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Abstract In a genetic programming system, the parent selection algorithm deter-
mines which programs in the evolving population will be used as the material out
of which new programs will be constructed. The lexicase parent selection algorithm
chooses a parent by considering all test cases, individually, one at a time, in a ran-
dom order, to reduce the pool of possible parent programs. Lexicase selection is
ordinarily strict, in that a program can only be selected if it has the best error in
the entire population on the first test case considered, and the best error relative
to all other programs that remain in the pool each time it is reduced. This strict-
ness may exclude high-quality candidates from consideration for parenthood, and
hence from exploration by the evolutionary process. In this chapter we describe
and present results of four variants of lexicase selection that relax these strict con-
straints: epsilon lexicase selection, random threshold lexicase selection, MADCAP
epsilon lexicase selection, and truncated lexicase selection. We present the results of
experiments with genetic programming systems using these and other parent selec-
tion algorithms on symbolic regression and software synthesis problems. We also
briefly discuss the relations between lexicase selection and work on many-objective
optimization, and the implications of these considerations for future work on parent
selection in genetic programming.
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1 Introduction

Almost all parent selection algorithms used in genetic programming systems involve
not only comparisons among potential parent programs, but also random choices.

For example, in fitness-proportionate selection, we simulate the spinning of a
roulette wheel, with the size of the pocket for each parent being inversely propor-
tional to its total error over the set of test cases. It is possible for any program in the
population to be selected as a parent, and the choice among potential parents, while
random, is biased so that higher quality programs have higher probabilities of being
selected.

In tournament selection, we first choose a tournament set randomly from the
population, with each program in the population having equal probability of being
chosen. We then select the best program in the tournament set to serve as the parent,
where the “best” program is the one with the lowest total error. Here random choices
are made first, to determine the tournament set, followed by a choice that is driven by
the quality of the programs that have been chosen to participate in the tournament.

One could, in principle, avoid making any random choices in parent selection,
but this is rarely done. For example, one could use a form of pure elitism, in which
each program in the “best” n% of the population is selected as a parent some pre-
specified number of times.

In lexicase selection, randomization plays a particularly central role, but rather
than being applied directly to choices of programs, it is applied to sequences of
individual test cases by which programs are compared. In lexicase selection, parents
are selected through a filtering process that is iterated over a sequence of test cases
that is randomly shuffled for each parent selection event. Once randomly re-ordered,
the test cases are considered one at a time, with only the best programs for each case
retained at the corresponding filtering step.

Tournament selection can be thought of as subjecting a subset of the potential
parents to a challenge of this form for each selection event: “Are you better, overall,
than these other randomly-chosen programs?” By contrast, lexicase selection can
be thought of as subjecting each potential parent to a sequence of challenges—“Are
you the best on this test case? And of those of you who are, are you best on this
one? Etc.”—among which the order is randomized.

Lexicase selection has been shown to be advantageous in several contexts. It of-
ten allows problems to be solved more quickly and reliably than they can be without
it [7, 17], and in some cases allows for the solution of problems that cannot other-
wise be solved at all [6].

The power of lexicase selection appears to stem from the way in which it lever-
ages multiple, randomized challenges to guide search. The randomization of test
case order allows the parent selection process to be sensitive to more information
about the strengths and weaknesses of programs in the population than it can be
under the approach used in tournament selection. In fact, recent experiments with
weighted shuffling of test cases produced similar or worse results, suggesting that
the uniform shuffling of test cases allows lexicase selection to better sample useful
programs in the population [22]. This randomization of challenges allows lexicase
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selection to be sensitive not only to the performance of programs on all test cases
considered in aggregate, but also to their performance on all subsets of the test cases;
in this way, lexicase selection often selects individuals that specialize in some test
cases while performing poorly on others. Considering all subsets of test cases ex-
plicitly would require exponential resources, but randomization allows them to be
considered implicitly, through random sampling.

When a parent selection algorithm is sensitive to more information about the
strengths and weaknesses of programs, then that information may be used to pro-
vide better guidance to evolutionary search in different ecological circumstances.
Semantic- or behavior-aware genetic programming methods (such as lexicase se-
lection) take into account information about a program’s execution or its individual
outputs/errors on test cases, going beyond methods that simply use a single fitness
value [18, 9, 8, 15].

