Robinson, A., and L. Spector. 2002. Using Genetic Programming with Multiple Data Types and
Automatic Modularization to Evolve Decentralized and Coordinated Navigation in Multi-Agent
Systems. Ihate-Breaking Papers of GECCO-2002, the Genetic and Evolutionary Computation
ConferencePublished by the International Society for Genetic and Evolutionary Computation.

Using Genetic Programming with Multiple Data Types and Automatic
Modularization to Evolve Decentralized and Coordinated Navigation
in Multi-Agent Systems

Alan Robinson

School of Cognitive Science
Hampshire College
Amherst, MA 01002

ar obi nson@anpshire. edu

Abstract

This work applies PushGP (a multi-type,
automatically modularizing genetic
programming system) to the 3D Opera problem
(a cooperation and navigation multi-agent task
involving the movement of a 3D swarm of
agents through a constrained exit point). Within
this framework we explore the effect of adding
task-specific data types to the GP system. In
particular, we extend the native types of PushGP
to include 3D vectors, and we compare the
results with and without this extension to each
other and to human-programmed agent
controllers.

1 INTRODUCTION

Successfully evolving programs that control agent
behavior is tricky, and the focus of much genetic
programming research. We are interested in the
application of genetic programming techniques to multi-
agent system problems that are challenging to human
programmers as well as to automatic programming
systems. Problems that have human designed solutions
provide a particularly rich context in which to evaluate
the results of GP runs. Genetic programming can be used
to explore the constraints of these problems and to
examine the possibility of alternative solutions.
Furthermore, if the problem is difficult enough that it
merits the effort of manually programming a solution,
then it is interesting to see how effective a result a genetic
programming system can evolve.

If a genetic programming system is to be used on
problems humans find difficult, then it should have
available to it the programming features that a human

Lee Spector

School of Cognitive Science
Hampshire College
Amherst, MA 01002
| spect or @anpshi re. edu

programmer would also have. At a minimum, we
hypothesize this means a system supporting program
decomposition into modular functions and the ability to
operate on multiple data types. Furthermore, if such a
system is to find novel solutions then the configuration of
the system must be open ended enough to allow evolution
to explore a rich solution space. In this work, we examine
the application of Push and PushGP (a pairing designed to
supply these features) to the 3D Opera problem, a
navigation and coordination problem.

The goal of this paper is to explore how providing
automatic modularization and multiple data types changes
the behavior of the evolved agent, and how the evolved
programs compare to solutions and techniques designed
manually. When designing a multi-type system an issue is
which data-types to include. We experiment with adding a
highly domain-specific data-type to PushGP. Specifically,
we add a 3D vector data-type, and examine the solutions
evolved before and after that addition for differences in
performance or behavior. We also examine whether or not
PushGP makes use of modularity in the best performing
evolved programs.

1.1 WHAT FOLLOWS IN THE NEXT
SECTIONS

We will describe the technologies used in this work in the
following order: the opera problem, including the specific
simulation we used; the Push programming language and
the PushGP genetic programming system; the specific
encoding of the 3D opera problem for PushGP. We will
then present the results of the two experiments that were
conducted (one with no vector type, and the other with),
and summarize our conclusions.

2 TECHNOLOGIES

2.1 THE 3D OPERA PROBLEM

The Opera problem is a decentralized multi-agent
navigation and coordination problem introduced by
Crespi, et al. (2001). The problem is defined for any two
or greater dimensional space; in our work we focus on the
three dimensional version. The task is to move a
collection of agents inhabiting a bounded space through a
fixed exit point in the minimum possible amount of time,
while maintaining a “polite” distance between each agent.
(The name of the problem derives from the problem faced
by humans trying to leave a crowded opera house after a
show.) There is no centralized control of movement; each
agent is controlled separately and given only local
information about its neighbor’s positions. The behavior
of each agent must minimize the time taken to reach the
exit while at the same time avoiding getting too close to
other agents. Since the exit is small in size, overcrowding
results if the agents move at maximum speed directly to
it. A successful agent must balance high speed with
cooperative behavior.

