
Chapter 1

Introduction

κακοι µαρτυρεσ ανθρωποισιν οφθαλµοι και ωτα
βαρβαρουσ ψυχασ εχοντων.

Eyes and ears are poor witnesses for men if their souls do not
understand the language.

Heraclitus

This dissertation investigates the utility of abstraction for agents living in complex,
dynamic environments. Abstraction is a historically broad concept, applied through the
centuries to problems in virtually every intellectual discipline. Since the early 1960’s,
several well-defined notions of abstraction, hierarchy, and levels have proven to be
valuable in philosophy, psychology, and artificial intelligence (AI) research.

Many of the outstanding problems in the cognitive sciences, and particularly in AI,
concern the complexity and dynamism of the environments in which cognitive agents must
function. While AI has made great strides in the study of problem-solving methods, the
integration of these methods into intelligent behavior in our ever-changing world presents
one of the field’s current challenges. This dissertation examines the role that certain forms
of abstraction can play in meeting this challenge.

Recent work in AI planning systems suggests that the “classical” planning paradigm,
based on the plan/execute model of action and on its concomitant assumptions of a static
world and an omniscient reasoner, is inadequate for agents in complex and dynamic
environments. A rejoining trend has developed, both in AI planning systems and in robotic
control theory, toward reactive systems based on distributed control structures. For reasons
of efficiency and modularity these systems are often partitioned into layers of abstraction.

Two general ideas of abstraction have hitherto played an important role in AI research.
The first involves the division of systems into “levels of detail,” exemplified in AI
planning systems by Sacerdoti’s ABSTRIPS [Sacerdoti 1974]. This type of simplification
abstraction has received considerable recent attention and is now fairly well understood;
rigorous formalizations have been provided that demonstrate the utility of simplification
abstraction in reducing the size of certain problem-solving search spaces (e.g., [Knoblock
1991b]). A second form of abstraction has been used in robotic control theory and in
research on large-scale cognitive models. In this form of abstraction, cognitive processes
are divided into levels, providing flexibility of behavior through the use of modularity and

1

parallelism. This kind of abstraction is exemplified by work on blackboard architectures

such as HEARSAY-II [Erman et al. 1980], in which novel control structures can be used to
generate, for example, opportunistic problem-solving behavior.

This dissertation presents, formalizes and demonstrates a species of abstraction called
supervenience. The concept of supervenience captures the notions of abstraction that are
most important for systems that must integrate high-level reasoning with real-time action.
Simplification abstraction is a special case of supervenience, so the search-reduction
benefits of ABSTRIPS-style systems are usually, but not always, available in supervenient
planning systems. The generality of supervenience allows, however, for uses of abstraction
that are not possible in any ABSTRIPS-style system. For example, a supervenient planning
system can make use of different knowledge representation systems and different
reasoning mechanisms at each level of the abstraction hierarchy. Although similar
capabilities may be found in existing blackboard systems and robotic control architectures,
the principles that underlie this form of abstraction have not been sufficiently explored
until now.

The central idea of supervenience is that representations at lower levels of abstraction
are epistemologically “closer to the world” than those at higher levels, and that the
representations at higher levels therefore depend on those at lower levels. The higher levels
may contain representations that are simplifications of low-level, sensory reports, but they
may just as well contain representations that are complex, structurally rich aggregates that
have no unified representation at lower levels. In contrast to ABSTRIPS-style systems, in
which higher levels must be simplifications of the lower levels, levels of supervenience
may be dissimilar in various ways so long as the proper dependence relation holds. The
thesis is that it is this dependence, and not the more restrictive notion of simplification, that
allows for the flexible integration of cognition and action.

The conception of abstractness as epistemological “distance from the world” is not
new. Rudolph Carnap, in his 1937 Foundations of Logic and Mathematics, writes:

We find among the concepts of physics—and likewise among those of the whole of
empirical science—differences of abstractness. Some are more elementary than others,
in the sense that we can apply them in concrete cases on the basis of observations in a
more direct way than others. The others are more abstract; in order to find out whether
they hold in a certain case, we have to carry out a more complex procedure, which,
however, also finally rests on observations. Between quite elementary concepts and
those of high abstraction there are many intermediate levels. [Carnap 1960, 150]

Carnap’s conception of abstraction is similar to supervenience. In the following pages
the concept of supervenience is discussed, formalized, and applied to an implemented
dynamic-world planning system.

Part I of the dissertation (Chapters 2 and 3) is largely historical. Chapter 2 describes
recent developments in AI planning systems and discusses the emergence of dynamic-
world planning as a critical area within the field. Previous approaches to dynamic-world
planning are surveyed, and the relations between dynamic-world planning and other
branches of planning research are sketched. Chapter 2 concludes with descriptions of
specific behavioral problems that present difficulties for the current generation of dynamic-
world planning systems.

2

Chapter 3 surveys the use of abstraction in AI planning systems. Special attention is

paid to two forms of abstraction: reduced partition abstraction (the predominant form of
simplification abstraction—used for example in ABSTRIPS-style systems), and partitioned
control abstraction (used in robotic control systems and blackboard architectures). These
forms of abstraction are discussed in relation to one another, and in relation to the
dynamic-world planning systems mentioned in Chapter 2.

Part II of the dissertation (Chapters 4–6) presents the theory of supervenience. Chapter
4 traces the concept of supervenience from its roots in the philosophical literature to its
application in AI planning systems. Chapter 5 describes supervenience formally, in the
context of nonmonotonic reasoning systems. Chapter 6 uses the formal constructions of
Chapter 5 to compare supervenience to the form of abstraction used in ABSTRIPS-style
systems. The claim is made that supervenience is a generalization of reduced partition
abstraction—a generalization that is particularly important for agents living in complex,
dynamic environments.

Part III (Chapters 7–9) describes a dynamic-world planning system based on the
concept of supervenience. Chapter 7 presents the general computational architecture of the
system, called the supervenience architecture. The chapter also includes a comparison of
the supervenience architecture to the subsumption architecture, a well-known architecture
for robotic control systems.