Might variations of lexicase selection perform even better on problems of spe-
cific kinds? In this chapter we describe and present data on four “relaxed” forms of
lexicase selection, each of which allows some programs to be selected that would
not be selected by ordinary lexicase selection; these are epsilon lexicase selection,
random threshold lexicase selection, MADCAP epsilon lexicase selection, and trun-
cated lexicase selection. Among the motivations for considering these forms of re-
laxation is the hypothesis that ordinary lexicase selection can sometimes be too
strict, insofar as it eliminates any opportunity to serve as a parent for some pro-
grams that are quite good in many respects.

In the following sections, we first describe the most basic form of lexicase selec-
tion, on which the other selection methods described in this chapter are based. We
then describe each of the four relaxed versions of lexicase selection in turn. Follow-
ing the descriptions of the algorithms, we present and discuss the results of exper-
iments involving all of the described algorithms, along with a few others from the
literature to facilitate broader comparisons. These experiments involve eight sym-
bolic regression problems and five software synthesis problems. We conclude with
a brief discussion of the relation between work on lexicase selection and work on
many-objective optimization, and we discuss the implications of our results for fu-
ture research.

2 Lexicase selection

Lexicase selection is designed for problems in which candidate solutions are as-
sessed with multiple test cases. In most other parent selection methods, a candidate
solution’s performance over multiple test cases is aggregated into a single measure,
for example, an average error value, and this single aggregate measure is used as the
basis of selection. In lexicase selection, no aggregation is performed; the measures
for each individual test case are retained, and they may all be used, individually, in
the parent selection process.
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Although lexicase selection can be used for other kinds of performance measures
as well, for the sake of simplicity we will refer to measures of performance on
individual test cases as “errors,” and we will assume that we are seeking a solution
that minimizes all errors.

With the most basic form of lexicase selection (“global pool, uniform random
sequence, elitist lexicase parent selection” [20], which will also refer to below as
“ordinary lexicase selection”), when the genetic programming system requires a
parent to use for the production of offspring, we first shuffle a sequence of the test
cases that are being used to assess programs in the population. We then form a pool
that initially contains all of the programs in population. We will winnow this pool
down to a single selected program by considering each test case in turn. When each
test case is considered, we first note the lowest error that any program in the pool
has for that test case. We then eject all programs that have a higher error on that
test case from the pool. If these ejections ever reduce the pool to a single program,
then we return that program as the selected parent. If instead, we exhaust the test
cases and still have more than one program in the pool, then we return one of them
randomly.

Why might one expect this selection method to be useful? One reason is that it
allows programs to be selected if they perform particularly well on individual test
cases, or on collections of test cases, even if they perform poorly on many others.
This allows specialists to produce offspring that may build on their specialties, per-
haps in conjunction with other specialties that they may have inherited from other
ancestors. The full reasons for lexicase selection’s utility, however, are more com-
plex, and still under investigation [3, 15, 4, 5].

A variety of time optimizations of lexicase selection are possible. For example,
we can include in the initial pool just a single random representative of any group
that shares the same errors for all test cases. Doing so will decrease the number of
programs in the pool that will have to be filtered, and it will also allow fewer test
cases to be considered for some parent selection events.

3 Epsilon lexicase selection

In prior work, it was noted that lexicase selection would sometimes perform poorly
on symbolic regression problems involving floating-point errors [7]. It was thought
that this was due to the fact that in these contexts it would often be the case that most
or all programs in the population would have unique error values when any partic-
ular test case is considered. In such situations, the strictness of lexicase selection
would reduce the candidate pool to a single program as soon as the first test case
is considered, and parenthood decisions would often be made on the basis of single
test cases. These considerations led to the development of epsilon lexicase selection,
which has indeed proven to be useful for problems involving floating-point errors
[12, 11].
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In epsilon lexicase selection we relax the elitism of the filtering steps. Rather than
retaining only the programs with exactly the lowest error on the current test case, we
retain all programs that are “close enough”—that is, those with errors within some
small epsilon of the lowest error of any program in the pool on the current test case.

