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ABSTRACT
In nature, the structure and behavior of a ma-

ture organism is determined not only by its ge-
netic endowment, but also by complex develop-
mental processes that the organism undergoes
while immersed in its environment (ontogeny). By
contrast, an individual in a genetic programming
system is generally expected to solve problems im-
mediately, without the benefit of a developmen-
tal phase. Various morphological systems have
been used in previous genetic programming sys-
tems to allow programs to “grow” into more com-
plex forms prior to evaluation. Runtime mem-
ory mechanisms allow evolved programs to ac-
quire information from their environments while
they solve problems, and to change their future
behavior on the basis of such information. Onto-
genetic programming combines these ideas to allow
for runtime modification of program structure.
In particular, an ontogenetic programming sys-
tem includes program self-modification functions
in the genetic programming function set, thereby
allowing evolved programs to modify themselves
during the course of a run. We demonstrate the
ontogenetic programming methodology with the
HiGP genetic programming system, and we show
how ontogenetic programming can be used to
solve problems that would not otherwise be solv-
able. We also discuss variants of the technique
that could be used in other genetic programming
systems.

1 Phylogeny and Ontogeny
Biologists use the term phylogeny to refer to the develop-
mental progression of a population or race through evolu-
tionary time. Genetic programming systems use mecha-
nisms inspired by those underlying biological phylogeny—
in particular, genetic replication, mutation, and recombina-

tion combined with natural selection—to evolve programs
that solve problems.

All but the simplest biological organisms also develop as
individuals, both structurally and behaviorally, throughout
their lives. Biologists refer to the developmental progres-
sion of an individual through its life span as ontogeny. In this
paper we describe how rich ontogenetic components can be
added to genetic programming systems, and we show how
this can allow genetic programming to produce programs
that solve more difficult problems.

Two sorts of ontogeny are evident in previously described
genetic programming systems. The first consists of mor-
phological components that allow programs to “grow” into
different, perhaps more complex forms prior to execution.
For example, in Gruau’s technique of cellular encoding
evolved programs are executed to produce neural networks;
the networks that result from this developmental process are
then assessed for fitness [Gruau 1994]. Similarly, Zomoro-
dian has described a system in which evolved programs
are executed to produce deterministic push-down automata
[Zomorodian 1995]. Spector’s automatically defined macros
(ADMs) provide a morphological mechanism within the S-
expression-based representational framework of traditional
genetic programming; a program that includes ADMs is
macroexpanded prior to execution, and the program that is
executed may thereby be considerably larger and more com-
plex than the evolved genotype [Spector 1995, 1996]. Mor-
phological processes have also been used within other evolu-
tionary computation paradigms; for example, Sims describes
a system in which the morphological and behavioral com-
ponents of virtual creatures are both described as directed
graphs that evolve through the use of a graph-based genetic
algorithm [Sims 1994]. Formal definitions of morphologi-
cal processes in evolutionary computation, along with a good
survey of past work, can be found in [Angeline 1995].

These sorts of morphologicalmechanisms may indeed add
to the power of genetic programming, but they are simplifi-
cations of biological ontogeny in two important ways. First,
they operate only prior to runtime; in contrast, biological on-
togeny continues throughout the life span of an individual.



Second, they operate without environmental input; in con-
trast, a biological organism’s environment may guide devel-
opment in significant ways.

The second sort of ontogeny evident in previously de-
scribed genetic programming systems involves the use of
runtime memory mechanisms. Indexed memory [Teller
1994] and memory terminals [Iba et al. 1995] allow evolved
programs to acquire and store information from their envi-
ronments at runtime, and to use this information to guide fu-
ture behavior. A program may thereby develop in certain
ways throughout its “life span.”

In theory, the ontogenetic mechanism provided by in-
dexed memory is sufficient to support any developmental
pathway for computer programs. One can imagine pro-
ducing a program that includes a universal Turing ma-
chine; the program could periodically produce a new “more-
developed” program in indexed memory and then begin to
execute the new stored program. In practice, however, we
cannot expect such remarkable programs to arise.

We use the term “ontogenetic programming” to describe
an approach that combines the benefits of runtime memory
with those of morphology. In ontogenetic programming,
program self-modification operators are included in the set of
functions that may be used by evolved programs. By use of
these operators, an evolved program can dynamically change
its own structure, and thereby change its future behavior,
during the course of a run. A program’s self-modification
strategy is itself evolved; it may be arbitrarily complex and
it may be conditionalized on runtime environmental inputs.