Chapter 8 details the components of the Abstraction Partitioned Evaluator (APE), a
single instance of the supervenience architecture. While the supervenience architecture is
based on the use of levels, it does not mandate the use of any particular set of levels. A
specific set of levels is used in APE; this set of levels is described and supported through
evidence from philosophy, psychology, and AI research. Chapter 8 also details the
programming constructs provided by APE, and discusses the use of these constructs for
critical operations in dynamic-world planning. The chapter concludes with a discussion of
the potential for parallelism in future versions of APE, and in the supervenience
architecture in general.

Chapter 9 describes HomeBot, a dynamic-world planner built using APE. HomeBot
runs in a simulated household environment, and will be used to demonstrate important
features of the supervenience architecture. Several examples of HomeBot’s behavior are
presented in detail, including solutions to some of the difficult behavioral problems
mentioned in Chapter 2. The chapter concludes with an assessment of HomeBot’s
performance, and a discussion of how it may be improved.

Part IV (Chapter 10) summarizes the main points of the dissertation, and discusses
directions for future work. The dissertation covers a wide range of topics, from philosophy
and psychology to theoretical and practical AI. The synthesis has important implications
for cognitive science and AI practice, and many of the component questions may also
deserve further exploration.1

3

1Earlier work on the project described in this dissertation was reported in [Spector and Hendler
1990a, 1990b, 1991a, 1991b].

4

Part I

Planning, Reaction, and Abstraction

5

6

Chapter 2

Planning and Reaction

2.1 Static-World Planning
Planning has been an active subfield of AI for over 30 years, and the literature on

planning systems is large and varied. In Part I of this dissertation I explore two threads of
work in the literature: the use of abstraction in planning systems, and the development of
integrated planning/acting technologies. The contribution of this dissertation is a
generalized concept of abstraction that can be used to attack some of the outstanding
problems in the integration of planning and action. The history of the planning field is
sketched in order to provide context for the discussion, but it is outside the scope of this
work to chronicle the entire history of AI planning, or even to touch upon all of the issues
of interest to planning researchers. Several summaries of work in the field, as well as
reprints of seminal papers, can be found in [Allen, Hendler, and Tate 1990].

As in many areas of AI, early research in planning systems used simplified problem
domains in order to more directly address the issues that were perceived to be at the core of
the field. In the case of planning, this resulted in (at least) the following simplifying
assumptions:

• The robot is the only agent active in the environment; there are no competitors,
collaborators, or natural forces that might interfere with the state of the world either during
the planning process or during execution.

• The robot’s primitive actions will succeed, and will modify the state of the world
according to their specifications, on every application.

• The robot is capable of performing a single action at a time.
• Planning time doesn’t matter (except that it is best for it to be minimized).
• Execution time doesn’t matter (except that it is best for it to be minimized).
I will call these assumptions the static world assumptions, and I will call planning in

the context of such assumptions static-world planning. These terms are slightly misleading,
since it is not only the dynamism (vs. stasis) of the world that is in question. Nonetheless,
the terms have some history (e.g., [Hendler and Sanborn 1988], [Sanborn 1989]), and their
meanings are reasonably clear. Other terms used in the literature for static-world planning
are “classical planning” and “traditional planning”; these terms convey little useful
information and are likely to age poorly as fewer new planners make the static-world
assumptions.

Planning is difficult even in the context of the static-world assumptions, and many
problems of static-world planning remain unsolved after years of research. Much of the

7

early work was based on a formalization of action known as the situation calculus

[McCarthy 1968], in which actions are modeled as functions on situation variables in a
logical calculus. A “situation” logically encapsulates the “state of the world,” and actions
defined in the situation calculus can be considered as state-transformation operators. This
conception invites the development of planning systems that use state-space search
techniques in order to discover action sequences that transform the state of the world to
conform with a set of goals.

An early and influential planning system that was based on the state-transformation
model was STRIPS [Fikes and Nilsson 1971]. STRIPS simplified the representation of
actions in the situation calculus by specifying state-transformations as operators composed
of three lists of formulae: the preconditions that must be satisfied for the operator to be
applicable, the add-list formulae that the operator would cause to be true, and the delete-list
formulae that the operator would cause to be false. STRIPS also assumed that formulae not
mentioned in an operator’s add-list or delete-list would be unaffected by the application of
that operator. This assumption, which has come to be known as the STRIPS assumption,
can be seen as one approach to a deep problem in the theory of action called the frame
problem. The frame problem is the problem of determining what aspects of the world
remain unaffected by the performance of some particular action. The STRIPS assumption
is a pragmatic solution in many simple domains, but in complex domains it becomes
impossible to explicitly specify all effects of each action.

The frame problem, and associated problems such as the precondition qualification
problem and the ramification problem (see [Georgeff 1987]), arise even in the context of
the static-world assumptions, and solutions to these problems are still the subjects of
considerable controversy (see, e.g., [Pylyshyn 1987], [Kyburg, Loui, and Carlson 1990]).
Further, even when the STRIPS assumption (or any other “cheap” solution to the frame
problem) is employed, the design and implementation of efficient planning systems
remains difficult.

Recent advances in the design of planning algorithms and of their supporting
knowledge representation systems have improved the performance of STRIPS-style
systems, but significant complexity problems remain. Whereas STRIPS represents plans as
linear (totally-ordered) sequences of actions, researchers have argued that the use of so
called non-linear (partially-ordered) representations can reduce the size of the planning
search-space (e.g. in NOAH [Sacerdoti 1975], [Sacerdoti 1977] and in NONLIN [Tate
1976]). The use of non-linear plan representations is an example of a least-commitment
search strategy; Stefik’s MOLGEN system generalized this strategy and pioneered a
constraint posting framework for nonlinear planning [Stefik 1981]. Chapman’s TWEAK
system further refined the constraint posting formulation [Chapman 1987]. Some
researchers have recast planning problems as more traditional search problems (e.g., [Korf
1987]), and have thereby applied advanced search strategies to the improvement of
planning algorithms. Unfortunately, analytical work has shown that these improvements
have a limit; nonlinear planners are condemned to exponential worst-case complexity
[Chapman 1987], and it has been shown that even in the knowledge-impoverished blocks-
world domain planning problems are generally at least NP-hard [Bylander 1991],
[Chenoweth 1991], [Gupta and Nau 1991]. Advanced planning architectures such as SIPE
[Wilkins 1988] and O-Plan [Currie and Tate 1991] allow for the use of search heuristics to

8

combat this complexity. Recent studies have related the complexity and decidability of

planning problems to the nature of the operators allowed in a given system [Erol et al.
1992].