While the reasons for epsilon lexicase selection’s good performance are still un-
der investigation, an intuitive case for its success can be based on the considerations
sketched above. In a population in which no two programs have the same error
for any test case, which is not terribly hard to imagine for problems with floating-
point errors, ordinary lexicase selection would select every parent based on a single
test case. Specialists would still be selected, but not programs that perform well on
multiple test cases. By allowing programs with errors that are “close enough” to the
minimum error on a test case to pass through the filter, the algorithm will once again
be able to select programs based on performance on larger subsets of the test cases.
Support for this theory has been demonstrated by observing that epsilon lexicase
selection uses more cases per selection event than ordinary lexicase selection does
on regression problems [12, 11].

How should the epsilon in epsilon lexicase selection be determined? Several ap-
proaches to this question have been explored, with the most consistently good per-
formance having been obtained so far with a method dubbed “MAD” epsilon lexi-
case selection, for “Median Absolute Deviation from the median.” Here epsilon is
computed one per generation, for each test case, on the basis of all the errors for
the test case across the population. Specifically, epsilon for a particular test case is
computed as the median of the differences between errors on the case and the me-
dian error for the case. When we use the name “epsilon lexicase selection” below,
without further qualification, we are referring to this method.

4 Random Threshold Lexicase Selection

Epsilon lexicase selection sets a threshold for each challenge that a program must
meet in order to survive a filtering step: if the program has an error for the case that
differs from the best error by the threshold or less, then it survives. The threshold is
set on the basis of the distribution of errors for the test cases in the population; for
example, it is the median absolute deviation from the median error when the MAD
version of epsilon lexicase selection is used.

The idea behind random threshold lexicase selection is to randomize the setting
of the threshold as well. One motivation for doing this is the observation that the
threshold in epsilon lexicase selection can be quite sensitive to changes in the dis-
tribution of error values across the population. If the distribution is not sufficiently
well behaved, for example because of unusual features of the problem that we are
trying to solve, or because high error penalties are imposed on programs that vio-
late specified constraints, or because the genetic operators being used often produce
large changes in error between parent and child, then one might expect the thresh-
olds used by epsilon selection to be unhelpful.
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For this reason, random threshold lexicase selection was developed to choose
thresholds that are derived from the errors present in the population, but less sensi-
tive to their specific distributions. Specifically, at each step of filtering, we choose
an error randomly from those present in the current pool for the current case. We
then retain only those programs that have the chosen error or better for the current
case. If the randomly selected error happens to be the best error in the pool, then the
filtering at this step will be equivalent to that used by ordinary lexicase selection. If
it happens to be the worst error in the pool, then no filtering at all will take place for
the current test case in the current selection event.

One can think of random threshold lexicase selection as randomly sampling com-
binations of relative tightness of selection on different test cases, all within lexicase
selection’s random ordering of test cases. So there is a sense in which all orderings
of test cases and also all combinations of strictness vs. laxness for each test case
may be considered. As with ordinary lexicase selection, however, we do not con-
sider all of these combinations of challenges explicitly. Rather, we sample both the
orderings and the strictnesses of the challenges that programs must confront.

At one extreme, when an elite error is picked at each step, this will act like ordi-
nary lexicase selection. However, this will be rare. Consequentially, random thresh-
old lexicase selection is a significantly relaxed form of lexicase selection, insofar as
it will generally make it easier for programs to meet the challenges to survive filter-
ing. For problems in which all errors are binary (pass/fail), it will act like lexicase
selection on a random subset of the cases.

One would expect that this technique would often end up producing effects sim-
ilar to those of ordinary lexicase selection, but with some test cases more-or-less
skipped during some selection events, while the cases with “tight” bounds on errors
will be the ones that do the major culling. How much of an effect this will have can
be expected to depend on how many intermediate values there are between the elite
values and the worst values; if there are many, then we might expect its effects to be
quite different from those of ordinary lexicase selection.

We can think of both epsilon lexicase selection and random threshold lexicase
selection as loosening lexicase selection’s elitist filtering condition, and thereby
weakening the challenge presented by each test case. Such weakening will gen-
erally lessen the selection pressure exerted by individual test cases while increasing
the selection pressure exerted by groups of test cases that are adjacent in random
shuffles.