In our current implementation the self-modification and
problem-solving components of programs are intermingled
within a single program structure. But this is not essential;
in other variants of the technique one might keep these com-
ponents segregated. In either case, evolved programs can in-
fluence their own future behavior via direct manipulation of
their own program structure.

Relations between evolution and ontogeny in evolutionary
computation have previously been studied with genetic al-
gorithms that produce neural networks (for example, [Parisi
et al. 1992; Batali 1994]). Other work has explored the in-
corporation of runtime morphological development mecha-
nisms into evolutionary computation frameworks (for exam-
ple, [Dallaert and Beer 1994; Hemmi et al. 1994]). The work
described in this paper applies related ideas to the production
of computer programs that develop over time.

In the following sections we first discuss the adaptive util-
ity of ontogeny. We then demonstrate ontogenetic program-
ming using the HiGP genetic programming system. HiGP
operates on linear programs for a stack-based virtual ma-
chine; program-modification mechanisms can be particu-
larly simple when applied to these sorts of linear programs.
The technique is not limited to such systems, however; at the
end of the paper we discuss ontogenetic programming with
more traditional S-expression-based representations.

2 Why Develop?
To some extent biological ontogeny is mandated by the
physics of biological reproductive mechanisms. These pro-
duce, initially, very small structures; in many niches large
size is adaptive (because, for example, it allows for faster
movement or more effective hunting), and developmental
processes are necessary to produce large structures. On-
togeny is therefore adaptive, if only because large size is
adaptive, and because genes can produce large structures
only by orchestrating developmental processes.

The situation is rather different for computer programs in
a genetic programming system, at least with respect to size.
Newly created programs may be of any size whatever, and
it is not clear that large size is itself adaptive in any interest-
ing niches. But developmental processes may nonetheless be
adaptive for computer programs—developmental control of
size may or may not be particularly useful, but developmen-
tal control of other phenotypic features is clearly useful in
certain domains. More generally, developmental control of
an arbitrary feature f of an individual is likely to be useful
in two cases: 1) when there is an adaptive advantage to hav-
ing an f value at maturity that differs significantly from the
f values of new individuals, or 2) when there is an adaptive
advantage to having different f values at different stages of
an individual’s life.

The second case applies to features of computer programs
for many domains. Consider a program for an agent in an
adventure game. It might be advantageous for such a pro-
gram to change several times throughout the course of a run;
it might be useful to have an initial, high-risk, exploratory
phase, a more focused goal-seeking phase, and an analyt-
ical endgame phase. Each phase might be best served by
rather different programs, and a program that could develop
through several different forms during the course of its life
span might have a significant advantage. This sort of de-
velopment is enabled in ontogenetic programming by build-
ing the capability for self modification into the programs
themselves—this allows them to evolve strategies for chang-
ing themselves as they run.

Consider the more abstract sequential regression problem,
which shares features with many sequence prediction prob-
lems. As in ordinary symbolic regression [Koza 1992], the
goal in sequential regression is to produce a program that re-
turns the appropriate y value for each x value in a data set.
Often the data set is generated by a known target function,
and the regression problem can be viewed as one of redis-
covering the target function from the data. In the sequential
regression problem we stipulate also that the x values will be
presented in a particular order. Programs have a “life span”
insofar as they are run multiple times, one for each x value
in the fitness-testing range, and insofar as they always en-
counter these x values in the same order. Development may
be useful for sequential regression problems because differ-
ent programs may be most appropriate for different ranges



of the target function. It may also be useful because transi-
tions from one value to the next may be better mediated by
developmental operators than by domain operators.

Consider the particular sequential regression problem of
rediscovering the target function x

2 over the non-negative
integers. Suppose that we are using a function set that in-
cludes only addition and subtraction operators. Using or-
dinary genetic programming it is impossible to produce a
correct program, because the provided function set is only
capable of generating linear functions. But in an ontoge-
netic programming system with sufficiently powerful self-
modification operators, a program can modify itself during
the x = n run to allow the subsequent run to produce a cor-
rect result for x = n + 1. We have in fact witnessed the
evolution of such an ontogenetic program; upon each execu-
tion it inserts an additional “+ x” sequence into itself, thereby
preparing itself for the next value. Although evolved with
fitness cases that ranged only from 1 to 19, the program is
general and works correctly for ranges from 1 to any posi-
tive integer (given unbounded space for program growth). In
this case the ontogeny of the individual is properly matched
to the dynamics of the individual’s life course; as a result,
the developmental process is able to extend the power of the
available function set.