In Crespi, et al. (2002) the 3D opera problem was solved
with a gradient descent algorithm on a local potential
function that treated the exit as a valley and the nearby
agents as hills. By following the path of steepest descent,
agents found paths to the exit while maintaining a
reasonable average distance between each other. In our
work we attempt to use evolution to find solutions to this
problem without presupposing a specific algorithmic
technique.

2.2 3D OPERA SIMULATION

We wrote our own version of the 3D opera simulation in
Lisp to allow easy integration with Push/PushGP. The
simulation is functionally and behaviorally modeled on
the simulation used by Crespi, but for simplicity is based
on uniform-length time steps. The constants used (exit
size, room size, etc) are based upon the values typically
used previous research.

At the start of the simulation agents are distributed
throughout the interior of a 10x10x10 unit cube. The
simulation is then run for a fixed number of time steps
(the number depending on the fitness case). At each step
every agent’s controller (a Push program) is supplied with
the coordinates of its location, the coordinates of the exit,
and the coordinates of all agents within a radius of 1.5
units. The agent must respond with a vector describing its
next movement in 3D space; if this vector is larger than
0.25 units it is normalized to 0.25 units. At the end of
each time step all the agents are moved according to the
vectors they returned. No collisions are simulated. After
the agents move, however, the number of agents within
collision distance of each other (.75 units) is recorded for
use in the fitness function. Before the next time step every
agent within 0.5 units of the exit is removed from the

simulation. The location of the exit varies for different
fitness cases, but is always located on a wall of the cube.

2.3 PUSH AND PUSHGP

We used the Push language and the PushGP genetic
programming system to evolve programs that control the
behavior of agents. Push is a multi-type stack-based
language designed for genetic programming research.
Push contains 50-odd instructions, including
mathematical operations, stack manipulations, Boolean
operations, and instructions for conditional code
execution. Push instructions pop their arguments from the
appropriate stack and push their results back. Multiple
stacks (Integer, Float, Code, Boolean, Symbol, Name, and
Type), allow for multiple types of data to be processed by
a single Push program without syntactic constraints.
Instructions either draw from specific stacks, or consult
the Type stack to determine which stack(s) to use. The
Code stack can be used to manipulate Push code, which
can be executed on demand at any time during a program
run. By modifying the contents of this stack with Push’s
rich code manipulation instructions any number of
subroutines and modular control structures (all of which
may be recursive) can be created on the fly, without the
need for pre-specification of the number of modules or
the number of parameters that they take.

To drive evolution we used PushGP, a fairly traditional
genetic programming environment that evolves Push
programs. Fitness-based selection is achieved via
tournaments, and new individuals are produced via
crossover and mutation operators. Because the Push
language inherently supports the creation of subroutines
and modular control structures, the PushGP system needs
no explicit mechanisms to provide Koza style ADFs. The
Push language and the PushGP system are further
documented in Spector (2001), Spector and Robinson
(2002a), Craford-Marks and Spector (2002), and online at
http://hanpshire. edu/ | spector/ push. htni.

In previous work we have used Push and PushGP to
evolve agents for controlling traffic grids (Spector and
Robinson, 2002b). In the present work we chose to apply
it to the 3D Opera problem because we are interested in
observing if its ability to create modular code and its
support for multiple data types would be utilized
effectively in a more complex domain. Furthermore, we
were interested in experimenting with the addition of a
vector data type to Push, to see how this would change the
behavior of evolved programs that manipulate entities in
3D space.

24 PUSHGP PROBLEM ENCODING

We evolved programs that would be fully executed every
time step, agent by agent. The input to the program was
the coordinates of the agent, the exit, and the other nearby
agents. Programs were evaluated for up to 400 Push
instructions. The top of the appropriate stack was then
treated as the vector of the direction the agent should

move next. In experiment one, all coordinates are trios of
values pushed on the float stack. In experiment two,
coordinates are pushed as single 3D vectors onto the
vector stack.