The complexities of planning are largely due to the generality of the problems that
planning systems are expected to solve. Within the applied AI community significant
progress has been made in the design of domain dependent planning systems—systems
custom-built for particular applications. As with many AI technologies, special purpose
systems can be engineered to achieve improved performance at the expense of flexibility
and generality. Most work in the academic AI planning community, however, focuses on
domain independent techniques. This is because domain dependent systems, though useful,
contribute little to the understanding of the larger issues in the field. Note however that the
distinction between domain dependence and domain independence is not crisp; for
example, recent work on the complexity of blocks world planning shows that the details of
how the blocks world domain is encoded into operators may have a significant impact on
the complexity of planning problems [Bylander 1991]. Certain “domain independent”
techniques may be applicable in a wide range of domains but appropriate only in a
handful, and the appropriateness of a technique may depend not only on the domain but
also on the manner in which it is encoded. It is nonetheless useful to distinguish systems
developed for a single application (e.g., for controlling a particular factory) from those
intended as portable technologies. It is likely that useful planning systems in the near future
will all be domain dependent in some sense, but it is only by studying the principles of
planning in general that the flexibility and generality of such “domain dependent” planning
systems will be improved.

In the wake of discouraging complexity results, several groups of researchers have
been advancing fundamentally different approaches to the production of intelligent
behavior. Work in case-based planning is based on the intuition that it may be more
efficient to retrieve and to modify old plans than it is to plan from scratch. This work is
also supported by evidence from cognitive psychology that indicates that human planning
is largely memory based (see, e.g., [Schank 1982]). Case-based planning research involves,
aside from the work on planning algorithms per se, the development of several underlying
technologies. These include systems for knowledge representation and indexing, plan
matching, plan retrieval, and plan modification. While it is certain that case-based
techniques will eventually form an important part of advanced planning systems, case-
based retrieval does not by itself obviate the need for more traditional planning. Unless
case-bases contain plans for every eventuality, systems will still require algorithms for
plan-modification, and perhaps also for “from-scratch” planning. Some current case-based
planning systems are designed to be directly integrated into more traditional planning
systems; for example Kambhampati’s PRIAR system retrieves plans, reinterprets them in
the context of new problems, and then passes them to a hierarchical nonlinear planner for
refitting [Kambhampati 1990], [Kambhampati and Hendler 1992].

Another approach to coping with the computational complexity of planning is to reduce
the need for planning by endowing a system with some sort of “situated intelligence”
[Suchman 1987]. This work is based upon the idea that it is often possible to generate
reasonable behavioral sequences by applying “situated” control rules at each moment. Such
rules may be used to choose the next action to perform without long-term planning, and the

9

resulting systems can generate surprisingly “intelligent” behavioral sequences. This

approach has the further advantage that it works equally well when the static-world
assumptions listed above are violated, although just how well it works is the subject of
considerable controversy (see Section 2.2).

The rejection of the static-world assumptions has generated a large body of work that I
will call dynamic-world planning. Dynamic-world planning focuses on the problems that
don’t arise in the simplified domains of static-world planning systems: uncertainty in the
world, the possibility of failure, the presence of other agents or of unpredictable natural
forces, etc. Such violations of the static-world assumptions are commonplace in many
interesting real-world domains.

The phrase “reactive planning” has also been used to describe dynamic-world planning,
but the term “reactive” generally indicates that behavior is being generated in the absence
of goal-driven deliberation. Dynamic-world planning, by contrast, incorporates the
progress made in static-world planning, domain-dependent planning, case-based planning,
and other fields, in order to tackle unrestricted “robot behavior” problems in dynamic
domains.

Dynamic-world planning research plays an important role in planning research as a
whole. The intractability results of static-world planning are discouraging, but it might be
the case that large, static-world planning problems rarely occur in actual domains.
Similarly, the difficulties of producing “real-time” reactive behavior should be put in
perspective—we do not yet know enough about the performance requirements that
constitute “sufficient” reactivity. Research in dynamic-world planning studies the
generation of intelligent behavior in the large, without restricting attention to the special
cases of static domains or knowledge-free reactions. It thereby provides a framework in
which to evaluate the contributions of other areas of planning research.

2.2 Generating Planned Activity
Although the field of AI planning has always been directed toward the control of robots

in the real world, the static-world assumptions have guided researchers to design systems
that could not be extended to handle the complexity, the precariousness, or the dynamism
of real-world domains. A principal feature of early planning systems that derives from the
static-world assumptions is the plan-execute cycle.2 The idea of the plan-execute cycle is
that the planner produces a complete plan and then hands it to an execution module that
“does it.” If the execution module encounters problems, or if new goals are posted, then the
planner may be re-invoked. I will refer to planning in the context of this sort of plan-
execute cycle as planning in the total-planning framework. More specifically, the total-
planning framework entails the following assumptions:

• Planning problems are specified as state-transformation problems, with initial and
final state descriptions provided to the reasoner.

• Solutions consist of complete sequences of primitive actions, directly executable by

10

2Brooks describes traditional AI systems as operating within a sense-model-plan-act (SMPA)
framework [Brooks 1991, 570]. The plan-execute cycle is the segment of the SMPA framework that is
highlighted in planning research, problems of sensation and model building have generally been relegated to
other fields.

the robot, that are guaranteed to transform initial states to final states.

The initial and final states need not be specified completely; that is, the state
descriptions need not specify the values of all domain predicates in either the initial or goal
situations. It is implicit in the total-planning framework, however, that the problem
specification includes sufficient information to produce complete plans that are composed
only of primitive actions. Solutions may be specified in various ways; for example,
nonlinear planners may produce partially ordered networks of primitive actions. The
essential feature of total-planning systems is that the planner is expected to solve the entire
problem first, before handing the solution to a “dumb” execution module.

