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ABSTRACT
In [Luke and Spector 1997] we presented a com-
prehensive suite of data comparing GP crossover
and point mutation over four domains and a wide
range of parameter settings. Unfortunately, the
results were marred by statistical flaws. This revi-
sion of the study eliminates these flaws, with three
times as much the data as the original experiments
had. Our results again show that crossover does
have some advantage over mutation given the right
parameter settings (primarily larger population
sizes), though the difference between the two sur-
prisingly small. Further, the results are complex,
suggesting that the big picture is more complicated
than is commonly believed.

1 Introduction
The genetic algorithms and evolutionary programming fields
have long been at odds over the proper chief operator for
generating new populations from previous ones. Genetic
algorithms proponents favor crossover, while evolutionary
programming’s philosophy emphasizes mutation.

Most justification for using crossover as a genetic algo-
rithm’s chief operator rests on the building-block hypoth-
esis [Holland 1975]. This hypothesis argues that highly-
fit individuals are formed from important building blocks
(“schemata”), and that through crossover, these individuals
can mix and match highly-fit building blocks to form even fit-
ter individuals. Genetic algorithms typically uses only a tiny
bit of mutation, relegated to the custodial job of making sure
certain features aren’t weeded entirely out of the population.

In contrast, evolutionary programming often uses mutation
almost exclusively, partly because of philosophical differ-
ences, and partly from a much broader use of genomes which
differ widely from the traditional GA-style vector chromo-
some (for which crossover is straightforward). But even when
using vector chromosomes, new evidence and theory has cast
some doubt on the building-block hypothesis and suggested

that crossover may not be as useful for GA-style vector chro-
mosomes as previously thought (see for example [Shaffer
and Eshelman 1991], [Tate and Smith 1993], [Hinterding,
Gielewski and Peachey 1995]).

Genetic programming’s unusual tree-based genome is so
distant from the genetic algorithm vector genome that it is
very difficult to form a similar theoretic justification for fa-
voring crossover over mutation. Still, crossover is the over-
whelmingly popular operator in GP. Some of this of this pop-
ularity may be due to inertia: Koza’s early experiments with
the Boolean 6-multiplexer problem supported his argument
for heavy use of crossover [Koza 1992, pp. 599–600], and
most later GP work has followed closely in the Koza tradition.
But the popularity of crossover may also be due to a latent
belief that GP crossover, like GA crossover, must somehow
transfer “things of value” from individual to individual. As
such, GP literature freely uses, with little theoretical support,
the overall building-block and schemata concepts used in GA
(for example, [Iba and de Garis 1996], [Rosca and Ballard
1996], [Soule, Foster, and Dickinson 1996]). GP researchers
have also attempted a GP building block hypothesis ([Haynes
1997], [Poli and Langdon 1997], [Rosca 1997]).

2 The Original Experiment

In [Luke and Spector 1997], we empirically compared GP
point mutation and crossover. Our goal was to to determine if
crossover had any significant utility (whether this was trading
“things of value” or whatnot) over being an oddball mutation
operator of sorts. This study was done in light of recent
high-profile studies casting doubt on the notion GP schemata
[O’Reilly and Oppacher 1995], and arguing against the merits
of GP crossover (for example, [Angeline 1997]).

GP is a time-intensive method. The difficulty in obtaining
broad data sets in GP means that much of the GP literature to
date has yielded studies with relatively narrow experiments,
often over only one (even custom) domain and set of pa-
rameters. Correspondingly, many arguments based on these



studies may have missed the forest for the trees. We hoped
that by providing a large, broad data set in our study we might
be able to see the big picture.

Consequently, we identified the four parameter settings
(problem domain, population size, number of generations,
and selectivity) we felt might have the largest effect on the
results in our comparison, and performed experiments over a
wide range of parameter combinations. The result was one of
the largest GP experiments to date, resulting in 572,947,200
GP individual evaluations, or the equivalent of about 12,000
GP runs. Unfortunately, the experiment was marred by two
statistical flaws:

1. Measurements at each number-of-generations milestone
were taken from the same run as it continued on. This
meant that a these milestones were not statistically inde-
pendent. This is a serious flaw.

2. For each data point, the sample size (25) should have been
larger, according to standard statistical methods. This is
a less serious flaw.

In this new paper we present the results of a revision of this
experiment which fixes these two problems. The revision
doubles the sample size (to 50) and performs statistically-
independent measurements at every data point. The result
weighs in at three times the size of the previous experiment:
1,674,446,400GP individual evaluations, or the equivalent of
about 34,000 runs of typical size in the GP community (say,
50 generations, population size 1000).

3 Run Parameters
The original experiment divided runs into two sets. The first
set of runs compared a 90% crossover, 10% reproduction
scheme with a 90% mutation, 10% reproduction scheme,
looking for a “break-even point” beyond which one or the
other approach began to be consistently more successful. The
second set of runs compared various blends of mutation and
crossover, trying to determine if a combination of the two
might be more beneficial than each separately. While both
sets of runs were performed with a sample size of 25, the
serious flaw (statistical dependence) occurred only in the first
set. Our revised experiment replaces only the first set of runs.