We would generally expect random threshold lexicase selection to weaken test
case challenges more than MAD epsilon lexicase selection does, since we would
expect the bound provided by epsilon to be relatively tight, so that randomly chosen
errors would not usually fall within it. It is possible that this will mean that random
threshold lexicase selection will not provide enough selection pressure for good
performance on individual test cases. Whether or not this will actually be the case
is an empirical question, best answered by experiments.
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5 MADCAP Epsilon Lexicase Selection

Random threshold lexicase selection relaxes test case challenges in a randomized
way, but it may also be useful to consider methods that do something similar while
nonetheless obeying the limit of relaxation used in epsilon lexicase selection. That
is, it might be useful in some contexts to consider methods that vary in stringency
between MAD epsilon lexicase selection and ordinary lexicase selection (which is
strictly elitist), again using randomization to sample different strengths applied to
different test cases. MADCAP epsilon lexicase selection is such a method.

At each filtering step of MADCAP epsilon lexicase selection, we sometimes
retain just the best individuals on the case, and sometimes retain any individuals
within epsilon of best, choosing randomly between these options for each test case.
The application of epsilon lexicase’s “cap” (threshold) is probabilistic.1 Specifically,
we provide a parameter for the probability of applying the MAD cap versus just
retaining individuals with the best error. In the experiments described below, this
parameter is set to 0.5. At each filtering step, we use this probability to determine
whether to retain only those programs with exactly the best error in the pool on the
current case, or whether to retain all programs with errors within the MAD epsilon
of the best error. Thus the selectivity of MADCAP epsilon lexicase selection will be
between that of ordinary lexicase selection and MAD epsilon lexicase selection.

The motivation for this formulation is that for some problems, it is required that
solutions have errors that are actually zero, or at least equal to the lowest possible
error, rather than just being low. Especially for these problems, but possibly for
others as well, we would like selection to sometimes (probabilistically) distinguish
between programs that have the minimum (possibly zero) error on a test case and
programs that merely have low errors.

Intuitively, one might expect MADCAP epsilon lexicase selection to allow the
genetic programming search process to hone in on minimal-error solutions. Whether
this happens in practice will probably depend on several factors including the distri-
bution of errors in the population, which will depend in turn on factors such as the
genetic operators and rates that are being used. Epsilon lexicase selection is always
sensitive to the distribution of errors across the population, while MADCAP epsilon
lexicase selection will always provide some selection in favor of elites, regardless
of the error distribution.

As with the other methods considered here, MADCAP epsilon lexicase selection
uses sampling to consider, in the limit but not explicitly, all combinations of favoring
vs. not favoring elites for each case and each combination of cases.

Again, whether or not this will actually be useful in practice is an empirical
question, best answered by experiments.

1 So “MADCAP” = Median Absolute Deviation from the median, Cap Applied Probabilistically.
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6 Truncated Lexicase Selection

Truncated lexicase selection is a form of lexicase selection in which we limit the
number of cases that are considered in each parent selection event. The number (or
percentage) of the total cases that will be considered is a parameter of the method.
For example, suppose that we use truncated lexicase selection on a problem with 100
test cases and that we specify that 25% of cases will be used. Then for each parent
selection event, we will proceed initially as we do in ordinary lexicase selection, but
if we have filtered the pool using 25 test cases and it still contains multiple programs,
then we will immediately choose a random remaining member of the pool and return
it as the selected parent.

Epsilon lexicase selection, random threshold lexicase selection, and MADCAP
epsilon lexicase selection are all relaxed forms of lexicase selection in which the
constraints on selection are reduced with respect to the allowed error values for
individual cases. In ordinary lexicase selection, a program can only be selected to
serve as a parent if it is globally elite on at least one case and elite with respect to
the survivors in the selection pool as each subsequent case is considered. In epsilon
lexicase selection, random threshold lexicase selection, and MADCAP epsilon lex-
icase selection, this requirement of eliteness is relaxed, to a greater or lesser (and
sometimes random) extent.