In some cases the benefits of development can be obtained
more simply through the use of conditionals. For example, a
program that develops in such a way that it replaces a body of
code a with a body of code b at time t could in some environ-
ments be implemented with a conditional that executes either
a or b depending on the result of a comparison of the current
time to t.1 Development is nonetheless more powerful; for
example, a developing program may develop through an un-
bounded number of forms throughout its life span, while the
number of execution paths for any conditionalized program
is fixed.

Summarizing, there are a variety of situations in which
development may be useful, for a variety of different rea-
sons. Any problem for which programs have “life spans,”
in the sense used above, is a candidate for the application
of ontogenetic programming. For such problems ontogeny
may provide a capability that would otherwise be beyond the
reach of the available function set.

In the next section we describe the HiGP implementation
of ontogenetic programming, and in the subsequent section
we demonstrate the utility of the approach for a binary se-
quence prediction problem.

3 Ontogenetic HiGP
HiGP is a new high-performance genetic programming sys-
tem that combines techniques from string-based genetic
algorithms, S-expression-based genetic programming sys-

1We thank an anonymous reviewer for drawing this possibility to our
attention.

tems, and high-performance parallel computing [Stoffel and
Spector 1996]. The result is a fast, flexible, and easily
portable genetic programming engine with a clear and effi-
cient parallel implementation. The parallel version of HiGP
scales nearly linearly with the number of available proces-
sors. HiGP manipulates and produces linear programs for a
stack-based virtual machine (as in [Perkis 1994]), rather than
the tree-structured S-expressions used in traditional genetic
programming.

HiGP programs are executed on a virtual machine that is
similar to a pushdown automaton. The virtual machine con-
sists of three components: an input tape containing a linear
program, a pushdown stack, and a finite-state control unit.
The contents of the input tape are restricted to a small set of
words that have been defined as HiGP operators. The con-
tents of pushdown stack are restricted to double precision
floating point numbers. The finite-state control unit reads the
input tape and executes, for each word, the function call for
the corresponding operator. The operators may perform ar-
bitrary computations and manipulate the values on the stack.
They may also reposition the read head on the input tape; this
allows for the implementation of conditionals and loop struc-
tures. Return values are generally read from the top of the
stack at the end of program execution.

The system includes two basic stack operators, pop and
dup. The pop operator removes the topmost element from
the stack, while the dup operator pushes a duplicate of the
top element onto the stack. The system also includes a fam-
ily of push operators that correspond to the terminal set in
a traditional genetic programming system; each push oper-
ator pushes a single pre-determined value onto the stack.

The system also includes a noop operator that does noth-
ing. This is necessary because all programs in the system
have the same length, and because we do not wish to pre-
determine the number of actual problem-solving operators
that should appear in solution programs. With the inclusion
of the noop operator the fixed program size becomes a size
limit, analogous to the depth limits used in S-expression-
based genetic programming systems. “Shorter” programs
are encoded by filling in extra program steps with noops.

Any additional, problem-specific operators must take their
input values from the stack and must push their results back
onto the stack. When there are not enough values on the
stack for a problem-specific operator it is skipped by the
finite-control unit and the stack remains untouched (as in
[Perkis 1994]). Additional information about HiGP may be
found in [Stoffel and Spector 1996].

The ontogenetic version of HiGP results from includ-
ing the following program self-modification operators in the
function set:

segment-copy copies a part of the linear program over an-
other part of the program. The function takes three argu-
ments from the stack: the start position of the segment to
copy, the length of the segment, and the position to which



the segment should be copied. All positions are calcu-
lated relative to the current instruction. If there are not
three values on the stack the instruction is skipped.

shift-left rotates the program to the left. The call takes one
argument from the stack: the distance by which the pro-
gram is to be rotated. If there is no value on the stack the
program is rotated by one instruction to the left.

shift-right rotates the program to the right. The call takes
one argument from the stack: the distance by which the
program is to be rotated. If there is no value on the stack
the program is rotated by one instruction to the right.