Table 1: PushGP parameters for all experiments
PARAMETER VALUE

5000
Tournament Size 5

Population size

Fitness Cases 5
% Mutation 45
% Crossover 45

% Reproduction 10

Instruction Set,
standard Push
operators

ephem.-random-integer,
ephem.-random-float,
ephem.-random-boolean,
ephem.-random-symbol,
convert, get, set, noop, =,
rep, swap, pop, dup, max,
min, >, <, *, - +, /,
pulldup, pull, not, or, and,
size, length, extract, insert,
container, contains, subst,
position, member, nthedr,
nth, append, list, cons, cdr,
car, null, atom, quote,
map, if, do*, do, integer,
float, boolean, type, name,
code

Tovec, tofloat, vshift,
vscale, vmul, vadd, vector

Instruction Set,
vector operators

Table 2: PushGP vector operators

OPCODE RESULT

Tovec Pop the top three items of the
float stack and push the result as
a vector

Tofloat Pop the top vector and push the
result as three floats on the float
stack

vshift Add the top float to each element
of the top vector and pop the
float stack.

vscale Scale the top vector by the top
float and pop the float stack

vmul Multiply and pop the top two
vectors and push the result

vadd Add and pop the top two vectors

and push the result

In all experiments the instruction set included both
standard Push operators and the vector operators. This
kept the search space size similar between both
experiments. In experiment one the use of vectors was
prevented by converting them to no-ops when executed.

Fitness was defined as (too-close + (remmining *
(too-close + 1))), with too-cl ose as the number of
times two agents got close enough to “collide” and
remai ni ng as the sum of the distance of all remaining
agents from the exit after the simulation terminates. We
add 1 to too-close because otherwise if too-close is
zero, fitness would always be zero, independent of the
value of remai ni ng. This metric was chosen because it
rewards improving both t oo- cl ose and r emai ni ng at the
same time, and because zero fitness was only possible if
both were zero.

Table 3: The five fitness cases used

NUMBER OF NUMBER OF TIME
AGENTS STEPS
2 25
10 30
10 30
10 30
25 100

Fitness cases differed in terms of the number of agents,
how long the simulation ran, and the random initial
distributions of agents inside the 10x10x10 cube. The
same set of distributions were used for all runs and
experiments in this paper to facilitate comparison, and to
ensure that evolution selected for more successful
programs, rather than programs run with lucky
distributions.

Measuring the fitness of all cases on current hardware
resources was very slow, so heuristics were used to
improve evaluation speed. The fitness for the quickest
(and easiest) cases were found first. If the performance
was worse than that of a null program, further testing was
aborted, and default fitness values were used for the
remaining cases. The default values corresponded to a
little worse than the fitness of the null program for those
cases.

3 EXPERIMENTS

3.1 EXPERIMENT 1: WITHOUT VECTORS

16 runs were initiated, however, due to time constraints
only 2 runs were completed to 49 generations, and only 8
additional runs were completed to at least generation 30.
Completing more runs would probably not change the
results much, however, since most improvement
happened very early in the runs. For each run, an
individual within 1% of the best fitness of that run was
usually found by generation 10, and always by generation

15. Furthermore, all but two runs ended with nearly the
same fitness (245), with the exceptions being one run
ending with fitness of 240 (the best found in all runs), and
another ending with 280.

Though there was some variation between the individuals
produced by different runs, all simplified to programs that
returned a single fixed vector, regardless of the sensory
information provided to the agent. The result of
evaluating these programs was all agents moving in a
straight line for their entire lifetime. Improvements in
fitness consisted of finding a direction that happened to
send the most agents into the exit, while minimizing the
number of agents getting close enough for collision.
Interestingly, in five of the programs evolved, PushGP
made use of the DO or DO* instruction, one of its main
methods for evolving modular code, though the result of
the instruction was only to duplicate one of the numbers
that would eventually be used to construct the constant
vector. No programs used stack manipulation instructions
to explicitly duplicate the contents of the float stack,
suggesting that something about programs referencing
their own code was more effective than direct stack
manipulation.

Although more runs would be needed to be sure, it
appears that a constant vector is too strong a local
minimum to allow reactive programs to establish
themselves and evolve in the experimental framework
that we used. This is probably due to the amount of code
required to process trios of floats as vectors being
unlikely to evolve at the same time that effective use of
vectors evolves. We will see that even when provided
with vectors in experiment 2, it usually takes several
generations before they are utilized successfully.