Some of the work in dynamic-world planning fits into the total-planning framework.
The plan-execute cycle allows for mechanisms that detect plan failures, triggering
“replanning” procedures in the next “plan” phase (e.g., [Hayes 1975]). Methods have been
developed for scheduling failure detection tasks, and for tailoring replanning for specific
plan failures (e.g., [Doyle et al. 1986]). The case-based techniques of Kambhampati’s
PRIAR system can be viewed as a refinement of some of these methods. Replanning
systems are attractive because they build on the established techniques of static-world
planning, but they have major drawbacks in dynamic environments. One problem is that
replanning is triggered only after failure has been detected; in some cases this is not
sufficient (see Section 2.3). A more significant problem is that replanning, while more
efficient than planning from scratch, is still a time-consuming process. The reactivity of a
system based on the plan-execute cycle is limited by the speed of replanning algorithms,
and current research suggests that replanning delays will be debilitating in complex
dynamic environments.

A technique suggested by Schoppers involves the construction of universal plans that
specify conditional action sequences guaranteed to achieve their goals regardless of
changes in the world [Schoppers 1987]. The conditionals in a universal plan require
sensation and in some sense determine the “plan” at execution-time; considered in this
light the approach falls outside of the total-planning framework. But Schoppers contends
that the real work is in constructing the universal plan, not in arbitrating actions at
execution time. A universal plan provides a complete solution to a given problem in terms
of primitive actions, and it is fully constructed before execution begins; in this sense the
universal plans approach is a type of total-planning. Serious doubts have been raised,
however, about the tractability of universal plan construction and about the practicality of
storing universal plans. According to some researchers, the universal plans approach is
problematic at best (see the debate in AI Magazine, Winter 1989).

Enhancements to total-planning systems may improve performance and reactivity, but
it has become widely recognized that the assumptions of the total-planning framework,
while convenient for their relation to standard AI techniques, are at odds with the
requirements of actual robots in the real world. The weaknesses of the framework take
several forms. The following weaknesses are independent of the static-world assumptions:

• Some information becomes available only at execution-time, while total-planning
systems rely on having all relevant information at plan-time.

• The acquisition of information at execution-time (sensation and perceptual
interpretation) is itself behavior that must be planned, and information necessary for the
planning of later perceptual activities may depend on the results of earlier perceptual

11

activities.

• Some actions are inherently iterative, with the world providing bounds on the
iteration (for example, hammering a nail).

When the static-world assumptions do not hold, the total-planning framework
manifests the following additional weaknesses:

• Even when the initial situation is entirely known to the planner at plan-time,
descriptions of the world in the initial situation may not be valid at execution-time.

• Total-planning is computationally expensive, and some problems of reasoning about
action may even be undecidable; time wasted planning for expectations that may not
materialize, or for contingencies that may not occur, may be debilitating.

• If a domain is essentially fluid and unpredictable then the notion of a correct total-
plan is not even meaningful; the world must be reasonably stable for precomputed
sequences of actions to achieve their goals, and any attribution of “correctness” to plans in
lieu of such stability is groundless.

• The world imposes real-time constraints that are sometimes severe, exacerbating the
above-listed difficulties.

The rejection of the total-planning framework, along with the rejection of the static
world assumptions, leads to a framework that I will call generating planned activity. The
focus on the plan in the total-planning framework is dropped in favor of a focus on the
behavior of the system in its environment. In this framework plans are considered useful
insofar as they enable an agent to behave intelligently, but the goal of generating correct
plans is secondary to the goal of producing appropriate behavioral sequences. The situated
nature of cognitive agents is particularly emphasized [Suchman 1987].

In 1987 Agre and Chapman made a strong pitch for a re-orientation of planning
research, away from the total-planning framework and toward the framework of generating
planned activity.3 They proclaimed that:

Before and beneath any activity of plan-following, life is a continual improvisation, a
matter of deciding what to do now based on how the world is now. . . . Life is fired at
you point blank: when the rock you step on pivots unexpectedly, you have only
milliseconds to react. Proving theorems is out of the question. [Agre and Chapman
1987]

Agre and Chapman developed a system called Pengi that played a simple but dynamic
video game called Pengo, and their work introduced several important concepts into the
vocabulary of dynamic-world planning. For example, Pengi used indexical-functional
entities (such as “the-block-I’m-pushing”) to represent the agent’s environment, instead of
traditional predicate and variable forms. This has proven to be a valuable technique for
dynamic-world planning, and has been studied and extended by other researchers (e.g.,
[Schoppers and Shu 1990]).

While Pengi embodied a “planless” model of activity, Agre and Chapman did not deny
that plans would have a role to play in more complex systems (see, e.g., [Chapman and
Agre 1986]). Nonetheless, their work has served as a touchstone for research based on the
more radical assumption that plans are unnecessary and that intelligent behavior is best

12

3Agre and Chapman use different terminology; they use “capital-P Planning” for the total-planning
framework, and “lower-case-p planning” for their proposed alternative.

engineered through the composition of simple, planless, behavioral units. Brooks, a vocal

proponent of this view, advocates “intelligence without reason” and builds “artificial
insects” that generate complex and appropriate behavioral sequences in dynamic
environments, despite their lack of plans [Brooks 1991].

Brooks’s work has also provided valuable contributions to dynamic-world planning.
For example, his subsumption architecture provides a link between the planning literature
and control theory that will be examined further in Section 3.3. Taken in its most radical
form, however, his anti-plan stance leads to problems as severe as those of the replanning
framework. I will call models of activity based on the anti-plan stance models of pure
reaction, since advocates of such systems envision agents that behave intelligently through
interaction with the world that is not mediated by “deliberation” or “plan-formation,” as
these words are traditionally used. Pure reaction can be seen as the complementary extreme
of the replanning framework; while replanning makes a minimal concession to the
dynamism of the world in exploiting the plan-execute cycle, pure reaction makes a minimal
concession to the complexity of reasoning by allowing the composition of reactive units.
Just as a replanning system is ill-equipped to play a video game, so is a purely reactive
system ill-equipped to prove theorems or, for example, to plan a vacation itinerary.

While debates about the ultimate power of purely reactive systems are still being
waged, many researchers are developing new frameworks for dynamic-world planning that
lie somewhere between replanning and pure reactivity. Maes has developed a system that is
similar in spirit to purely reactive systems, but that allows for run-time computation of
action selection strategies and “full-fledged goals” [Maes 1990]. Several researchers have
developed systems that “compile” reactive systems from higher level specifications, either
before or during execution (e.g., [Rosenschein and Kaelbling 1986], [Nilsson 1991]).
Correspondingly, work in deliberative planning has begun to focus on algorithms that can
be interrupted or influenced by changes in the world (e.g., the anytime algorithms of [Dean
and Boddy 1988]). The bulk of work in dynamic-world planning has been concerned with
developing techniques to span the gulf between simple reactivity and expensive, powerful,
deliberative reasoning. The approaches are numerous and varied; several conference
sections and entire workshops have been held on the topic (e.g., [Georgeff and Lansky
1986], [Sycara 1990]). The phrase “generating planned activity” was chosen to cover the
large number of the proposed approaches that share the aim of modeling goal-directed,
knowledge-based behavior in complex dynamic domains.

