
Lee Spector, Howard Barnum, Herbert J. Bernstein, and Nikhil Swamy

Quantum computers are computational devices that use the dynamics of atomic-scale objects to store
and manipulate information. Only a few, small-scale quantum computers have been built to date, but
quantum computers can in principle outperform all possible classical computers in significant ways.
Quantum computation is therefore a subject of considerable theoretical interest that may also have
practical applications in the future.

Genetic programming can automatically discover new algorithms for quantum computers[Spec-
tor et al., 1998]. We describe how to simulate a quantum computer so that the fitness of a quantum
algorithm can be determined on classical hardware. We then describe ways in which three different
genetic programming approaches can drive the simulator to evolve new quantum algorithms. The
approaches are standard tree-based genetic programming, stack-based linear genome genetic pro-
gramming, and stackless linear genome genetic programming. We demonstrate the techniques on
four different problems: thetwo-bit early promiseproblem, thescaling majority-onproblem, the
four-item database searchproblem, and thetwo-bit and-orproblem. For three of these problems (all
but majority-on) the automatically discovered algorithms are more efficient than any possible clas-
sical algorithms for the same problems. One of the better-than-classical algorithms (for thetwo-bit
and-orproblem) is in fact more efficient than any previously known quantum algorithm for the same
problem, suggesting that genetic programming may be a valuable tool in the future study of quantum
programming.

7.1 Quantum Computation

Quantum computers use the dynamics of atomic-scale objects, for example 2-state parti-
cles, to store and manipulate information ([Steane, 1998]; see[Braunstein, 1995] for an
on-line tutorial; see[Milburn, 1997] for an introduction for the general reader). Devices at
this scale are governed by the laws of quantum mechanics rather than by classical physics,
and this makes it possible for a quantum computer to do things that a common digital
(“classical”) computer cannot. In particular, quantum computers can solve certain prob-
lems using less time and space resources than classical computers require[Jozsa, 1997].
The physical basis of a real quantum computer might take various forms. Current exper-
imental hardware is based on the use of ion traps, cavity quantum electrodynamics, or
nuclear magnetic resonance techniques, all of which appear to have weaknesses[Preskill,
1997], although some physicists are optimistic that new developments will allow for the
construction of large-scale quantum computers.

Richard Feynman hinted at the possible power of quantum computation at least as early
as 1981[Milburn, 1997, page 164], but the idea didn’t attract widespread attention until
a few dramatic examples were discovered more than a decade later. Perhaps the most
dramatic was Peter Shor’s quantum factoring algorithm, which finds the prime factors of
ann-digit number in timeO(n2 log(n) log log(n)) [Shor, 1998]. The best currently known

PRE-PRESS version of: Spector, L., H. Barnum, and H.J. Bernstein. 1999. Quantum
Computing Applications of Genetic Programming. In Advances in Genetic Programming,
Volume 3, edited by L. Spector, U.-M. O'Reilly, W. Langdon, and P. Angeline, pp. 135-160.
Cambridge, MA: MIT Press.

7 Quantum Computing Applications of Genetic
Programming

classical factoring algorithms require at least timeO(2n
1
3 log(n)

2
3), so Shor’s algorithm

appears to provide a near-exponential speedup[Shor, 1994; Beckman et al., 1996]. This
is not certain, however, because a classical lower bound for factoring has not yet been
proven. Another intriguing result was provided by Lov Grover, who showed how a quantum
computer can find an item in an unsorted list ofn items inO(

√
n) steps; classical algorithms

clearly requireO(n), so this is a case in which quantum computation clearly beats classical
computation on a commonly occurring problem[Grover, 1997]. It is not yet clear exactly
how powerful quantum computers are relative to classical computers, but this is a subject
of active investigation by several research groups.

In the following section we describe how to build a virtual quantum computer to simulate
the operation of a quantum computer on ordinary classical computer hardware. We then
show how the virtual quantum computer can be used, in conjunction with genetic program-
ming techniques, to evolve new quantum algorithms. This is followed by a presentation of
results for four different problems and some concluding remarks.

7.2 A Virtual Quantum Computer

The smallest unit of information in a quantum computer is called aqubit, by analogy with
the classicalbit. A classical system ofn bits is at any time in one of2n states. Quantum
mechanics tells us, however, that we must think of a quantum system ofn qubits as having
a distinct probability of “being in” (that is, “being found in upon measurement”) each of
the 2n classical states at any given time. Of course the probabilities must sum to 1—we
will always find the system in some particular state when we measure it. The system is said
to be in a “superposition” of all states for which there is non-zero probability.

A quantum mechanical system ofn qubits can be modeled as a vector of2n complex
numbers, oneprobability amplitudefor each of the2n classical states. The probability of
finding the system in a particular state is calculated as the square of the modulus of the
corresponding amplitude. Computations in the system are modeled as linear transforma-
tions, often represented as matrices, applied to the vector of probability amplitudes. Some
of these transformations simply move probability from one state to another, in a manner
analogous to classical logic gates, but others “spread” or recombine probability between
multiple states in more interesting ways (see below). Readers familiar with wave mechan-
ics will recognize these phenomena as instances of quantum interference.

In the following subsections we present some useful notation and then describe the oper-
ation of the virtual quantum computer. We also trace the execution of an example quantum
algorithm and make some brief observations about the power of quantum computation in
light of the simulation.

7.2.1 State Representation and Notation

We represent the state of ann-qubit system as a unit vector of2n complex numbers
[α0, α1, α2, . . . , α2n−1]. Each of these numbers can be viewed as paired with one of the
system’s classical states. The classical states are called the “computational basis vectors”
of the system and are labled byn-bit strings, represented as|bn−1bn−2 . . . bj . . . b0〉 where
eachbj is either 0 or 1.1 The state labels can be abbreviated using the binary number formed
by concatenating the bits; that is, we can write|k〉 in place of|bn−1bn−2 . . . bj . . . b0〉where
k = b0 + 2b1 + 4b2 + . . . + 2n−1bn−1. For example we can write|6〉 in place of|110〉.
The modulus squared of each amplitudeα (for example|αk|2) is the probability that mea-
surement of the system will find it in the corresponding classical state (|k〉).

As an example, the complete state of a two-qubit system is represented in the following
form:

α0|00〉+ α1|01〉+ α2|10〉+ α3|11〉

If we measure the system’s state, each of the computational basis vectors is a possible
outcome. The probability that the state of the system is|00〉 is |α0|2, the probability that
we will find the state of the system to be|01〉 is |α1|2, etc.

7.2.2 Quantum Gates

The primitive operations supported by a quantum computer are calledquantum logic gates,
by analogy with traditional digital logic gates. Several small sets of quantum logic gates
areuniversalfor quantum computation in almost the same sense thatNANDis universal for
classical computation; one can implement any quantum algorithm with at most polynomial
slowdown using only primitive gates from one of these sets ([Barenco et al., 1995] and
references therein). For example, all quantum computations can be implemented using
only theU2 andCNOTgates described below.

We will describe and represent quantum gates as matrices that operate on a quantum
system via matrix multiplication with the vector of amplitudes. Gates representing physi-
cally possible dynamics (time-evolution) of a closed (or isolated) quantum system must be
unitary—that is, each gateU must satisfyU†U = UU† = 1, whereU† is the Hermitean
adjoint ofU , obtained by taking the complex conjugate of each element ofU and then
transposing the matrix[Löwdin, 1998].