Perhaps, then, this problem, without the benefit of vector
types, is best considered as a challenge problem for GP.
In order to do better than a fixed vector, the system must
be very effective at construction of modular code and
promote the exploration of significantly less fit areas of
the search space for long enough to develop the right
building blocks.

3.2 EXPERIMENT 2: WITH VECTORS

Six runs were initiated, but due to time constraints only
three completed all 49 generations. The rest completed at
least 30 generations. There was a wider range in fitness
over these runs than in the previous runs, and the number
of runs/generations was not the same as in the first
experiment, so we must be particularly careful in making
comparisons.

Table 4: Fitness results for all experiment 2 runs

Best Gen. Evolved at | Gen. of fitness
fitness <240
138 31 8
206 15 0
208 41 6
217 35 8
221 23 4
226 23 8

As seen in Table 4, in every case, the fitness of the best of
run individual was better than the very best individual
from the first experiment. While more generations were
completed for these runs than for the first experiment, on
average it took only 6 generations to evolve better
performance than the best result from experiment 1.
Therefore, the performance advantage cannot be
explained by the number of generations completed.
Further note that the best of run fitness was usually found
by generation 30. Since 10 runs from experiment 1
completed at least 30 generations, the total number of
individuals evaluated and important generations
completed is roughly the same, if not higher on the part of
experiment 1. We conclude, therefor, that while more
runs and more consistent runs would be ideal, these
results can be used for comparison.

The individuals evolved had highly varied code, however,
of the six, four had basically the same behavior. One of
the more simple programs that evolved this behavior
appeared at generation 41 of one run: (-0.0053015
—0. 043026447 —0. 043867588 TOVEC VMUL
—0. 193120718 VSCALE -0.8248620 VSCALE). Note that
this program has been simplified from its original form to
this functional equivalent in order to save space and
facilitate describing its function.

This program, which had a fitness of 208, constructs a
small magnitude vector, multiplies it times the agent’s
location, and then scales the resulting vector by roughly
0.16. The result is used as the direction of motion for the
agent. This program moves the agent towards 0,0,0, with
agents farthest away from 0,0,0 moving quicker than
closer agents. The simulation does not run long enough
for agents to actually reach 0,0,0, and the end result is that
agents congregate towards a cube spanning between 0,0,0,
and the middle of the room. Since in all fitness cases the
exits are located roughly near the center of a wall of the
cube, this outcome has a lower average distance between
all agents and the exit than at the start of the simulation.
Since agents don’t move very far, however, few get close
enough to trigger a “too-close” penalty.

Another program, (VECTOR POP POP POP POP
—0.118044495 VSCALE vMlL), which evolved at
generation 15 of one run, has a similar fitness to the above

program (206), but a different behavior. It pops the 4 top
vectors on the stack, leaving the location of the 3 closest
agent (if any) at the top. It then scales that vector by
-0.11, and attempts to multiply that vector times the
coordinates of the 4" closest agent (only rarely are there
four nearby agents, so usually that instruction is converted
into a no-op). The behavior of this program is to move
towards 0,0,0, if, and only if, there are at least 3 agents
near the current agent. In this way, the program promotes
concentrating each agent towards the center of the room
whenever that agent might be within penalty distance of
another agent, but otherwise doesn’t move.

The most fit program (fitness = 138), which evolved on
generation 31 of one run, is much more complex: (((AND
X X) (SIZE (DO x x (x (x x))) (x x ((x x x) ((x
(x) (x -0.9737293720245361 -) x x (x (((x) MN
VSCALE) (x) x (VECTOR SUBST)) x (x (x TYPE) (x)
(x) x))) (POP) (x x (x) PULL) 0.015931844) x
(x)))) ((BOOLEAN) VADD x VSCALE ((DO* POP) (x x
X) x x) x) x (x) x) (x) (x x (x) x) x). Note that
the symbol x represents a no-op that has no function when
executed, but is structurally necessary in order for the rest
of the program to work.