By contrast, in truncated lexicase selection we still require eliteness on the test
cases that are considered, but we place no constraints at all on the error values of the
cases that are not considered. Whether or not this form of relaxation has beneficial
impacts on the ability of the genetic programming system to solve problems, it also
has the potential to improve system runtimes by reducing the amount of computation
that must be dedicated to filtering the lexicase selection candidate pools.

7 Experimental results

We include here the results from two sets of experiments on the relaxed variants of
lexicase selection presented above.

First, we present the results of comparisons of several selection methods, includ-
ing ordinary lexicase selection, epsilon lexicase selection, random threshold lexi-
case selection, and MADCAP lexicase selection, on a collection of eight symbolic
regression problems. For completeness, we also include comparisons to purely ran-
dom selection, tournament selection with a tournament size of 2, lasso selection
[21], age-fitness Pareto optimization [19], and deterministic crowding [16].

Table 1 describes the problems used for these experiments, each of which comes
from the UCI repository [14]. Table 2 describes the genetic programming system
parameters that were used, and also provides abbreviations for the parent selection
methods that were studied, which are used in the graph of results in Figure 1. The
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Table 1 Regression problems used for method comparisons.

Problem Dimension Samples

Airfoil 5 1503
Concrete 8 1030
ENC 8 768
ENH 8 768
Housing 14 506
Tower 25 3135
UBall5D 5 6024
Yacht 6 309

Table 2 Genetic programming system settings for symbolic regression problems.

Setting Value

GP tool ellyn
Population size 1000
Crossover / mutation 60/40%
Program length limits [3, 50]
ERC range [-1,1]
Generation limit 1000
Trials 50
Terminal Set {x, ERC, +, �, ⇤, /, sin, cos, exp, log}
Elitism keep best
Fitness (non-lexicase methods) MSE

Method Abbreviation

Lasso [21] lasso
Random selection rand
Tournament selection (size 2) tourn
Lexicase selection lex
Age-fitness Pareto optimization [19] afp
Deterministic crowding [16] dc
epsilon-lexicase selection ep-lex
Random threshold lexicase selection ep-lex-rand
MADCAP epsilon-lexicase selection ep-lex-madcap

experiments were run using the ellyn,2 a linear GP system described in [10] (in this
experiment, no epigenetic markers were used).

As Figure 1 makes clear, epsilon lexicase selection achieves the best results, and
achieves the most consistently good results, across this set of problems. Ordinary
lexicase selection sometimes performs reasonably well, occasionally beating com-
petitors, but as has been noted elsewhere and motivated the development of epsilon
lexicase selection in the first place, ordinary lexicase selection often performs rela-
tively poorly in the context of floating-point errors [12].

Random threshold lexicase selection performs much better than ordinary lexicase
selection but worse than epsilon lexicase selection. Its average ranking over these re-
gression problems is about the same as deterministic crowding. MADCAP lexicase
selection has broadly similar performance, sometimes a bit better and sometimes a
bit worse. It is possible, however, that each of these relaxed forms of epsilon lexicase
selection will prove to be more advantageous for problems with particular character-

2 https://epistasislab.github.io/ellyn/
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Fig. 1 Comparison of multiple parent selection methods on multiple symbolic regression prob-
lems. The boxplots span the upper and lower quartiles of test set mean squared error (MSE) for
each problem, with a central line indicating the median. On the lower right, the mean ranking ac-
cording to median MSE of each method across all problems is shown, with the error bar indicating
the standard error.

istics that might be discovered by broadening the experiments to cover more types
of problems.

In a second set of experiments, we compared ordinary lexicase selection to trun-
cated lexicase selection on software synthesis problems from our general program
synthesis benchmark suite [6]. Specifically, we conducted runs on the “Median,”
“Negative to Zero,” “Number IO,” “Replace Space with Newline,”, “Smallest”, and
“Vector Average” problems. These problems require a range of data types and pro-
gramming constructs to solve. For these problems, we tested truncating lexicase
selection after considering just a single test case, and after considering 25% of the
test cases. We note that when only a single test cases are considered we are creating,
intentionally, exactly the situation which was thought to be problematic when using
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ordinary lexicase selection on problems with floating-point errors, which motivated
the development of epsilon lexicase selection.