7.2.2.1 QuantumNOT and SQUARE ROOT OF NOT
A simple example of a quantum gate is the quantum counterpart of classicalNOT. Classical
NOT inverts the value of a single bit, changing 0 to 1 and 1 to 0. QuantumNOT operates

1The “| . . .〉” notation is for “ket” vectors; this notation is standard in the quantum computation literature and
it will be used here even though the “bra-ket” notation system of which it is part is beyond the scope of this chapter
(but see[Chester, 1987]).

on a single qubit. In a one-qubit system (which we represent with two amplitudes, one
for |0〉 and one for|1〉) the quantumNOT operation simply swaps the values of the two
amplitudes. That is, a single qubit system in the stateα0|0〉 + α1|1〉 will be transformed
by quantumNOT into α1|0〉+ α0|1〉. QuantumNOT can be represented in matrix form as[

0 1
1 0

]
, and its operation on a one qubit systemα0|0〉 + α1|1〉, represented as a column

vector
[
α0
α1

]
, can be shown as:[

0 1
1 0

] [
α0

α1

]
=
[
α1

α0

]
Another interesting one-qubit gate is theSQUARE ROOT OF NOT(SRN) gate:[

1√
2
− 1√

2
1√
2

1√
2

]

A single application ofSRNwill in effect randomize the state of a qubit that was previously
in a “pure” state of 0 or 1. That is, it will transform a situation in which there is a probability
of 1 for reading the state as “0” (or a situation in which there is a probability of 1 for reading
the state as “1”) into one in which there is a probability of1

2 for reading the state as “0” and
a probability of 1

2 for reading the state as “1”. But applying this gate twice in succession
will produce the same inverting effect asNOT, thereby extracting information from the
seemingly randomized intermediate state.2

7.2.2.2 Applying quantum gates to multi-qubit systems
When applied to qubitj of a multi-qubit system, quantumNOT swaps the amplitudes of
each pair of basis vectors that differ from one another only in thejth position. For example,
in a two-qubit system the application of quantumNOT to qubit 0 will swap the amplitude of
|00〉 with that of |01〉, and the amplitude of|10〉 with that of |11〉. This can be represented
in matrix form as follows:

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

One typically describes only the minimal version of a gate, for example the2× 2 matrix

for NOT, and expands it as needed for application to a larger system. For ann-qubit system
the expansion will always be a2n×2n matrix of complex numbers which, when multiplied

2The double application ofSRN is not quite equivalent toNOT because there is a change in sign:[
1√
2
− 1√

2
1√
2

1√
2

] [
1√
2
− 1√

2
1√
2

1√
2

]
=
[

0 −1
1 0

]
. But this change in sign has no immediate effect because

we square the amplitudes when reading the state of the system.

by the vector of amplitudes, has the effect of applying the gate to the specified qubit or set
of qubits.

To understand how quantum gates are applied in multi-qubit systems one must bear in
mind that all amplitudes in the state representation encode part of the value for each qubit.
For example, in a two-qubit system the amplitudes for|00〉 and|10〉 both contribute to the
probability that the right-most qubit (qubit 0) is zero, and the amplitudes for|01〉 and|11〉
both contribute to the probability that qubit 0 is one. So a gate applied to a small subset of
the qubits of a multi-qubit system may nonetheless change all of the amplitudes in the state
representation.

To apply anm-qubit gate to a setQ of m qubits in ann-qubit system (m ≤ n), one
must in general operate onall 2n amplitudes in the system. The2n × 2n matrix that one
uses should have the effect of applying the2m × 2m minimal version of the gate to each
of 2n−m different column vectors. Each of these column vectors corresponds to a set of
basis vectors that varies only with respect toQ and is constant in all other bit positions. For
example, consider the4× 4 NOT matrix above, which is aNOT gate for qubit 0 in a two-
qubit system. This4× 4 matrix has the effect of applying the2× 2 NOT matrix (

[
0 1
1 0

]
)

to the amplitudes for|00〉 and|01〉, that is to
[
α0
α1

]
, to produce new amplitudes for|00〉

and|01〉, and also of applying the2 × 2 NOT matrix to the amplitudes for|10〉 and|11〉,
that is to

[
α2
α3

]
, to produce new amplitudes for|10〉 and|11〉. This can be generalized for

anym; one wants the2n× 2n matrix which, for each set of2m basis vectors that vary only
with respect toQ, multiplies the2m×2m minimal version of the gate by the corresponding
set of amplitudes.

An implementation option is to build up the2n × 2n matrix that has the required effect
explicitly, and to multiply this matrix by the vector of amplitudes. Alternatively one can
operate on the amplitudes one at a time, dynamically computing for each one the necessary
matrix elements. Because the full expanded matrices are large and mostly zero we generally
take the latter approach. Note that in any case one must perform an exponentially large
amount of work (with respect ton) in order to apply a single gate; this is the source of the
exponential slowdown in the simulation of quantum computations.

7.2.2.3 Other Quantum Gates
Another useful quantum gate iscontrolled NOT(or CNOT), which takes two qubit indices
as arguments; we will call these argumentscontrol andtarget. CNOT is an identity opera-
tion for basis vectors with 0 in the control position, but it acts like quantumNOT applied
to the target position for basis vectors with 1 in the control position. For the case of a
two-qubit system, with qubit 1 as the control and qubit 0 as the target (recall that we start
counting with 0 from the rightmost position in the ket vector labels), this can be shown in
matrix form as follows:

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

CNOT flips the state with respect to its target qubit wherever its control qubit is 1. By

making the condition on this flipping more complex, using more controlling qubits, we can
construct analogous gates for any classical boolean function. For example, consider the
classicalNAND gate which takes two input bits and outputs 0 if both inputs are 1, and 1
otherwise. That is, it has the following truth table:

A B A NANDB
0 0 1
0 1 1
1 0 1
1 1 0

Such a truth table can be used to form a quantum gate by interpreting a 1 in theoutput
(rightmost) column of a particular row as an instruction to swap amplitudes between each
pair of basis vectors that match that row’s values for the input qubits and differ only in
their values for the output qubit. That is, we can construct a quantum gate, called quantum
NAND, that takes three qubit indices (these can be thought of as 2 inputs and 1 output3)
and swaps amplitudes of all pairs of basis vectors that are equivalent with respect to their
input qubits but differ in their output qubit, except for those for which both input qubits are
1 (the bottom row of the truth table). For a three-qubit system, with qubits 1 and 2 as inputs
and qubit 0 as output, this can be represented in matrix form as follows4:

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

3The designation of quantum gate arguments as “inputs” and “outputs” is convenient but may in some cases

be misleading. When applied to certain states quantumNAND (and other gates described below) can affect
“input” as well as “output” qubits. We retain the “input/output” terminology because it allows for more intuitive
explanations.

4A reviewer suggested that would normally be called “NOT Controlled-Controlled-NOT” in the quantum
computation literature.