Chrisman has developed a framework in which proposed dynamic-world planning
architectures may be classified according to the features of the domains in which they are
most suited to operate. Environments are classified along three dimensions: the complexity
of world states, the predictability of future events, and the density of “critical choice
points” [Chrisman et al. 1991]. In a similar vein, Kinney and Georgeff have developed an
experimental framework in which competing strategies for dynamic-world planning may
be compared [Kinney and Georgeff 1991]. In this work a small set of similar agent
architectures, all built in PRS [Georgeff and Ingrand 1989], are compared with respect to
their performance in the Tileworld testbed [Pollack and Ringuette 1990]. Although both
the range of agents and the complexity of the domain are quite limited,4 this work allows
for meaningful comparisons that may help to impose some order on the large and

13

4See Section 9.1 for further discussion of domains and domain simulators.

heterogeneous set of proposed architectures.

Although comparative work such as [Chrisman et al. 1991] and [Kinney and Georgeff
1991] shows that the literature of dynamic-world planning has reached a level of maturity
at which evaluations can be made, certain issues have yet to be adequately addressed in the
dynamic-world planning literature to date. One of the key outstanding problems involves
the necessity for integration of reactive and deliberative components of dynamic-world
planning systems. Various combinations of deliberation and reaction suffice in artificial
domains that are slightly more complex than Blocks World, but real domains impose more
stringent requirements. In certain complex domains intelligent deliberation requires
consideration of information acquired from execution-time monitoring. Similarly, in
certain domains intelligent reactivity relies on access to symbolic knowledge computed by
deliberative processes. I will argue that such requirements are the norm, rather than the
exception, even in moderately complex domains such as household cleaning. The gener-
ation of appropriate behavioral sequences in such domains requires the smooth integration
of reactive and deliberative capabilities, with information flowing both from reactive to
deliberative components, and from deliberative to reactive components. In the next section
I will describe simple problems that reveal the need for such a capability.

2.3 Problems of Integrated Behavior
The recent shift of interest in the planning community to architectures for generating

planned activity does not imply that the problems of static-world planning have been
solved. On the contrary, many of the problems that have concerned investigators from the
earliest days of planning research are still unsolved, and much of the work in dynamic-
world planning is orthogonal to the concerns of static-world planning. To the extent that a
dynamic-world planner must engage in static-world planning, the problems of complexity,
search control, reasoning about action (for example, the frame problem), reasoning about
optimality, etc., are still difficult. New problems arise concerning decisions about where,
when, and how to allocate resources for static-world planning procedures within the overall
activity of reactive agents, and additional problems arise due to the unique requirements
imposed by complex dynamic domains.

On the other hand, some of the static-world planning problems are changed by the
move to the framework of generating planned activity. In this section I will examine the
effects of the change of framework on static-world planning problems, and I will also
discuss new problems that have not yet been adequately addressed by dynamic-world
planning systems.

a b
c

c
b
a

Initial Goal

Figure 1. Sussman’s Anomaly.

14

Consider the classic static-world planning problem, known as Sussman’s Anomaly,

depicted in Figure 1. In the total-planning framework this example gives rise to
“optimality” problems when subgoals are assumed to be independent. The goal is specified
as the conjunction of (on a b) and (on b c), and early planning systems would attempt to
completely solve one conjunct before beginning work on the other. If (on a b) is solved
first (by putting c on the table on then putting a on b) then the new (on a b) stack would
have to be immediately dismantled in order to solve (on b c). (Blocks may be picked up
only one at a time.) On the other hand, if (on b c) is solved first (by putting b on c) then
once again the new stack would have to be dismantled in order to achieve the other
conjunct.

One total-planning solution to the Sussman Anomaly is to reason about action
sequences as partial orders, allowing the primitive actions that achieve one subgoal to be
interleaved with those that achieve another [Sacerdoti 1975]. While this sort of reasoning is
necessary in many situations (for example, to avoid painting oneself into a corner
[Sacerdoti 1975]), the character of the problem changes, and simpler solutions are
sometimes available, in the framework of generating planned activity. In generating
planned activity it is assumed, as part of the problem-solving framework, that there are
capabilities for monitoring the world, and for reassessing the situation at run-time. This
attention to the situation in which the problem-solver finds itself may in many cases take
the place of extensive precomputation. In the case of the Sussman Anomaly, if the system
decides initially to work on (on a b), then once c is removed from a the opportunity arises
to notice that it is better to work on (on b c) for a few steps, and then to continue working
on (on a b). This would generate the optimal behavioral sequence without the necessity of
representing and reasoning about the partial order of plan-steps. In other words, if there is a
decision procedure capable of noticing that (on a b) is the goal that should be worked on
initially, and capable of noticing that (on b c) becomes more attractive once c is removed
from a, then a simple “hill climbing” search will produce optimal behavior in cases such as
the Sussman Anomaly. The power (and complexity) of nonlinear, partial-order planning
could be reserved for more difficult cases.

McDermott suggested such an approach as early as 1978 and implemented it in his
NASL system [McDermott 1978]. NASL was ahead of its time in several respects; for
example, it suffered from the fact that certain technical problems (for example, the
development of an inferential theory of time and events) had yet to be solved. More
significantly, the value of NASL’s rejection of the total-planning framework was not
recognized by the larger AI community until sobering complexity results had been proven,
and until the gulf between blocks world and the real world had been more fully
explored—events that took another decade to unfold.