This program, like many of the more complex programs
generated by GP systems, is hard to decipher. It has been
simplified to remove all functions that do not contribute
to fitness, so the presence of modularity instructions
(DO%*) indicate that it does use modularity to function.
Furthermore, it makes heavy use of multiple data-types,
switching the stack type from the default to VECTOR,
BOOLEAN, and TYPE, showing that it is not just the
ability to process vectors, but the ability to process
multiple types of data that contributes to the fitness of this
program.

Behaviorally, this program operates similarly to the
manually designed agents by Crespi, et al. (2002). All
agents immediately start to move towards the exit,
however, whenever agents get close to each other, they
instead retreat away from their neighbors. Notably, the
performance of the evolved program is not as good as that
designed by Crespi, since agents do at times get too close
to neighbors, and not all agents are able to exit. One
major deficiency is that even in a simulation of just a few
agents, a lot of time is spent backtracking from potential
collisions; rarely does an agent exit if it does not have a
straight run to the exit. Our result, however, is the product
of just six runs, and with more experimentation we can
expect improvements in performance.

4 CONCLUSIONS

In this work we set out to evolve agents for the 3D Opera
problem. We explored the effects of adding a vector data-
type to an already rich multi-type system, and whether or
not modularity was useful for the problem in general. Our
preliminary results suggest that in the domain of the 3D
Opera problem, and perhaps for other 3D agent problems:

It is difficult to evolve vector manipulation code at
the same time as effective vector use.

A vector data type, when available, is highly selected
for.

Adding vectors improves performance throughout the
generations of a run.

Multiple data-types systems are useful not just
because one data-type is specialized to the problem,
but because many problems are naturally dealt with
in terms of more than one data-type.

PushGP leverages the ability to create modular code
in many situations, including when it is just evolving
constants.

There is much room for future work on this research.
More runs would shed light on the extent of these effects,
and allow for more detailed examinations of the
similarities and differences between the programs evolved
by PushGP vs. manually designed programs. It would also
be interesting to investigate methods for more equally
weighing the intertwined metrics that combine to define
fitness. Though the fitness equation was designed to
reward improving both metrics, it appears that
“politeness” was usually more selected for than “exiting”.
Making the selective pressure more equal may be enough
to evolve a fully successful individual, given how close
we already came in just six runs of experiment two.

Acknowledgments

This effort was sponsored by the Defense Advanced
Research Projects Agency (DARPA) and Air Force
Research Laboratory, Air Force Materiel Command,
USAF, under agreement number F30502-00-2-0611. The
U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the
author and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research
Projects Agency (DARPA), the Air Force Research
Laboratory, or the U.S. Government. This research was
also made possible by generous funding from Hampshire
College to the Institute for Computational Intelligence at
Hampshire College.

References

Crespi, V., G. Cybenko, and D. Rus (2001).
Decentralized Control and Agent-Based Systems in the
framework of the IRVS. White paper presented at the
Pl TASK Meeting held in Santa Fe, NM, on April
2001.
http://actcomm.thayer.dartmouth.edu/task/crespi/irvs2.
pdf

Crespi, V., G. Cybenko, D. Rus, M. Santini (2002).
Decentralized Control for Coordinated flow of Multi-
Agent Systems. Dartmouth Technical Report TR2002-
414, January, 2002. Presented at the 2002 World
Congress on Computational Intelligence. Honolulu,
Hawaii, May 12--17, 2002.

Crawford-Marks, R., and L. Spector. 2002. Size Control
via Size Fair Genetic Operators in the PushGP Genetic
Programming System. In W. B. Langdon, E. Cantu-
Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K.
Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L.
Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E.
Burke, and N. Jonoska (editors), Proceedings of the
Genetic and Evolutionary Computation Conference,
GECCO0-2002, San Francisco, CA: Morgan Kaufmann
Publishers

Spector, L., and A. Robinson. 2002a. Genetic
Programming and Autoconstructive Evolution with the
Push Programming Language. In Genetic
Programming and Evolvable Machines, Vol. 3, No. 1,
pp. 7-40

Spector, L., and A. Robinson. 2002b. Multi-type, Self-
adaptive Genetic Programming as an Agent Creation
Tool. In Proceedings of the Workshop on Evolutionary
Computation for Multi-Agent Systems, ECOMAS-
2002, International Society for Genetic and
Evolutionary Computation.