The work described in this chapter also uses aHadamardgate which can be used to split
the amplitude between opposite values for a single qubit:

H =
1√
2

[
1 1
1 −1

]
and simple rotation by an angleθ:

Uθ =
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
and a conditional phase gate that takes a single real parameterα:

CPHASE =

1 0 0 0
0 1 0 0
0 0 0 eiα

0 0 e−iα 0

and generalized rotation with four real parametersα, θ, φ, andψ:

U2 =
[
e−iφ 0

0 eiφ

]
×
[

cos(θ) sin(−θ)
sin(θ) cos(θ)

]
×
[
e−iψ 0

0 eiψ

]
×
[
eiα 0
0 eiα

]
TheU2 gate can emulate any other single bit gate, at the cost of taking four real-valued

parameters. A generalized 2-qubit gate with sixteen real-valued parameters (U4) also exists,
but we did not use this in the work described here.

7.2.3 Running a Quantum Algorithm

A quantum algorithm is run by putting the system into a known initial state, subjecting
it to a sequence of gates, and then reading out (i.e., measuring) the final state of the sys-
tem. The initial state is usually a computational basis vector—that is, a state in which a
single amplitude is 1 and all others are 0; in the work reported here the system is always
started in state|00 . . . 0〉, meaning that the amplitude for|00 . . . 0〉 is initially 1. The final
measurement is usually made in the computational basis, and each gate usually involves
no more than a few qubits. These conditions ensure that the number of gates in a quantum
circuit is a reasonable measure of its computational complexity. The final state is read by
squaring the modulus of each amplitude, summing those that correspond to the same values
for the output bits, and reporting the output bit pattern with the highest sum. This is the
output that would most likely be produced if the same sequence of operators was run on a
real quantum computer. The simulation can also report the actual probability of obtaining
this most-likely result; this is just the sum of|α|2 for the states having the most probable
output pattern. If the probability for returning the correct answer is less than 1 but greater

than 1
2 , the algorithm may nonetheless be useful. This is because one can often show that

re-running the algorithm some small number of times will reduce the indeterminacy to any
required level. A quantum algorithm is said to compute a function with2-sided-errorif it
always returns an answer which is correct with probability at leastp, where 1

2 < p < 1
[Beals et al., 1998]. For algorithms intended to scale to systems of any number of qubitsn,
p must not depend onn, or at least not decrease too rapidly withn.

7.2.4 Example Execution Trace

To clarify the way in which quantum algorithms are executed we will trace the execution
of a simple, arbitrary algorithm in some detail. Consider the following quantum algorithm
for a two qubit system:

Hadamard qubit:0
Hadamard qubit:1
U-theta qubit:0 theta:pi/5
Controlled-not control:1 target:0
Hadamard qubit:1

Execution starts in the state1|00〉+ 0|01〉+ 0|10〉+ 0|11〉. TheHadamardgate on qubit
0 is then applied by means of two matrix multiplications:

• The Hadamardmatrix is multiplied by a column vector made from the amplitudes for
|00〉 and |01〉, and the new values for the amplitudes of|00〉 and |01〉 are taken from the
resulting column vector.

• The Hadamardmatrix is multiplied by a column vector made from the amplitudes for
|10〉 and |11〉, and the new values for the amplitudes of|10〉 and |11〉 are taken from the
resulting column vector.

This transforms the state to1√
2
|00〉 + 1√

2
|01〉 + 0|10〉 + 0|11〉. At this point there is

an equal probability of finding the state|00〉 or the state|01〉, but the other states have
zero probability. This means that one could find qubit 0 to be 0 or 1 (each with equal
probability), but one would definitely find qubit 1 to be 0. The subsequentHadamardgate
on qubit 1 transforms the state to12 |00〉 + 1

2 |01〉 + 1
2 |10〉 + 1

2 |11〉. At this point all states
have the same probability. TheUθ gate rotates qubit 0 byπ5 , using the same procedure
as described for theHadamardgates but with a different matrix, producing approximately
0.698|00〉+0.111|01〉+0.698|10〉+0.111|11〉. The subsequentCNOTflips qubit 0 for basis
vectors in which qubit 1 is “1”, producing0.698|00〉+ 0.111|01〉+ 0.111|10〉+ 0.698|11〉.
The finalHadamardagain manipulates qubit 1, producing a final state of approximately
0.572|00〉+ 0.572|01〉+ 0.416|10〉− 0.416|11〉. The probabilities of finding the system in
each of the possible classical states upon measurement are approximately as follows:

state probability
|00〉 0.33
|01〉 0.33
|10〉 0.17
|11〉 0.17

We can measure the system and read the output from either or both of the qubits. If we
read only qubit 1 there is a probability of0.33 + 0.33 = 0.66 that we will find it to be “0”
and a probability of0.17 + 0.17 = 0.34 that we will find it to be “1”. Qubit 0’s value will
be completely random, with a probability of 0.5 for each state. So the example algorithm
takes the state|00〉 to a state with a random value for qubit 0 and a biased value for qubit
1, with probability 0.66 to be “0”.

7.2.5 The Power of Quantum Computation

Having examined the mechanics of a virtual quantum computer and traced its execution we
may now be in a better position to see the source of the power of quantum computation.
The vector of2n complex amplitudes clearly contains more information than a classical
state ofn bits, but it is maintained with onlyn quantum mechanical bit registers (e.g.,n
spin-12 particles). We cannot read the entire state because the measured result is always a
single computational basis vector and there will generally be some uncertainty about which
computational basis vector we will actually read. Further, measurement interferes with the
system so it can only be read once. But the additional information in the state can nonethe-
less sometimes be extracted and harnessed to perform real computational work. In some
cases the extra information can be used to perform computations on several different some-
what probable states simultaneously, and clever manipulations allow us to extract useful
information from all of them. Of course we are paying for this in the simulator with ex-
ponential resources, so we can only work with relatively small systems. Fortunately, small
systems are adequate for the evolution of some new algorithms, including some algorithms
that can be scaled up to work on larger problem instances when real quantum computing
hardware becomes available.

7.3 Evolving Quantum Algorithms

Given a simulator for a quantum computer, one can use genetic programming techniques
to evolve quantum algorithms[Spector et al., 1998]. Genetic programming systems evolve
programs (algorithms), and one can use a genetic programming system to evolve quantum
algorithms by ensuring that the programs in the population have the proper form and by
assessing their fitness on the simulated quantum computer.

Many open questions in quantum computation concern the computational resources re-
quired to scale algorithms up to larger problem instances. For this reason it would be most
useful if we could evolvescalablequantum algorithms that work on problem instances
of any size. Scaling is also important because classical simulation of quantum computers
consumes an amount of resources that grows exponentially with respect to the number of
qubits in the system, and this limits us to simulating quantum algorithms for small systems.
But quantum computation is most interesting when applied to much larger problems, for
which their exponential savings in resource requirements really pays off. We can ameliorate
the problem by using small cases of several sizes for fitness evaluation during evolution.
In some cases this will produce algorithms that scale correctly to all sizes; scaled-up ver-
sions of these algorithms could be run on much larger problem instances on real quantum
computer hardware in the future.

The scaling results reported in this chapter are modest, but the technique that we use
was designed to allow for the evolution of scalable algorithms and we show an example
of this in section 7.4.2 below. One should also note that new quantum algorithms may be
of significant interest even if they do not scale, although it is obviously preferable to find
scaling algorithms.