The framework of generating planned activity also leads to a new set of problems,
many of which are concerned with the complexities of control and communication within
large dynamic systems. For example, Gat discusses the Wesson Oil problem:

A more difficult problem arises when a high-priority task attempts to initiate an activity
whose resources are currently in use by a low-priority task, a problem I call the Wesson
Oil problem. The name derives from a television commercial for Wesson Oil in which
a housewife is frying chicken (in Wesson Oil, of course) when one of her children
suddenly falls down and has to be taken to the hospital. However, before going to the

15

hospital the housewife turns off the stove. When she returns an hour later she resumes

frying the chicken (which turns out crispy despite the fact that it has been soaking in
the oil for an hour). [Gat 1991, 40]

Gat notes that the action of turning off the stove can not be accounted for by previous
systems (Firby’s RAP system [Firby 1989] in particular), because the use of “clean-up
procedures” requires a more complex control model than that usually used in purely
reactive architectures. This is one example of a case in which the simple combination of
reactive and deliberative processes provides insufficient integration. It is not enough for a
reactive system to suspend execution of one plan (cooking) while running a higher priority
plan (going to the hospital); it is also necessary to allow for reasoning procedures that plan
for appropriate handling of the suspension and of the subsequent resumption of the lower
priority plan.

The Wesson Oil problem points to a need for deliberative mediation of reactive
processes, but it does not reveal the extent of the interdependence between reaction and
deliberation. While it may be reasonable to suppose that a screaming child triggers a
pre-existing high-priority reaction behavior, it is easy to devise problems for which no such
reaction rules may be reasonably presumed to exist. The Open Window problem and the
Ice Cube problem are two examples; they will be explained below, and a solution to the Ice
Cube problem in the HomeBot system will be discussed in Section 9.3.3.

In the Open Window problem we suppose that a household robot notices an open
window after having heard a prediction of rain on the radio. The combination of rain and
open windows often leads to undesirable conditions (for example, a wet rug), and we may
suppose that the robot has goals to prevent such conditions. But an open window is not
always a problem, and hence the robot must have, at minimum, some means of turning
reactions to open windows on and off. The conditional rule, “close if rain predicted, leave
open otherwise,” might initially appear to be adequate, but it won’t suffice in the context of
complicating circumstances. Windows covered by awnings need not be closed for simple
rain showers, but should be closed for severe thunder storms or for hurricanes. In case of
severe storms, “storm windows” and/or shutters should be closed as well. The robot might
also consider the veracity of the radio announcer: wasn’t that the announcer who predicted
a Martian invasion last week? Perhaps the weather report was part of a documentary about
Seattle, or a segment of a “classic broadcast” from the early days of radio. Circumstances
can be envisioned that would complicate any “open window reaction rule” to an arbitrary
degree, and a rule that checked for all such complications would be computationally
expensive if constructible at all. The rule might require arbitrary access to knowledge and
to reasoning resources, and might even call for action in the world (for example, a
confirming telephone call to the weather bureau).

In the Ice Cube problem, we imagine a household-cleaning robot in the midst of a
routine household chore. An ice cube is on the floor in the middle of a room, and at some
point it is seen by the robot. As in the Open Window problem, the assumption of a built-in
“ice cube reaction rule” is problematic, and we assume that no such rule exists. Hence we
can expect no immediate response to the sighting of the cube. Assuming that the robot has
sufficient causal knowledge to infer that the ice cube will melt over time, however, and
assuming that it can also infer that puddles may be dangerous (since people tend to slip in

16

them), it would be appropriate for the robot to eventually make such inferences, and to alter

its behavior accordingly.5 The robot should then suspend work on its current task, take care
of the potential safety hazard, and then resume the original task with as little replanning as
possible.

The complications raised by the Wesson Oil problem exist in the Ice Cube problem as
well; for example, if the original task involved carrying a tray of fine china, the process of
suspending the original task could involve significant planning. New difficulties are
introduced, however, by the Open Window and Ice Cube problems: dynamic deliberation
is required to infer that a reaction is even necessary.

Neither replanning systems nor purely reactive systems are capable of producing
appropriate behavior in such cases. Replanning systems are driven by failures, but in the
Open Window and Ice Cube problems no failures occur. The change in behavior after
seeing the open window or the ice cube must be triggered by inferences, not by simple
failure conditions that may be detected in the world. Purely reactive systems preclude, by
definition, the use of reasoning processes that could infer the necessary causal connections.

Problems like the Open Window problem and the Ice Cube problem make it clear that
reasoning and reaction must be integrated, and not just combined, in systems that are to
produce appropriate behavior in complex, dynamic environments.6 Approaches to such
integration generally involve concurrency, and often divide computational components into
“levels” in order to organize the complex systems that result (e.g., see [Hayes-Roth and
Hayes-Roth 1979], [Gat 1991]). The notions of “level” that have been used in this context
form a large and heterogeneous set, and the principles that underlie the choice of such
levels have never been sufficiently articulated. In Chapter 3, I will explore the various uses
of level-related concepts in planning and in control systems, and in Part II, I will develop a
theory of levels tailored to problems of integrated behavior such as the Open Window and
Ice Cube problems.

17

5Of course, the ice cube may be hazardous before it melts as well; in any event we may presume
that reasoning is required to infer the existence of a present or future hazard.

6The “banana peel problem” also demonstrated the need for integration; see, e.g., [Spector and
Hendler 1991b].

18

Chapter 3

Abstraction in Planning

3.1 The Abstraction Kaleidoscope
Abstraction has played an important role in the design of planning systems at least

since ABSTRIPS [Sacerdoti 1974], but the particular role that it has played has been the
subject of considerable confusion. In fact, the term “abstraction” has been used for a wide
array of concepts, some of which are related to one another as variations on a theme, and
some of which are more distant relatives. Some uses of abstraction address issues of
static-world planning, and some address issues that arise only in more general, dynamic
problem-solving contexts. Similarly, some uses of abstraction are useful primarily within
the total-planning framework, while some address issues that arise while generating
planned activity. In the present section a survey is made of this kaleidoscope of topics as
they pertain to AI planning systems. The two topics that are of particular interest for the
purposes of this dissertation—reduced partition abstraction and partitioned control
abstraction—are taken up in greater detail in the remainder of the chapter.

