
ted. On the other hand, solutions for all node selection
methods were discovered throughout the runs, without any
correlation to program sizes. This indicates that solving the
artificial ant problem is not as dependent on size of tree as
the symbolic regression problem, with solutions being found
at a wide range of tree sizes. Additionally, no correlation
was found between growth rates and performance measures.

801



Table 4: Performance results for the 11-multiplexer
problem with 500 runs. Methods labeled “Tourn n”
represent size-based tournaments of size n.

Method Computational Effort Successes
Unbiased 1,044,000 178
Koza 90/10 1,207,000 154
Tourn 2 924,000 199
Tourn 3 1,000,000 185
Tourn 4 910,000 188
Tourn 5 1,044,000 170

5.3 11-Multiplexer
Finally, we tested each node selection method on the 11-

Multiplexer problem. This problem uses 11 terminals and
the four operators And, Or, Not, and If. The operators And
and Or have arity 2, Not has arity 1, and If has arity 3.

We show the number of successes and the computational
effort for each node selection method in Table 4. The results
show that all size-based tournament selection runs outper-
formed Koza 90/10, and either outperformed or essentially
tied unbiased selection. Size-based tournaments of size 4
had the best computational effort, and those of size 2 found
the most solutions.

Again, the mean program sizes curves look very similar
to those for the symbolic regression problem, and are there-
fore omitted. As with the artificial ant problem, solutions
were discovered throughout runs, and no correlation is seen
between growth rates and performance.

6. CONCLUSIONS AND FUTURE WORK
We have described size-based tournaments, a new method

for node selection that is simple in concept and implemen-
tation while providing performance benefits over more com-
plex and arbitrary algorithms. We have shown size-based
tournaments to be a principled and effective method for se-
lecting nodes by testing it on three common test problems.
Additionally, our results indicate weaknesses of Koza 90/10
selection, and to a lesser extent, unbiased node selection.

We have not tested size-based tournaments on more dif-
ficult problems, such as those that would produce human-
competitive results. Testing on such problems may show
different results than those for these small problems. An-
other avenue of future work would be to experiment with
dynamic or adaptive tournament sizes throughout a run.
For instance, tournament sizes could start large and decrease
throughout a run, an idea that has conceptual links to sim-
ulated annealing [6]. Or, tournament size could be linked
to individuals in an adaptive fashion, similar to self-tuning
depth-dependent crossover [5].

Acknowledgments
We would like to thank Kyle Harrington, Daniel Gerow,
Nathan Whitehouse, Robert Walls, and David Jensen for
conversations that helped develop the ideas presented here.
Thanks also to Hampshire College for support of the Hamp-
shire College Institute for Computational Intelligence.

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1017817. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this publication are those of the authors and

do not necessarily reflect the views of the National Science
Foundation.

7. REFERENCES
[1] L. Altenberg. The evolution of evolvability in genetic

programming, pages 47–74. MIT Press, Cambridge,
MA, USA, 1994.

[2] R. Crawford-Marks and L. Spector. Size control via
size fair genetic operators in the pushgp genetic
programming system. In Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO
’02, pages 733–739, San Francisco, CA, USA, 2002.
Morgan Kaufmann Publishers Inc.

[3] T. Ito, H. Iba, and S. Sato. Depth-dependent crossover
for genetic programming. In Evolutionary
Computation Proceedings, 1998. IEEE World
Congress on Computational Intelligence., The 1998
IEEE International Conference on, pages 775 –780,
May 1998.

[4] T. Ito, H. Iba, and S. Sato. Non-destructive
depth-dependent crossover for genetic programming.
In Proceedings of the First European Workshop on
Genetic Programming, pages 71–82, London, UK,
1998. Springer-Verlag.

[5] T. Ito, H. Iba, and S. Sato. A self-tuning mechanism
for depth-dependent crossover, pages 377–399. MIT
Press, Cambridge, MA, USA, 1999.

[6] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science,
220:671–680, 1983.

[7] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

[8] W. B. Langdon. Size fair and homologous tree
crossovers for tree genetic programming. Genetic
Programming and Evolvable Machines, 1:95–119, April
2000.

[9] S. Luke and L. Panait. A comparison of bloat control
methods for genetic programming. Evolutionary
Computation, 14(3):309–344, Fall 2006.

[10] S. Silva and E. Costa. Dynamic limits for bloat control
in genetic programming and a review of past and
current bloat theories. Genetic Programming and
Evolvable Machines, 10(2):141–179, 2009.

[11] T. Soule and J. A. Foster. Removal bias: a new cause
of code growth in tree based evolutionary
programming. In In 1998 IEEE International
Conference on Evolutionary Computation, pages
781–186. IEEE Press, 1998.

[12] M. Terrio and M. I. Heywood. Directing crossover for
reduction of bloat in GP. In W. Kinsner, A. Seback,
and K. Ferens, editors, IEEE CCECE 2003: IEEE
Canadian Conference on Electrical and Computer
Engineering, pages 1111–1115. IEEE Press, 12-15 May
2002.

802