Our technique for finding scalable algorithms involves evolving classical programs that,
when executed, construct the actual quantum algorithms. Because the classical programs
can include iteration structures and constants related to the size of a particular problem
instance, a single evolved program can produce different quantum algorithms for problem
instances of different sizes. This technique is related to a theoretical construction used by
Peter Shor to define quantum complexity classes[Shor, 1998, pages 473–474]. It is also
similar to “second-order encoding” techniques, in which evolved programs must be run to
produce the sought-after executable structures, that have previously been used to evolve
neural networks and electrical circuits[Gruau, 1994; Koza and Bennett, 1999]. The use of
such second-order encodings to provide scaling appears to be novel with this work.

7.3.1 Standard Tree-based Genetic Programming

To evolve quantum algorithms using a standard (weakly typed) tree-based genetic program-
ming engine[Koza, 1992] we start with a set of functions that add gates to an initially empty
quantum algorithm. These functions are parameterized by numbers, so theclosuretype for
the function set isnumber (which includes integers, ratios, floating point numbers, and
complex numbers). The algorithm-building functions include the following:

H-GATE Takes 1 argument, which is coerced to a valid qubit index by taking the truncated
real part of the argument modulo the number of qubits in the system. (All coercions
specified below are performed in a similar way.) AHadamardgate on the given
qubit is added to the end (output side) of the quantum algorithm. The function call
returns the argument (un-coerced).

U-THETA-GATE Takes 2 arguments, the first of which is coerced to a valid qubit index,
and the second of which is interpreted as an angle in radians. A rotation (Uθ) gate
is added to the end of the quantum algorithm. The function call returns the first
argument.

CNOT-GATETakes 2 arguments, both of which are coerced to valid qubit indices. A
CNOT gate is added to the end of the quantum algorithm, using the first argument
as the control qubit and the second argument as the target qubit, unless the two qubit
indices are the same (in which case no action is taken). The function call returns the
first argument.

NAND-GATETakes 3 arguments, all of which are coerced to valid qubit indices. ANAND
gate is added to the end of the quantum algorithm, using the first two arguments as
inputs and the third argument as output, unless any of the qubit indices are the same
(in which case no action is taken). The function call returns the third argument.

Similar functions may be added for the other quantum gates. We also include iteration
control structures that help to evolve scalable quantum algorithms:

ITERATE An iteration control structure. Takes 2 arguments, the first of which is coerced
to a non-negative integer, and determines the number of iterations that the second
argument, a body of code, will be executed. If a (typically very large) bound on the
number of iterations is exceeded the calling program immediately halts. The number
of iterations is returned as the value of the control structure expression.

IQ An iteration control structure that takes one argument: a body of code. This is equiva-
lent to a call toITERATE with a first argument equal to the number of qubits in the
system.

IVAR Takes one argument, which is coerced to a non-negative integer.(IVAR 0) returns
the value of the loop counter of the immediately enclosing iteration structure.(IVAR
1) returns the value of the loop counter for the next iteration structure out, etc. The
argument is reduced modulo the number of iteration structures that enclose the call
to IVAR. Calls toIVAR outside of all iteration structures return 0.

We also include a collection of arithmetic functions:+ (returns the sum of its two ar-
guments),1+ (returns the sum of its single argument and 1),- (returns the difference of
its two arguments),1- (returns the difference of its single argument and 1),* (returns the
product of its two arguments),*2 (returns the product of its single argument and 2),%p
(protected division: returns the quotient of its two arguments; returns 1 if its second argu-
ment is 0),%2(returns the quotient of its single argument and 2),1/x (returns the quotient
of 1 and its single argument; returns 1 if its argument is 0).

In the genetic programming terminal set we include*NUM-QUBITS* (a constant equal
to the number of qubits in the system),*NUM-INPUT-QUBITS* (a constant equal to
the number of qubits used for input),*NUM-OUTPUT-QUBITS* (a constant equal to the
number of qubits used for output), and a variety of useful constants, sometimes including
0, 1, 2,π (3.1415. . .), andi (

√
−1). In some runs we also include an ephemeral random

constant specifier[Koza, 1992] that can produce random floating point constants (usually
in the range [−10.0 to +10.0], although we have experimented with various ranges).

7.3.2 Stack-Based, Linear Genome Genetic Programming

Although standard tree-based genetic programming (TGP) can be used to evolve quan-
tum algorithms, other approaches may have certain advantages. The tree structure ofTGP
representations plays several roles; for example it provides an elegant mechanism for adap-
tive determination of program size and shape[Langdon et al., 1999] and it also allows for
natural expression offunctionalprogramming constructs, in which sub-expressions return
values that are used for various purposes in the larger expressions within which they are
nested. But the tree representations come at a cost (time, space, complexity), and there is
no guarantee that they will be the most appropriate representations for all problems.

Notice that the algorithm-building functions described in the previous section all work
by “side effect”; that is, they do their useful work by making changes to the quantum
algorithm that is being constructed, and they return uninformative values (copies of their
arguments). This suggests that the function set is ill-suited to the functional programming
paradigm, and that the tree structure ofTGPrepresentations will therefore have diminished
utility in this domain. It is possible that the tree structure is actually a liability in cases such
as this, since a sub-expression’s contribution to its enclosing expression (its return value)
is related to its function (side effect) in arbitrary ways. One could argue that it would be
difficult for evolution to untangle return values and side effects, for example to preserve an
important return value while modifying a side effect of the same sub-expression, and that
this would put unnecessary burdens on the genetic programming system.

While the reliance on side effects is due in part to our specific design choices,anyrepre-
sentation of quantum algorithms is likely to have similar features. This is becausemeasure-
ment(accessing values of variables) in a quantum system changes the system, which will
usually destroy prepared superpositions and ruin the computation. In more concrete terms,
we cannot access the amplitudes in our state representation and use the values to influence
the choice of future computational steps, because any such access on a real quantum com-
puter would change the system’s state. So steps in a quantum algorithm must always be
blind, to a certain extent, to the values (amplitudes) produced by earlier steps.

In a stack-based, linear genome genetic programming (SBGP) system, programs are rep-
resented not as trees but rather as linear sequences of functions that can communicate via
a global stack[Perkis, 1994; Stoffel and Spector, 1996]. This eliminates the conflation of
return value and side effect, since functions with no meaningful return values can simply

be coded not to “return” values onto the stack. It is well suited to the evolution of sequen-
tial, side-effect-based programs because the program structure is itself sequential and less
biased toward functional (return-value-based) programming style. For example, in SBGP
programs a side-effect-producing function can be replaced with another without the danger
that a different (possibly arbitrary) return value will change the behavior of an enclosing
expression.

SBGP systems offer several other advantages. Their linear program structure simplifies
the expression of genetic operators (one can use operators from traditional string-based
genetic algorithms), reduces memory requirements (since there are no growing trees—one
can use fixed-length programs with non-functionalnoop operators to allow for shorter pro-
grams), and allows for very high performance genetic programming engines[Stoffel and
Spector, 1996]. In addition, anecdotal reports suggest that SBGP may require less compu-
tational effort than TGP for many problems[Perkis, 1994; Stoffel and Spector, 1996].

We have found SBGP to be preferable to TGB for our quantum algorithm problems,
though we have not conducted a careful comparison of the techniques. With SBGP we have
low memory requirements per program (allowing for larger populations), we are freed from
concerns about tree growth dynamics and return-value/side-effect interactions, and results
appear to emerge more quickly than in our prior TGP work. Further research may provide
a more scientific comparison of TGB and SBGP for evolution of quantum algorithms.