As discussed in the original paper, one of the difficulties
in comparing features in Genetic Programming is the large
number of external parameters which can bias the results. To
cope with this, we identified the four parameters we thought
would have the most dramatic bias on our data. We performed
runs under combinations of the following parameters:

• Problem domain. We picked four different domains of
varying difficulty. The domains ranged from the trivial
(Boolean 6-Multiplexer), to the moderate (Lawnmower,
Symbolic Regression) to the relatively more difficult (Ar-
tificial Ant).

• Population size. Unlike the previous experiment, in this
study we performed separate runs with population sizes
of 4, 8, 16, 32, 64, 128, 256, 512, 1024, and 2048.

• Number of generations. Unlike previous experiment,
in this study we performed separate, independent runs
lasting 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512 generations
long.

• Selectivity. We again chose to run all four domains using
tournament selection, because it allowed us to rigorously
vary selectivity simply by changing the tournament size.
We used two different tournament sizes: 2 (because it
is the standard in GA literature, and because it is not
very selective) and 7 (because it is used extensively in GP
literature, and also is relatively highly selective).

Our runs reflect all combinations of these parameter set-
tings. We chose to hold constant the myriad of other possible
domain parameters, setting them to traditional default set-
tings. There is good methodological justification for this. By
making large-scale changes to the traditional domain settings,
the experiment risks losing relevance to the large body of
work which has used these settings in the past. And while we
could choose to improve any number of parameter settings,
there would always be someone arguing that if one only tried
improvement x, the results would have been different.

We used standard “point” mutation (in which a random
subtree is replaced with a new random tree) as described
by [Koza 1992, p. 106]. Similarly, we used the traditional
GP crossover and reproduction operators described in [Koza
1992]. We included 10% reproduction, in order to stay closer
to the classic GP mix. We imposed a maximum tree depth
limit of 17. We used a depth ramp of between 2 and 6
for initial tree generation, and between 1 and 4 for subtree
mutation. Subtree mutation picked internal nodes 90% of the
time and external nodes 10% of the time. For both initial tree
generation and subtree mutation, we used half-GROW, half-
FULL tree-generation. Our runs did not stop prematurely
when a 100% correct individual was found, but continued
until each run was completed.

The function sets and evaluation mechanisms for the Arti-
ficial Ant, Symbolic Regression, and Boolean 6-Multiplexer
domains were those outlined in [Koza 1992]. The Artificial
Ant domain used the “Santa Fe” trail, and allowed the ant to
move up to 400 times. The target function for the Symbolic
Regression domain was x4 + x3 + x2 + x. Our implementa-
tion of the Symbolic Regression domain used no ephemeral
random constants. The function set, evaluation mechanism,
and tree layout (with two Automatically Defined Functions or
ADFs) for the Lawnmower domain are given in [Koza 1994],
using an 8x8 lawn.

Each data point in the figures is the result of 50 random
runs with the same set of parameters. We performed the runs
using lil-gp 1.02 [Zongker and Punch 1995], running on a
40-node DEC Alpha supercomputer.



4 Results
The results are shown in Figures 1 through 4. The land-
scape graphs show the mean standardized fitness at each data
point. It is important to remember that standardized fitness
is monotonic but not usually linear (depending on domain); a
doubling in standardized fitness does not necessarily translate
to some doubling in “real fitness”. The comparison graphs are
black where crossover is better than mutation, white where
mutation is better than crossover, and gray where the dif-
ference between the two is statistically insignificant (using a
two-sample, two-tailed t-test at 95%).

If you want to compare these graphs to the (invalid) ones
in the previous study, it is important to note two differences.
First, for the two “easier” domains (Lawnmower and Boolean
6-Multiplexer), the original study performed runs only up to
64 generations long, and for populations only up to 512 in
size. In the new experiment, all domains have run data for
the same combinations of population size and number of
generations. Second, the graphs in the original study are
logarithmic in terms of population size but linear in num-
ber of generations. The new results are logarithmic both
in population size and number of generations. This can
be very confusing when comparing the new figures to the
original ones. The new experimental data can be found at
http://www.cs.umd.edu/projects/plus/GP/gpdata.tar.gz

Our conclusions from this data are rather similar to the
findings in the previous study:

• Crossover was more successful overall than mutation.

• Even when statistically significant, the difference between
mutation and crossover is in many places surprisingly
small (though one exception is Symbolic Regression).
Often changing the tournament size will have a larger
effect than picking crossover over mutation. From this
we conclude that crossover is doing something positive
beyond being just an odd mutation operator, though the
utility of its additional effect is usually not all that high.