In 1960 Bunge wrote an article called “Levels: A Semantical Preliminary” in which he
surveyed meanings of the word “level” and attempted to impose order on the tumult that he
found. His disparaging assessment of the use of the term is still somewhat appropriate:

As used in contemporary science and ontology, the term level is highly ambiguous.
Most authors do not care for a definition or even for a distinct characterization of this
word; as a result, one and the same name—‘theory of levels’—is applied to a variety of
doctrines having different referents. Thus, whereas a neo-platonist has in mind links in
the Chain of Being, a mechanist may refer just to degrees of complexity, and a
biologist either to integrated wholes or to stages in evolution. No wonder that they
should often misunderstand each other, if they speak of different things while
designating them with one and the same word. [Bunge 1960, 396]

In 1968, at a symposium on “Hierarchical Structure in Nature and Artifact,” a group of
researchers from a wide range of disciplines followed up on some of the questions that had
been raised by Bunge and by others. The proceedings of the symposium [Whyte, Wilson,
and Wilson 1969] make for interesting reading on the breadth and the history of concepts
of hierarchy. The term “hierarchy” is traced to Pseudo-Dionysius, Plato, and Aristotle
[Whyte 1969, 8], and applied to problems from several fields of modern science. Although
Bunge’s complaints of ambiguity might still apply, several authors (including Bunge)
provide new definitions and attempt to clarify the relations between various uses of level-
related terms.

19

A similar multiplicity of concepts can be found in the literature of AI. The concept of

hierarchy is ubiquitous, and various notions of abstraction and of levels have been applied
to a range of AI problems. In recent years there has been a trend toward greater precision in
the delineation of different subspecies of abstraction. Several of these subspecies can be
seen as echoes of definitions provided at the 1968 symposium.

Wilkins provides an analysis of the various guises that “abstraction,” “levels,” and
“hierarchy” have assumed in the planning literature [Wilkins 1988]. He uses the phrase
“level of abstraction” to refer to levels that partition the planning domain by the
granularity (fineness of detail) of the domain descriptions. He distinguishes levels of
abstraction from planning levels, which are defined by the planning process and not by the
structure of the domain knowledge. He describes a planning level as follows:

Most planning systems have some central iterative loop that performs some
computation on the plan during each iteration. This may involve applying schemas,
axioms, or operators to each element of the existing plan to produce a more detailed
plan. To the extent that such an iteration takes one well-defined plan and produces
another well-defined plan, we call it a planning level. [Wilkins 1988, 47]

Abstraction levels and planning levels are clearly distinct concepts, but in some
systems they may be combined, in which case coordination problems may arise [Wilkins
1988, 48–57]. For our purposes it is sufficient to note that there is an important distinction
between “levels” of domain description and “levels” in the progress of some problem-
solving procedure.

The “hierarchy” in so-called “hierarchical nonlinear planners” is usually just the
subgoaling structure induced by the iterated application of planning operators; that is,
hierarchical nonlinear planners generate hierarchies of “planning levels.” Although Wilkins
uses the term “level” in this context, such planning levels do not represent distinct,
separable domains of reasoning. “Planning levels” refer to a notion of hierarchical
decomposition, and not to a notion of partitioning, even though the term “level” might
suggest otherwise.

Wilkins’s “abstraction levels” do, however, refer to a partitioning of the domain of
reasoning. I will refer to all notions of abstraction, hierarchy, etc., which imply such a
partitioning as instances of partitioning abstraction.7 The use of planning levels does not
imply the use of partitioning abstraction, and neither is partitioning abstraction limited to
Wilkins’s “abstraction levels”; the use of partitioning abstraction does not imply that
granularity is the criterion on which the partitioning is based. The concept of partitioning
abstraction is particularly important when considering the application of multilevel
architectures to problem-solvers that reason with abstraction. If the operative notion of
abstraction is a type of partitioning abstraction, then it often makes sense to map each
partition to a specific level of the multilevel architecture.

20

7This definition of partitioning abstraction should not be confused with the partitioned abstraction
hierarchies of [Knoblock, Tenenberg, and Yang 1991]. Knoblock’s partitioned abstraction hierarchies are
instances of partitioning abstraction, but whereas I use “partitioning abstraction” to refer to any system in
which domain knowledge is partitioned into levels of abstraction, Knoblock uses “partitioned abstraction
hierarchy” to refer only to ABSTRIPS-style systems in which criticalities (and hence partitions) are assigned
to predicates independently of the operators in which they occur.

Wilkins also notes that meta-levels in some planning systems (e.g., MOLGEN [Stefik

1981]) have been referred to as “layers of control” which “model hierarchical planning.”
Meta-levels are used to allow for reasoning about the reasoning processes themselves; this
is yet another notion of “level,” distinct both from levels of abstraction and from Wilkins’s
“planning levels.” Meta-reasoning can be useful in planning systems, however, and it may
be of particular utility in contexts that demand reactivity. For example, it is possible for a
system to reason about the time that the system’s own reasoning is taking, and to make
reasoning/reaction trade-offs on that basis (see [Georgeff and Ingrand 1989], [Kraus,
Nirkhe, and Perlis 1990] or [Wilensky 1983]). Several researchers have proposed
multilevel architectures, similar in many respects to the architecture described in Part III of
this dissertation, in which each level reasons about the lower levels in the hierarchy (e.g.,
[Hayes-Roth 1985], [Hayes-Roth 1990], [Kuokka 1990], [Schoppers and Linden 1990]).

The utility of meta-reasoning for dynamic-world planning is clear from the scenario,
discussed in [McDermott 1978] and [Kraus, Nirkhe, and Perlis 1990], in which Nell is tied
to railroad tracks as a train approaches. Dudley’s job is to rescue Nell, and if he is to be
successful he must complete all of his planning and execution tasks before the train runs
her down. The only way that a system can perform reliably in such circumstances is for it
to account explicitly for its own reasoning time, and for it to choose between reasoning and
execution options on that basis. However, these issues are mostly independent of the
methods used for base-level (as opposed to meta-level) reasoning and execution, and in
particular there is little connection between the notion of levels in a meta-level system and
that in a system with multiple levels of abstraction. The motivation for the use of
abstraction-partitioned systems generally springs from the complexity of representations of
the world, and from the vast amounts of planning knowledge required for solving real-
world problems. These are problems for any planning system, whether or not it has meta-
reasoning capabilities. For this reason it makes sense to study levels of abstraction and
meta-levels independently. It might also be the case that good planning algorithms will
obviate, to some extent, the need for meta-reasoning in the first place.