We used theMidGPSBGP system[Spector, 1997], a simple, flexible Lisp-based system
derived from HiGP[Stoffel and Spector, 1996]. The translation of quantum algorithm-
building and arithmetic functions from TGP toMidGP is straightforward, but the transla-
tion of the iteration structures can be done in various ways. We have experimented with
both structured and unstructured (GOTO-based) iteration mechanisms, and in principle
one could use any control structures from other stack-based languages such as FORTH and
Postscript. In SBGP one generally also includes a collection of stack-related functions, for
example to duplicate (dup) or remove (pop) the top stack element, to swap the top two
elements, etc. Because of the ease with which they can be written forMidGP, we have also
used several new genetic operators in ourMidGP-based work on quantum algorithms. For
example, we have used program rotation operators, crossover operators that concatenate
randomly selected chunks from parent programs, and a mutation operator that adds small
random floating-point values to numeric constants.

7.3.3 Stackless Linear Genome Genetic Programming

Although the scaling of quantum algorithms is in many cases important, there are other
cases for which it suffices to find a single quantum algorithm that works for a single prob-
lem size. In these cases there may (depending on the structure of the problem) be no need
for iteration in the quantum algorithm-building program, since the primary role of the iter-
ation structures in the function set is to allow for scaling of the quantum algorithms. If, in

addition, there is no compelling reason for the gates to be able to share parameter values,
then there may be no need for any sort of storage (return values or the stack) at all.

For such cases we have found it useful to use a very simple technique, in which a quan-
tum algorithm is represented as a linear sequence that includesonly noop functions and
encapsulated gates. An encapsulated gate is a package that includes, internally, the type
of quantum gate and values for all required parameters. The quantum algorithm is run by
executing each of the gates in sequence, and no global value stack is required.

We have implemented this approach withinMidGP, generating all gates and parameters
randomly viaMidGP’s ephemeral random constant mechanism. We use a function set con-
taining onlynoop andephemeral-random-quantum-gate ; whenephemeral-
random-quantum-gate is selected a new encapsulated gate is created with a random
choice of gate type and all necessary parameters. It might also be useful to include a muta-
tion operator that manipulates the parameters encapsulated within a gate, but we have not
yet found it necessary to do so; our current mutation mechanism simply adds a new random
gate (with random parameters) at a random location in the program. Surprisingly, this very
simple mechanism suffices to evolve some interesting quantum algorithms, including the
algorithm for theand-orproblem discussed below (Section 7.4.4).

7.3.4 Fitness Function

We use a standardized fitness function (for which lower values mean “more fit”) with three
components: amissescomponent that records the number of fitness cases for which the
program misbehaves, anerror component that records the total error for all cases in which
the program misbehaves, and alengthcomponent that records the total number of gates
in the quantum algorithms built by the program for all fitness cases. A program is said
to “misbehave” on a case if the probability that the quantum algorithm it produces will
give the correct answer for the case is less than 0.48; this allows for the evolution of non-
deterministic algorithms with2-sided-error(see section 7.2.3) and is sufficiently far from
0.5 to ensure that errors below the threshold are not due to roundoff errors in the quantum
computer simulator.

The three components could be combined in various ways. We recommend alexico-
graphic[Ben-Tal, 1979] ordering, with the components ordered: misses (most significant),
error, length (least significant). This means that programs will be compared first with re-
spect to misses, with error being used only to break ties. Length will be used only to break
ties between programs with identical misses scores and identical error scores.

The actual fitness function that we used in our runs approximates the lexicographic fit-
ness function described above, but because it was developed and modified in an ad hoc
fashion during the course of our work it varies from this fitness function in several minor
ways. It is documented in full in[Spector et al., 1998].

7.4 Results

7.4.1 Deutsch’s Early Promise Problem

In 1985 David Deutsch presented a problem for which quantum computers can clearly
out-perform classical computers. This problem, like many in the quantum computation lit-
erature, involves determining properties of an unknown function. We can call the unknown
function in programs that we write (or evolve) but we aren’t given access to the function’s
code. For this reason the unknown function is often called a “black box” function or an
“oracle.”

Suppose you are given an oracle that computes an unknown binary function ofn input
bits. Suppose further that you are promised that the function is eitheruniform, meaning that
it always returns 0 or always returns 1, or that it isbalanced, meaning that it will return an
equal number of 0s and 1s if called on all possible inputs. Deutsch’searly promise problem
is the problem of determining whether such an oracle is uniform or balanced.

It is easy to see that the best deterministic classical algorithm for this problem will in
the worst case require2

n

2 + 1 oracle calls. If the first2
n

2 calls all return the same value,
then it is still possible that the oracle is either uniform or balanced, but the answer will be
known for certain after one more oracle call. A probabilistic classical algorithm can do
somewhat better, because it is unlikely that a balanced oracle will produce2n

2 of the same
value in sequence. Nonetheless, it is also clear that asinglecall to the oracle on a classical
computer producesno information that can be helpful in solving the problem, whether
deterministically or probabilistically—0 and 1 are both equally likely outputs from such a
call whether the oracle is uniform or balanced.

Deutsch showed that quantum computers can do better here[Deutsch, 1985; Deutsch and
Jozsa, 1992; Costantini and Smeraldi, 1997]. If the oracle is implemented as an operator on
a quantum computer’s state, then information useful in solving the problem can be obtained
using fewer oracle calls than would be required by any classical algorithm. Note that this
does not imply that we must know anything about the implementation of the oracle except
that it is a well-behaved quantum mechanical operator.

We used the standard tree-based genetic programming techniques described above (Sec-
tion 7.3.1) to automatically discover a quantum algorithm that provides information on the
two-bit early promise problem using only one oracle call. We evolved quantum algorithms
for a three-qubit quantum computer, using two qubits for the oracle’s input and one for its
output. The qubits are referred to with the indices 0, 1, and 2. For each fitness case the
quantum computer was prepared in the initial state of|000〉, the algorithm was executed,
and the result was then read from qubit 2. The algorithms could includeH, Uθ, CNOTand
NANDgates as described above, along with anORACLEgate implemented analogously to
NAND, but with a truth table corresponding to the function that the oracle computes. Each
fitness case uses a different oracle function—the goal is to find a single quantum algorithm
which puts qubit 2 into the “1” state if the oracle is uniform or into the “0” state if the

Table 7.1
Genetic programming parameters for a run on the two-bit early promise problem.

max number of generations 1,001
size of population 10,000
max depth of new individuals 6
max depth of new subtrees for mutants 4
max depth after crossover 12
reproduction fraction 0.2
crossover at any point fraction 0.1
crossover at function points fraction 0.5
selection method tournament (size=5)
generation method ramped half-and-half
function set +, - , * , %p, sqrt , 1+, 1- , *2 , %2, 1/x , iterate ,

ivar , iq , H-gate , U-theta-gate , CNOT-gate ,
NAND-gate , ORACLE-gate

terminal set *num-qubits* , *num-input-qubits* , *num-
output-qubits* , 0, 1, 2,π, i

(IQ
(NAND-GATE

(+ (* (1- 0) (ITERATE PI PI))
(U-THETA-GATE -1 (*2 *NUM-INPUT-QUBITS*)))

(%2
(+ (H-GATE (IQ (IQ (1- PI))))

(ITERATE
(1- (SQRT (CNOT-GATE (U-THETA-GATE 1 (IVAR *NUM-QUBITS*))

(IVAR (ITERATE PI *NUM-OUTPUT-QUBITS*)))))
(1/X

(NAND-GATE
(* (SQRT -1) (- (%P (IVAR 0) *NUM-QUBITS*) *NUM-INPUT-QUBITS*))
(1/X *NUM-INPUT-QUBITS*) PI)))))

(NAND-GATE (IQ (1- (IQ (%2 (%2 (IQ (*2 *NUM-INPUT-QUBITS*)))))))
(IQ (IVAR PI))
(SQRT (%2 (1- (ORACLE-GATE)))))))

Figure 7.1
An evolved program that produces a quantum algorithm for the two-bit early promise problem.