The position of the current instruction pointer is not
changed by the execution of an ontogenetic operator. For ex-
ample, if instruction #23 is a segment-copy, then after its
execution instruction #24 will be executed, regardless of the
fact that the old instruction #23 may now have been moved
elsewhere.

4 Example: Binary Sequence
Prediction

In this section we show how the ontogenetic version of HiGP
can solve a problem that cannot be solved by the ordinary
version of HiGP. We also show that the addition of indexed
memory to the ordinary version of HiGP is not sufficient
to produce solutions to this problem; the ontogenetic exten-
sions provide benefits that indexed memory does not.

Consider a binary version of the sequential regression
problem described above, with a target function that repeats
the values [0 1 0 0 0 1] as x increases. The initial portion
of the target function is f(0, 0) (1, 1) (2, 0) (3, 0) (4, 0) (5,
1) (6, 0) (7, 1) (8, 0) (9, 0) (10, 0) (11, 1) (12, 0)...g. The
goal is to produce a program that returns the appropriate y
value for each x value; the program will be run once for each
x value, and the x values will be presented in order from 0
to some number n. In particular, we assessed fitness by test-
ing each program on the range [0–19]. We use a “wrapper”
function [Koza 1992] that maps positive y values to 1, and
negative y values to 0. In other words, it is not necessary for
an evolved program to produce the exact values 0 and 1; it
is sufficient for it to produce either 0 or any negative number
in place of each 0, and any positive number in place of each
1. This problem can be thought of as a binary sequence pre-
diction problem, related to many other sequence prediction
problems in the literature. In particular, Iba et al. describe a
related binary oscillation task [Iba et al. 1995].

The function set for this problem consists of the 2-
argument addition function +, the 2-argument subtraction
function -, the 2-argument multiplication function *, the 2-
argument protected division function % [Koza 1992], and
three push functions: push-x (for the independent vari-
able x), push-0, and push-1. The HiGP functions dup

and noop were also included. Although this function set is
simple it is nonetheless general and powerful; for example,
one can obtain the effects of many conditionals through the
clever use of arithmetic. For each fitness case the stack was
initialized with a single copy of x, and the result was read
from the top of the stack at the end of program execution.

We conducted 100 runs of the ordinary (non-ontogenetic)
version of HiGP on this problem. We used a population size
of 100, a maximum program size of 30, a crossover rate of
90%, and a reproduction rate of 10%. We allowed each run
to continue for up to 20 generations. No correct solutions
were produced by any of the 100 runs. We conclude that the
problem cannot reliably be solved by ordinary HiGP and the
given parameters.

We then conducted 100 runs of the ontogenetic version
of HiGP on this problem (adding the segment-copy,
shift-right and shift-left functions to the func-
tion set). We used the same population size and other pa-
rameters as in the non-ontogenetic case. 12 completely cor-
rect solutions were produced by the 100 runs. 10 of these
solutions were general; although fitness was assessed only
over the range [0–19], these programs produce correct re-
sults over the range [0–39], and they appear to be correct to
any limit. The following is one of the correct evolved pro-
grams:

push-x % - shift-left push-x noop * *
dup % - + push-x % dup % shift-right
dup shift-left push-x shift-right * %
shift-right * + shift-right - - push-x

Because indexed memory also provides a limited ontoge-
netic capability, we also conducted 100 runs of the HiGP
with indexed memory on this problem. We added a 30-
element indexed memory, a 2-argument write function
that stores the value of one argument in the location indexed
by the other, and a 1-argument read function that pushes
the indexed element of the memory onto the stack. We used
the same population size and other parameters that were used
for the runs described above. No correct solutions were pro-
duced by any of the 100 runs. We conclude that indexed
memory does not provide sufficient power for HiGP to re-
liably solve this problem with the given parameters.

In summary, ontogenetic programming allows for the pro-
duction of binary sequence prediction programs that change
themselves in appropriate ways during the course of their
“life spans” through the x range. This allows ontoge-
netic programming to reliably produce correct solutions to
the binary sequence prediction problem, whereas the non-
ontogenetic and indexed memory versions of our system
were unable to produce any correct solutions.



5 Ontogenetic Programming with
S-Expressions

Although the program self-modification functions of onto-
genetic programming are easiest produce and to explain for
linear programs, variants of the technique can be applied
to the S-expression-based program representations of tradi-
tional genetic programming [Koza 1992].