• The graphs are remarkably symmetrical with respect to
choosing number of generations vs. population size. Cer-
tain domains favor one over the other only to a small de-
gree (for example, Lawnmower favors number of genera-
tions, while Symbolic Regression favors population size).
Traditional GP wisdom has been that favoring large pop-
ulations (where crossover often works better) produces
better results than favoring large numbers of generations
(where mutation often works better); but our results do
not really support this.

• In [Luke and Spector 1997] we speculated that for func-
tion sets with strong, global domain dependencies be-
tween functions, crossover might have less utility. Do-
main dependencies occur when nodes throughout a GP
individual take turns manipulating the domain state or in-
ternal memory. As it turns out, there is an overall trend

delimiting the areas where crossover or mutation is supe-
rior. The general trend is that mutation is more successful
in smaller populations, and crossover is more successful
in larger populations. It is interesting to note, however,
that this trend is obvious only for those two domains
(Symbolic Regression, Boolean 6-Multiplexer) with no
global domain dependencies.

5 Conclusions and Future Work

What we’ve learned from this is that while we can draw some
conclusions about overall trends in the data, the data is sur-
prisingly complex. The difference between crossover and
mutation is often small, and more often statistically insignif-
icant. Further, where and why one is preferable to the other
is strongly dependent on domain and parameter settings.

There are other issues to consider: for example, tree size
has a tremendous effect on total evaluation time in these do-
mains, especially for the Lawnmower domain. We have noted
anecdotally that this seems to waste more time in crossover
runs than mutation runs. In a future study we hope to compare
this and other factors which contribute to overall computa-
tional run length.

We would also like to further examine the utility of
crossover vs. mutation with respect to the overall number of
GP individual evaluations. In our previous study, we placed
<population size, num-generations> tuples into classes by
total numbers of evaluations, and compared crossover and
mutation by evaluation class; the result was that crossover
was more successful overall, but the difference was usually
small and almost always less than the difference caused by
changing tournament size. In preparation for this study we
also ranked the new data into evaluation classes. The results
were remarkably similar. However, there is no rigorous sta-
tistical test to demonstrate the validity of these findings (a
t-test does show statistically significant differences between
the populations of grouped averages, but these are averages
of averages, and further, there are at most ten of them per
class and as few as one per class). In the future we hope to
examine this issue more closely.

We realize that large studies are hard to produce, and as
such we hope our data is of use to the GP community at large,
both as evidence regarding the real utility of crossover, and
as a demonstration that the big picture in GP is often more
complex than it seems at first. And as proof that if first you
statistically don’t succeed, try, try again.
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Figure 1.  Comparison of crossover and mutation for the 6-Boolean Multiplexer Domain.  Comparison graphs are black where crossover is better
than mutation, white where mutation is better than crossover, and gray where the difference is statistically insignificant.

6-Boolean Multiplexer Domain

1

2

4

8

16

32

64

128
256

512

Number of Generations

4

8

16

32

64

128

256

512
1024

2048

Population Size

0.25

0.5

0.75

1.

Fitness

1

2

4

8

16

32

64

128
256

512

Number of Genera

1

2

4

8

16

32

64

128
256

512

Number of Generations

4

8

16

32

64

128

256

512
1024

2048

Population Size

0.25

0.5

0.75

1.

Fitness

1

2

4

8

16

32

64

128
256

512

Number of Genera

1

2

4

8

16

32

64

128
256

512

Number of Generations

4

8

16

32

64

128

256

512
1024

2048

Population Size

0.25

0.5

0.75

1.

Fitness

1

2

4

8

16

32

64

128
256

512

Number of Genera

1

2

4

8

16

32

64

128
256

512

Number of Generations

4

8

16

32

64

128

256

512
1024

2048

Population Size

0.25

0.5

0.75

1.

Fitness

1

2

4

8

16

32

64

128
256

512

Number of Genera

1 2 4 8 16 32 64 128 256 512

Number of Generations

4

8

16

32

64

128

256

512

1024

2048

P
op

ul
at

io
n 

S
iz

e

1 2 4 8 16 32 64 128 256 512

Number of Generations

4

8

16

32

64

128

256

512

1024

2048

P
op

ul
at

io
n 

S
iz

e



Crossover Mutation Comparison

Crossover Mutation Comparison

T
ou

rn
am

en
t S

iz
e 

2
T

ou
rn

am
en

t S
iz

e 
7

Figure 2.  Comparison of crossover and mutation for the Lawnmower Domain.  Comparison graphs are black where crossover is better than
mutation, white where mutation is better than crossover, and gray where the difference is statistically insignificant.
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Figure 3.  Comparison of crossover and mutation for the Symbolic Regression Domain.  Comparison graphs are black where crossover is better than
mutation, white where mutation is better than crossover, and gray where the difference is statistically insignificant.
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Figure 4.  Comparison of crossover and mutation for the Artificial Ant Domain.  Comparison graphs are black where crossover is better than mutation, white where
mutation is better than crossover, and gray where the difference is statistically insignificant.
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