U-theta qubit:2 theta:4
Hadamard qubit:0
U-theta qubit:1 theta:1
Oracle (input-qubits:0,1 output-qubit:2)
NAND input-qubits:2,1 output-qubit: 0
U-theta qubit:2 theta:4
Hadamard qubit:0
U-theta qubit:1 theta:2
Controlled-not control:1 target:2
(read output from qubit 2)

Figure 7.2
An quantum algorithm for the two-bit early promise problem, produced by the program in Figure 7.1. The system
is initialized to the state|000〉 and then the algorithm is run, leaving qubit 2 in the “1” state with high probability
if the provided oracle is uniform, or in the “0” state with high probability if the provided oracle is balanced. The
final Hadamardgate on qubit 0 is unnecessary and can be removed.

Figure 7.3
A graphic view of the quantum algorithm in Figure 7.2 for the two-bit early promise problem.

oracle is balanced. The oracle was set to use qubits 0 and 1 as inputs and qubit 2 as output,
although in other experiments we allowed the oracle indices to evolve.

One run of this system, using Koza’s Lisp genetic programming code[Koza, 1992] and
the parameters shown in Table 7.1, produced the program shown in Figure 7.1 at generation
46. (The parameters in Table 7.1 were chosen by intuition and have not been optimized.)
When executed, this program produces the quantum algorithm shown in Figure 7.2. Us-
ing notation similar to that in the quantum computation literature, this can be represented
diagrammatically as in Figure 7.3.

The evolved algorithm is not minimal—at least the finalH can be removed, although
interestingly theNANDcannot. This is because of the way in which qubit values are dis-
tributed across the vector of amplitudes; it turns out that quantum gates can affect their
“inputs” as well as their “outputs.” The quantum algorithm in Figure 7.3 solves or provides
information useful in solving the two-bit early promise problem for all 8 possible two-bit
oracles, using only one call to the oracle in each case. (There are only 8 possible oracles
because only 8 of the 16 2-input boolean functions are either balanced or uniform.) The
probabilities of error for the 8 cases are (rounded to two decimal places): 0.02, 0.29, 0.23,
0.13, 0.13, 0.23, 0.30, and 0.04.

While this result is not new to the field of quantum computation, it demonstrates that
genetic programming can automatically find better-than-classical quantum algorithms.

7.4.2 The Scaling Majority-On Problem

Consider an oracle version of themajority-onproblem. (Genetic programming is applied
to the standard non-oracle version of majority-on by Koza[Koza, 1992]) This problem is
the same as the early promise problem, discussed above, except that all binary oracles are
allowed (there is no promise that the oracles will be either balanced or uniform) and the
program’s job is to determine if the majority of the oracle’s outputs would be “1” if it were
run on all possible inputs. In addition, we seek a single program that will produce correct
quantum algorithms for oracles of any size. For example, if we have an oracle that takes 5
bits of input then we’d like the evolved program, when run with*num-input-qubits*
set to 5 and other variables set appropriately, to produce a quantum algorithm which will
reliably tell if the oracle outputs “1” for a majority of the possible inputs or not. Using
standard tree-based genetic programming and similar parameters to those described above
we evolved a program that produces the following quantum algorithms for this problem:

For one-bit oracles:

Hadamard qubit:0
Oracle input-qubit:0 output-qubit:1
(read output from qubit 1)

For two-bit oracles:

Hadamard qubit:1
Hadamard qubit:0
Oracle input-qubits:0,1 output-qubit:2
(read output from qubit 2)

For three-bit oracles:

Hadamard qubit:1
Hadamard qubit:2
Hadamard qubit:0
Oracle input-qubits:0,1,2 output-qubit:3
(read output from qubit 3)

For four-bit oracles:

Hadamard qubit:1
Hadamard qubit:2
Hadamard qubit:3
Hadamard qubit:0
Oracle input-qubits:0,1,2,3 output-qubit:4
(read output from qubit 4)

And so on; for each problem size the program produces a quantum algorithm that applies
a Hadamardgate to each intput qubit and then calls the oracle. The algorithms work by
spreading the probability out among all basis vectors and then using a single oracle call,
which can be thought of as operating on the superposition of all oracle inputs simultane-
ously, to compute the output. It works quite well for oracles that produce mostly 1s or
mostly 0s, but for exactly balanced oracles (for which the answer should be 0—a majority
is not on) the output error will be 0.5. This means that there will be a 50% chance of getting
the wrong answer for balanced oracles, but this can be remedied by running the program
multiple times; if the answer is 1 50% of the time then we know that the oracle is balanced
and that the real answer is therefore 0.

In contrast to the early promise algorithm exhibited above, this majority-on quantum
algorithm is not better than classical. A probabilistic classical algorithm for majority-on
can simply call the oracle with a random input; if the output is 1 then it should answer
1, otherwise it should answer 0. This too will have a 50% chance of being wrong for
balanced oracles (and some smaller chance of being wrong for other oracles), and this too
can be remedied with multiple runs. In this case the genetic programming system found
a quantum algorithm that works in the same way as a probabilistic classical algorithm,
and in fact it does not appear that quantum computation can do any better than classical
computation on this problem[Beals et al., 1998].

7.4.3 The Database Search Problem

The problem of searching an unsorted database for an item that it is known to contain
(we’re looking for its specific address) can also be recast as an oracle problem. We are
given an oracle that accesses the database at a particular address and returns 1 if the item
we’re looking for is at that address, and 0 otherwise. The problem is to determine which
address will cause the oracle to return 1.

Consider a four-item database, addressed via two binary inputs. On a deterministic clas-
sical machine we would have to query the database three times, in the worst case, to be sure
about the location of the item we’re looking for. If we haven’t found it after three queries
then we know that it is in the one location we haven’t looked. But after only two luckless
queries there would still be a 50% chance of error for any choice we could make.

Lov Grover showed that this is a problem for which quantum computers can beat clas-
sical computers. Grover’s algorithm finds an item in an unsorted list ofn items inO(

√
n)

steps, while classical algorithms requireO(n). We initially thought this meant that the
four-item database problem could be solved using two as opposed to the three classically-
required database queries, and we conducted genetic programming runs to search for such
a solution. We were happily surprised when the genetic programming system found a so-
lution that uses onlyonedatabase call and is nearly deterministic. Further examination
revealed that Grover’s algorithm also finds the item in one query, and that the solution
found by genetic programming is in fact almost identical to Grover’s algorithm.