Table 3 Genetic programming system settings for software synthesis problems. All problems are
explained in detail in [6]. The full set of settings, including the set of instructions allowed in
programs, can be found in the Clojush GitHub repository.

Setting Smallest Median Negative To Zero Number IO RSWN Vector Average

GP Tool Clojush Clojush Clojush Clojush Clojush Clojush
Population Size 1000 1000 1000 1000 1000 1000
Generation Limit 200 200 300 200 300 300
Alternation/Mutation/Both 20/30/50% 20/30/50% 20/30/50% 30/20/50% 20/30/50% 20/30/50%
Max Initial Genome Length 100 100 250 100 400 200
Test Cases 100 100 200 1000 100 250

The parameters for the runs comparing truncated lexicase selection with ordi-
nary lexicase selection, using the Clojush implementation of the PushGP genetic
programming system (https://github.com/lspector/Clojush), are shown in Table 3.
We conducted 20 runs in each setting. Figure 2 shows the success rates that were
observed. We note that the results appear to indicate that the relaxation provided
by truncation damages problem-solving performance, with greater relaxation gen-
erally producing greater damage. We have too little data to draw any firm conclu-
sions about the extent of this effect, or about the ways in which this effect may vary
across problems, but we present it as a baseline for future study of truncated lexicase
selection.

Fig. 2 Comparison of ordinary lexicase selection and truncated lexicase selection on software syn-
thesis benchmark problems. The x-axis labels denote the values for the cap parameter of truncated
lexicase selection in number of test cases. The values are a single test case, 25% of the total num-
ber of test cases, and 100% of the total number of test cases (which is ordinary lexicase selection).
Error bars indicate the standard error.
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8 Relation to many-objective optimization

All of the lexicase selection relaxation algorithms discussed above assess programs
with respect to multiple test cases, each of which might be considered, in some
sense, to be a separate objective of the genetic programming search process. Because
there is existing research on so-called “many-objective optimization algorithms,”
which attempt to optimize four or more objectives, it is worth considering how such
research relates to the parent selection algorithms we have discussed here.

We recently provided a multi-objective analysis of lexicase selection to show
that, if we treat each fitness case as an objective, parents selected by lexicase se-
lection are Pareto-optimal (i.e., they are non-dominated in the population) and lo-
cated at the boundaries of the Pareto front [11]; we borrow from that analysis in
the remainder of this section. The utility of Pareto dominance as a search driver is
reduced as the number of fitness cases/objectives grows since the number of non-
dominated solutions grow exponentially with the number of objectives. However, it
is noteworthy that lexicase selection corresponds to selections of the boundaries of
the Pareto front since boundary solutions influence typical measures of quality in
many-objective optimization.

In many-objective optimization, the performance of algorithms is typically as-
sessed in terms of convergence, uniformity, and spread [13], with the last of these
dealing directly with the extent of boundary solutions. Some indicator-based meth-
ods, for example IBEA and SMS-EMOA, use a measure of the hypervolume in ob-
jective space to evaluate algorithm performance [23]. There appears to be some dis-
agreement regarding the importance of boundary solutions in this context. Although
Deb et. al [2] argued empirically that boundary solutions have an outsized effect on
hypervolume measures, according to Auger et. al., “optimizing the unweighted hy-
pervolume indicator stresses the so-called knee-points—parts of the Pareto front
decision-makers believe to be interesting regions... Extreme points are not gener-
ally preferred as claimed in [2], since the density of points does not depend on the
position on the front but only on the gradient at the respective point” [1].

In general, many-objective optimization methods have not highlighted random
sampling as a useful method for exploring high-dimensional objective spaces.
MOEA/D, R-NSGA-II, and NSGA-III opt for the use of reference points in ob-
jective space to preserve the spread of solutions. Unlike lexicase selection, there
does not seem to be explicit motivation to keep boundary solutions in this literature.
Results like those demonstrated in the present chapter, and in other work on lexi-
case selection, suggests that it may be worthwhile for many-objective optimization
researchers to give greater consideration to methods based on random sampling, and
to methods in which samples are considered with randomized priorities.
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9 Discussion

In ordinary lexicase selection, test case order is randomized, allowing the algorithm
to implicitly select on the basis of performance on all subsets of test cases, even
though the exponentially many subsets are not considered explicitly. Randomization
samples the space of test case sequence prefixes, thereby sampling the space of test
case combinations that “matter” for a particular parent selection event, and thereby
implicitly considering, over time, all subsets of test cases.