One way to apply ontogenetic programming to S-expres-
sion-based programs is to include a subtree-copy func-
tion in the function set. Thesubtree-copy function takes
two integer arguments, each of which indexes a subtree of
the program through some standard (e.g., depth-first) traver-
sal. The effect of a call to the subtree-copy function is
to replace the subtree rooted at one of the indices with a copy
of the subtree rooted at the other.

We have experimented with versions of the subtree-
copy function, and although we have had some successes
(e.g., for the x

2 sequential regression problem described
above), several problems remain. One problem is that it is
awkward to modify an S-expression during its execution.
We avoided this problem by applying the subtree-copy
operations to a copy of the program, and by replacing the
program with its modified copy at the end of each execution.
This means that a program could develop between the suc-
cessive executions of its “life span,” but not during the ex-
ecutions. In contrast, our HiGP implementation allows for
program development during each single execution. This
limitation of the subtree-copymodel could be removed
by using a more flexible S-expression evaluator.

A second problem with the subtree-copy model of
ontogenetic programming is that the index arguments refer
to specific subtrees of the entire program, indexed relative
to the root of the S-expression. This means that it is un-
likely that a particular call to subtree-copywill be trans-
portable from one program to another; it will have a com-
pletely different effect in each program context into which
it is placed. Crossover will therefore rarely produce high-
fitness children from high-fitness parents — the fitness land-
scape will have sharp discontinuities. One way to mitigate
this problem is to use a 3-argument structured-sub-
tree-copy control structure. As with subtree-copy,
the first two arguments tostructured-subtree-copy
produce integer indices. But the third argument is a result-
producing branch that is executed to produce a value from
the call to structured-subtree-copy. As a side-
effect of each call to structured-subtree-copy,
a subtree-copy operation is performed within the result-
producing branch. Since the indices refer only to sub-
trees within the result-producing branch, and since they
are indexed relative to the root of the result-producing
branch, it is reasonable to assume that the entire call to
structured-subtree-copy will be transportable to
other program contexts.

A third problem with the subtree-copy model of
ontogenetic programming is that it may produce arbitrar-
ily large programs during execution. Whereas the HiGP
program-modification functions never change the size of
a program, the replacement of a small subtree by a large
subtree in an S-expression program will indeed produce a
larger program. Several techniques may be used to limit
this growth. These include absolute depth limits that are en-
forced by converting offending subtree-copy calls into
noops, and depth-based indexing schemes that ensure that
replacement subtrees are selected only from those with ac-
ceptable sizes.

An alternative mechanism for ontogenetic programming
with S-expression-based programs makes use of dynamic
ADFs and dynamic ADMs. With ordinary automatically de-
fined functions (ADFs [Koza 1994]) and automatically de-
fined macros (ADMs [Spector 1995, 1996]) each individual
has a fixed set of evolved sub-functions/macros that may be
used by the main program and by each other. In contrast, dy-
namic ADFs and ADMs may be redefined by the individual
at runtime, and the new definitions may be constructed on
the basis of information in the individual’s environment or
memory. The implementation involves the inclusion func-
tion/macro definition and calling operators (e.g. variants of
Lisp’s DEFUN, FUNCALL, etc.) in the function set. One
can refer to the dynamically defined functions/macros us-
ing integer labels; this allows one to use a mechanism much
like indexed memory, with the memory containing callable
and redefinable functions and macros rather than simple val-
ues. Special but straightforward measures must be taken
to avoid problematic recursive definitions. Dynamic ADFs
and ADMs allow programs to modify themselves at runtime
through module redefinition, rather than through direct ma-
nipulation of program code. We are currently investigating
the utility of this technique.

6 Conclusions

We have shown that it is possible to use genetic program-
ming to produce programs that themselves develop in sig-
nificant, structural ways over the course of a run. We use
the term “ontogenetic programming” to describe our tech-
nique for achieving this effect, which involves the inclusion
of program self-modification functions in the genetic pro-
gramming function set. We described cases in which this
may be useful, and we demonstrated the application of our
HiGP implementation of ontogenetic programming to a bi-
nary sequence prediction problem. Although HiGP manip-
ulates linearly-structured programs, and the program self-
modification functions are particularly simple in this case,
we also described several variants of the technique that are
appropriate for more traditional S-expression-basedprogram
representations.
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