We used stack-based, linear genome genetic programming (MidGP) with the parameters
shown in Table 7.2, attempting to solve the four-item database problem with a five qubit
system. TheDB-gate function listed in Table 7.2 is analogous to theORACLE-gate
function from Section 7.4.1; it adds a call to the database lookup function (oracle) to the
end of the quantum algorithm. The goal was to evolve a single quantum algorithm which,
given a database containing a 1 only in positionk (for k in {0, 1, 2, 3}), leaves qubits 3 and
4 in statesq3 andq4 such that2q4 + q3 = 3− k.5

Figure 7.4 lists the quantum algorithm produced by the best-of-run program. Notice that
only four qubits are mentioned in the algorithm. In addition, both gates using qubit 1 can be
eliminated without changing the behavior of the algorithm, so it requires only three qubits.
The algorithm may be further simplified by omitting the 0-angle rotation along with the
first CPHASEand the firstCNOT (which are controlled by qubits in state|0〉, and hence
act as the identity). The finalCPHASEcan be replaced with aCNOTbecause it hasα = 1.
If we also combine the successive rotations on qubit 4 and change the resulting rotation
angle in the fourth decimal place (to exactly−π4 ; this eliminates an error probability of
approximately10−6) then we get the quantum algorithm diagrammed in Figure 7.5. This
algorithm acts just like a single iteration of Grover’s algorithm except that it gives phases of
-1 to some of the computational basis states, which has no effect on the final probabilities.

5It would have been more standard to use2q4 + q3 = k.

Table 7.2
MidGPparameters for a run on the four-item database search problem.

max number of generations 1,001
size of population 1,000
max program length 256
reproduction fraction 0.5
crossover fraction 0.1
mutation fraction 0.4
max mutation points 127
selection method tournament (size=5)
function/terminal set noop , +, - , * , %p, DB-gate , H-gate , U-theta-

gate , CNOT-gate , CPHASE-gate , U2-gate , 0, 1,
2, 3, 4,π, ephemeral-random-constant , pop

U2 qubit:4 phi:0 theta:3 psi:3.14159 alpha:0.25908
Controlled-phase control-qubit:3 target-qubit:4, alpha:39.54646
Controlled-not control-qubit:0 target-qubit:3
U-theta qubit:0 theta:0.02934
Hadamard qubit:3
U-theta qubit:4 theta:3.14159
Hadamard qubit:0
Controlled-not control-qubit:1 target-qubit:3
U-theta qubit:4 theta:-4.06820
U-theta qubit:0 theta:-7.82538
Database-lookup input-qubits:4,3 output-qubit:0
Hadamard qubit:4
U-theta qubit:1 theta:4
U-theta qubit:3 theta:0
Controlled-phase control-qubit:3 target-qubit:4, alpha:0
Hadamard qubit:3
(read output from qubits 3 and 4)

Figure 7.4
Evolved quantum algorithm for the four-item database search problem on a five-qubit system. The system is
initialized to the state|00000〉 and then the algorithm is run, leaving qubits 3 and 4 in states that indicate the
positionk of the single “1” in the database according to the formula2q4 + q3 = 3− k.

Figure 7.5
Diagram of the quantum algorithm for the four-item database search problem in Figure 7.4, reduced to use only
the three essential qubits. This diagram also omits gates that have no effect, combines the rotations on qubit 4,
and adjusts the combined rotation in the fourth decimal place to eliminate an error of10−6.

7.4.4 The And-Or Query Problem

The “and-or query problem” is the problem of determining whether a specific boolean
function evaluates to true or false when applied to the values returned by a given oracle.
The boolean function is an and-or binary tree with “AND” (∧) at the root, alternating layers
of “OR” and “AND” (∨) below, and the values of the oracle function, in order, at the leaves.
For a one-bit oraclef , which has just the two valuesf(0) andf(1), the problem is to
determine whether the expression “f(0) ∧ f(1)” is true or false. For a two-bit oraclef ,
with valuesf(0), f(1), f(2), andf(3), the problem is to determine whether the expression
“(f(0) ∨ f(1)) ∧ (f(2) ∨ f(3))” is true or false. For a three-bit oracle the expression is
“((f(0) ∧ f(1)) ∨ (f(2) ∧ f(3)) ∧ ((f(4) ∧ f(5)) ∨ (f(6) ∧ f(7))”. And so on.

We chose to work on the two-bit oracle version of this problem because its quantum
complexity is not yet completely understood and because we hoped that genetic program-
ming could provide new information. Ronald de Wolf, a researcher who has worked on
the quantum complexity of boolean functions[Beals et al., 1998], suggested this as an
open problem and remarked that it would be “surprising” if there was a 2-sided-error solu-
tion that uses only one call to the oracle [de Wolf, personal communication]. Our genetic
programming system found this “surprising” result.

We used stackless linear genome genetic programming (described above) with the pa-
rameters listed in Table 7.3. In generation 212 a program was evolved that produces the
quantum algorithm in Figure 7.6. This algorithm works for all possible two-bit oracle func-
tions, with all errors less than 0.41, using only a single call to the oracle function. We were
able to analyze this algorithm and to improve and simplify it by hand, producing the al-

Table 7.3
MidGPMidGP parameters for a run on the two-bit and-or query problem.

max number of generations 1,000
size of population 100
max program length 32
reproduction fraction 0.2
crossover fraction 0.4
mutation fraction 0.4
max mutation points 8
selection method tournament (size=7)
function/terminal set noop , ephemeral-random-quantum-gate

gorithm in Figure 7.7. This algorithm’s error is zero for the all-zero oracle function,3
8 for

all other cases for which the correct answer is 0, and1
4 for the cases in which the correct

answer is 1.
Notice that the quantum algorithm is better than the following classical probabilistic

algorithm [Meyer, personal communication]:

1. Query the function for a random value of the input.

2. If the oracle returns 0, guess FALSE; else, guess TRUE.

Averaged over all inputs, this classical algorithm is correct11
16 of the time. Viewed in this

way the quantum algorithm in Figure 7.6 is better but only slightly; it is correct23
32 of the

time. On the other hand, the quantum algorithm is much better if one is considering only
a single random input. In this case the classical algorithm will have an error probability of
1
2 for six cases; that is, it is no better than guessing, even if run repeatedly. The quantum
algorithm has a worst-case error probability of3

8 , so it provides information about the
correct answer that increeases with repetition.

One way to explain how this algorithm works is to use wave-mechanical descriptions
of the quantum system. (Readers unfamiliar with wave mechanics may wish to skip the
remainder of this paragraph.) To compute the OR function we use interference between
the input states to the database gate. The purpose of this interference is to reinforce the
amplitudes for bit values equal to “1” and to destructively interfere those for bit values
equal to “0.” The AND function at the root of the tree must simply effect an ‘addition’ of
the 1 amplitudes with which it is provided. The algorithm achieves this task as follows:
Remember that the database gate outputs the negation of the query result when bit 2 has
initial value “1” and the result itself when that value is “0.” Before querying the database
theUθ andHadamardtransform the state to a superposition with very unequal weight for
states with bit-2 values “1” and “0.” Following the database query, amplitudes for the two
output values are mixed through a second rotation. Combined with the CNOT gate, which
entangles the zeroth bit with the output register, this allows for interferenceonly between
the leaves of each of the OR nodes in the tree. The specific angle arguments of the gates
ensure that the necessary amplitude pattern obtains.