This appears to be a powerful technique for selecting useful parents in genetic
programming, as it sometimes allows solutions to be found in significantly more
runs and/or fewer generations than they can be found with previous, test-case-
aggregating parent selection algorithms. However, the ordinary lexicase selection
algorithm appears to be too strict in some circumstances, preventing the selection
of parents that have much to offer to future generations in the evolutionary search
process.

Epsilon lexicase selection appears to resolve this issue for many problems with
floating-point errors by relaxing the requirement for eliteness in each step of the
filtering of candidate parents. Two closely related methods were also explored here.
The first, random threshold lexicase selection, is often (but not necessarily always) a
more (and randomly more) relaxed version of epsilon lexicase selection, which also
depends less directly on the distribution of errors in the population than does epsilon
lexicase selection. The second, MADCAP epsilon lexicase selection, is a less (and
randomly less) relaxed version of epsilon lexicase selection. Neither of these alterna-
tives performed better than epsilon lexicase selection on the problems studied here,
but they both performed better than several of the other methods considered, and
one can imagine situations in which each would be more useful. For example, one
might expect random threshold lexicase selection to be useful in contexts requiring
particularly broad exploration, and one might expect MADCAP epsilon lexicase se-
lection to be useful in contexts requiring convergence to solutions with zero or truly
minimal errors. One area for future research is the application of these methods to
problems of other types, in order to support or to falsify such expectations.

Truncated lexicase selection provides a different form of relaxation, limiting the
number of test cases that can be considered in any parent selection event. While we
were initially motivated to perform experiments on truncated lexicase selection by
an expectation that the truncation might provide runtime performance benefits, we
also wanted to study how this affects solution rates. Our experiments here, while
preliminary, suggest that truncation often hampers the ability of the system to find
solutions, but that it does so to a different extent on different problems. These re-
sults suggest that more experiments should be conducted, on additional problems
of various types, to help us to understand when this form of relaxation might be
beneficial (regarding success rates and/or runtime) and when it is detrimental. They
also suggest that experiments should be conducted with additional truncation lev-
els. Levels of 50% or higher may be particularly interesting, as they would provide
only modest relaxation relative to ordinary lexicase selection. Levels that allow the
consideration of very few test cases, but more than just a single one, may also be



14 Authors Suppressed Due to Excessive Length

revealing because they would be quite relaxed while still allowing for selection on
the basis of multiple test cases.

Another obvious avenue for future research is to combine truncation with re-
laxation of the eliteness constraints for individual test cases. That is, it would be
straightforward and possibly useful or at least instructive to conduct runs with trun-
cated versions of epsilon lexicase selection, random threshold lexicase selection,
and MADCAP epsilon lexicase selection.

Other forms of relaxation are also possible and may be useful in some circum-
stances. Two that we have implemented but not yet studied systematically are meth-
ods in which we perform lexicase selection with a certain probability and purely
random selection otherwise, and methods in which we perform truncated lexicase
selection but with different, randomly chosen numbers of test cases used in each
selection event. Of course, these could also be combined with one another, and with
many of the other methods described above. The choice of which of these to ex-
plore first might best be guided by theoretical consideration of the ways in which
they sample the search space, along the lines of the initial discussion that we of-
fered above on the relation between work on lexicase selection and work on many-
objective optimization.

We note that many of the ideas discussed here could be applied to survival selec-
tion as well as parent selection.

While all of the methods here in some way relax the requirements made by or-
dinary lexicase selection, it is possible that strengthening the requirements in some
way could potentially have benefits for some problems. It is unclear at this point
what such strengthening would look like, but variants of this sort would certainly be
interesting to examine.

The specific methods described here appear to have varying utility, at least from
the experiments conducted to date. Regardless of the utility of the specific methods,
however, we hope that the discussion here may help to stimulate additional work
developing selection algorithms that can guide evolution more effectively.
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