Figure 7.6
Evolved quantum algorithm for the two-bit and-or query problem. The system is initialized to the state|000〉 and
then the algorithm is run, leaving qubit 2 in the “1” state with high probability if the “and-or” query is true for the
provided oracle, or in the “0” state with high probability otherwise.

Figure 7.7
Hand-simplified and improved version of the quantum algorithm in Figure 7.6.

7.5 Conclusions

Genetic programming has been used to automatically discover new quantum algorithms,
several of which are more efficient that any possible classical algorithms for the same prob-
lems, and one of which is more efficient than any previously known quantum algorithm for
the same problem (Section 7.4.4). It has also been used to evolve quantum algorithms that
can be scaled to work on problem instances of different sizes (Section 7.4.2).

Genetic programming appears to be a useful tool for exploring the power of quantum
computation, and perhaps for developing software for the quantum computers of the fu-
ture. Although we presented three different genetic programming approaches for quantum
computation, we have not yet performed careful comparisons between these techniques or
developed a theory about how genetic programming can best be applied in this area; this is
a topic for future research. Other avenues for further investigation include:

• Application of the same techniques to other problems with incompletely understood
quantum complexity.

• Modification of the techniques to support hybrid quantum/classical algorithms and quan-
tum algorithms that include intermediate measurements.

• Genetic programmingon quantum computers, using better-than-classical search algo-
rithms that are already in the literature (such as Grover’s) and other quantum computing
efficiencies to speed up the genetic programming process.

Acknowledgements

Supported in part by the John D. and Catherine T. MacArthur Foundation’s MacArthur
Chair program at Hampshire College, by National Science Foundation grant #PHY-
9722614, and by a grant from the Institute for Scientific Interchange (ISI), Turin. Some
work reported here was performed at the Institute’s 1998 Research Conference on Quan-
tum Computation, supported by ISI and the ELSAG-Bailey corporation. Ronald de Wolf
provided valuable information on the and-or query problem and its complexity, and David
Meyer and Bill Langdon provided essential reviewer’s comments. Special thanks to
Rebecca S. Neimark for assistance with the figures.

Bibliography

Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P., Margolus, N., Shor, P., Sleator, T., Smolin, J. A., and Weinfurter, H.
(1995), “Elementary gates for quantum computation,”Physical Review A, 52:3457–3467.

Beals, R., Buhrman, H., Cleve, R., Mosca, M., and de Wolf, R. (1998), “Tight quantum bounds by polynomials,” inProceedings
of the Thirty-ninth Annual Symposium on Foundations of Computer Science (FOCS), To appear. Preliminary version available
from http://xxx.lanl.gov/abs/quant-ph/9802049 .

Beckman, D., Chari, A. N., Devabhaktuni, S., and Preskill, J. (1996), “Efficient networks for quantum factoring,” Technical
Report CALT-68-2021, California Institute of Technology,http://xxx.lanl.gov/abs/quant-ph/9602016 .

Ben-Tal, A. (1979), “Characterization of pareto and lexicographic optimal solutions,” inMultiple Criteria Decision Making
Theory and Application, Fandel and Gal (Eds.), pp 1–11, Springer-Verlag.

Braunstein, S. L. (1995), “Quantum computation: a tutorial,” Available only electronically, on-line at URL
http://chemphys.weizmann.ac.il/ ˜schmuel/comp/comp.html .

Chester, M. (1987),Primer of Quantum Mechanics, John Wiley & Sons, Inc.

Costantini, G. and Smeraldi, F. (1997), “A generalization of Deutsch’s example,” Los Alamos National Laboratory Quantum
Physics E-print Archive,http://xxx.lanl.gov/abs/quant-ph/9702020 .

Deutsch, D. (1985), “Quantum theory, the Church-Turing principle and the universal quantum computer,” inProceedings of the
Royal Society of London A 400, pp 97–117.

Deutsch, D. and Jozsa, R. (1992), “Rapid solution of problems by quantum computation,” inProceedings of the Royal Society of
London A 439, pp 553–558.

Grover, L. K. (1997), “Quantum mechanics helps in searching for a needle in a haystack,”Physical Review Letters, pp 325–328.

Gruau, F. (1994), “Genetic micro programming of neural networks,” inAdvances in Genetic Programming, K. E. Kinnear Jr.
(Ed.), pp 495–518, MIT Press.

Jozsa, R. (1997), “Entanglement and quantum computation,” inGeometric Issues in the Foundations of Sci-
ence, S. Huggett, L. Mason, K. P. Tod, S. T. Tsou, and N. M. J. Woodhouse (Eds.), Oxford University Press,
http://xxx.lanl.gov/abs/quant-ph/9707034 .

Koza, J. R. (1992),Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press.

Koza, J. R. and Bennett, III, F. H. (1999), “Automatic synthesis, placement, and routing of electrical circuits by means of genetic
programming,” inAdvances in Genetic Programming 3, Spector, Langdon, O’Reilly, and Angeline (Eds.), MIT Press.

Langdon, W. B., Soule, T., Poli, R., and Foster, J. A. (1999), “The evolution of size and shape,” inAdvances in Genetic
Programming 3, L. Spector, W. B. Langdon, U.-M. O’Reilly, and P. J. Angeline (Eds.), MIT Press.

Löwdin, P. (1998),Linear Algebra for Quantum Theory, John Wiley and Sons, Inc.

Milburn, G. J. (1997),Schr̈odinger’s Machines: The Quantum Technology Reshaping Everyday Life, W. H. Freeman & Co.

Perkis, T. (1994), “Stack-based genetic programming,” inProceedings of the 1994 IEEE World Congress on Computational
Intelligence, pp 148–153, IEEE Press.

Preskill, J. (1997), “Quantum computing: Pro and con,” Technical Report CALT-68-2113, California Institute of Technology,
http://xxx.lanl.gov/abs/quant-ph/9705032 .

Shor, P. W. (1994), “Algorithms for quantum computation: Discrete logarithms and factoring,” inProceedings of the 35th Annual
Symposium on Foundations of Computer Science, S. Goldwasser (Ed.), IEEE Computer Society Press.

Shor, P. W. (1998), “Quantum computing,” Documenta Mathematica, Extra Volume ICM:467–486,
http://east.camel.math.ca/EMIS/journals/DMJDMV/xvol-icm/00/Shor.MAN.ps.gz .

Spector, L. (1997), “MidGP, a Common Lisp stack-based genetic programming engine similar to HiGP,”
http://hampshire.edu/lspector/midgp1.5.lisp .

Spector, L., Barnum, H., and Bernstein, H. J. (1998), “Genetic programming for quantum computers,” inGenetic Programming
1998: Proceedings of the Third Annual Conference, J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel,
M. H. Garzon, D. E. Goldberg, H. Iba, and R. L. Riolo (Eds.), pp 365–374, Morgan Kaufmann.

Steane, A. (1998), “Quantum computing,” Reports on Progress in Physics, 61:117–173,
http://xxx.lanl.gov/abs/quant-ph/9708022 .

Stoffel, K. and Spector, L. (1996), “High-performance, parallel, stack-based genetic programming,” inGenetic Programming
1996: Proceedings of the First Annual Conference, J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo (Eds.), pp 224–229,
MIT Press.