Tenenberg also provides a discussion of the range of uses of abstraction in planning
systems [Tenenberg 1991]. Although he makes “no attempt to provide a universal,
encompassing definition,” he does “formalize previously vague notions of abstraction” (p.
215). He details two species of abstraction called inheritance abstraction and relaxed
model abstraction. Both of these techniques are instances of the Map, Plan, Inverse-Map
(MPI) model of abstract problem-solving. Tenenberg describes this model as follows:

Typically, an abstraction is taken as a mapping between representations, from a
concrete level to an abstract level (or to several abstract levels through repeated
mappings). The abstract level typically does not contain certain concrete-level details
which expand the state-space, but which are usually unnecessary to consider in order to
obtain an approximate solution. The search strategy is to abstract the operators and
initial state of a system, problem solve at the abstract level, and use the abstract
solution to guide the search back at the original level. [Tenenberg 1991, 214]

As is implied by this definition, the types of abstraction considered by Tenenberg are
all simplification-based; that is, the representations at the higher levels of abstraction omit
details and are therefore simplifications of their lower-level counterparts. I will refer to all

21

such models of abstraction as types of simplification abstraction. Note that Wilkins’s

“abstraction levels” are defined by decreasing “granularity”; the standard interpretation of
this criterion would be as a species of simplification abstraction. Tenenberg’s inheritance
abstraction exploits the inheritance mechanisms commonly used in representing object and
action taxonomies in order to focus search in planning algorithms. The higher-level
representations are in this case generalizations of the lower level representations, while the
lower level representations are specializations of those at the higher levels. In many cases
the lower level representations induce a richer, more complex search-space because they
include the specifications of the higher levels (via inheritance) plus the additional
information acquired in specialization. In these cases the MPI framework can be used,
allowing “general” plans to guide the search for “specialized” plans. Tenenberg provides
an analysis of the conditions under which this will be effective [Tenenberg 1991,
231–249]. Note that inheritance abstraction is not necessarily a type of partitioning
abstraction; although partitions could be defined through the inheritance hierarchy, such
partitions are not part of the basic framework.

Relaxed model abstraction is a variant of simplification abstraction that is more typical
in planning systems. The essential idea is that abstract (higher) levels are generated from
concrete (lower) levels by the removal of information of various sorts. While inheritance
abstraction can also be viewed as removing “specializing” information at higher levels,
relaxed model abstraction makes no claims that the simplified representations are more
“general” than their lower level counterparts in the sense used in object and action
taxonomies. The higher levels are usually generated from the lower levels by simple
syntactic reductions of the constraints specified in problem solving operators. The most
common form of syntactic reduction is the elimination of preconditions. This form of
abstraction has been the subject of considerable recent interest and research; it forms a
“spectrum of abstraction hierarchies” [Knoblock, Tenenberg, and Yang 1991] within the
kaleidoscope of abstraction here under consideration. A more thorough examination of this
work is provided in Section 3.2.

Christensen [Christensen 1991] has developed a variant of simplification abstraction
that uses a technique called predicate relaxation, rather than precondition elimination, to
generate abstract problems from lower-level problems. Predicate relaxation “defines a new
predicate P1

rel from a predicate P in such a way that P1
rel holds in all states in which P holds

and in all states in which P can be achieved by the application of one operator” (p. 12).
Relaxed predicates are computed by regressing predicates through operators, and are used
during planning at higher levels of abstraction. This provides a semantic, rather than
syntactic, basis for simplification abstraction; in this respect predicate relaxation is similar
to the semantic abstractions described by Plaisted for automatic theorem proving [Plaisted
1981, 53]. Christensen also describes techniques by which relaxed predicates can be used
to endow planning systems with a limited form of reactivity.

A very different notion of abstraction and hierarchy has been developed in research on
control systems, integrated intelligent architectures, and dynamic-world planning systems.
Much of this work can be seen as following from Simon’s observation that “Hierarchy ... is
one of the central structural schemes that the architect of complexity uses” [Simon 1969,
87]. Simon’s notion of hierarchy is based on the concept of “near decomposability,” in
which:

22

Intracomponent linkages are generally stronger than intercomponent linkages. This fact
has the effect of separating the high-frequency dynamics of a hierarchy—involving the
internal structure of the components—from the low-frequency dynamics—involving
interaction among components. [Simon 1969, 106]

Here Simon expresses a central idea in hierarchical control systems—that modularity is
a valuable tool for organizing complex systems, particularly when the dynamics of the
system (or, in the planning/control context, the reactivity of the system) is an issue. An
important feature of this notion of hierarchy is that simplification does not necessarily play
any part in the criterion used to partition the hierarchy. This notion of hierarchy is
enormously important in the design of real-time control systems and hence in the design of
dynamic-world planners. Roitblat makes the connection to notions of abstraction explicit:

Standard single-layer control systems are severely limited in their ability to deal with
the kinds of problems faced by autonomous robots. Psychological investigations
suggest that organisms employ multi-level representations of their behavior that include
abstract descriptions of the behaviors’ goals and alternative means of achieving those
goals. [Roitblat 1991, 449]

This form of abstraction will be discussed in greater detail in Section 3.3.
Psychological theories of modularity are numerous. Fodor, in The Modularity of Mind

[Fodor 1983] restricts modularity to “input systems,” but other researchers disagree,
describing “central systems” as modular as well. Shallice writes that:

Functional dissociation data suggest that not only are input systems organised
modularly, but so are central systems. This conclusion is supported by findings on
impairment of knowledge, visual attention, supervisory functions, memory, and
consciousness. [Shallice 1991, 429]

A host of other modularity and level-based theses can be found in the psychological
literature. The connection of such theses to ideas about abstraction has a long history:

In Avicenna’s (Ibn Sina, 980–1037) treatises on psychology, for example, there are
various degrees of abstraction of forms which correspond to the ascending sequence of
cognitive powers, the sensitive, the imaginative, the estimative, and finally the
intellective. [Weinberg 1973, 3]

In more recent work, [Gardner 1983] proposes a “theory of multiple intelligences,”
[Jackendoff 1987] presents a detailed, level-based exposition of the “modularity of the
computational mind,” and [Cermak and Craik 1979] present a collection of papers by
various authors on theories of “levels of processing” in human memory. Grafman, on the
basis of data from patients with frontal lobe lesions, suggests a theory of planning and
action in which “managerial knowledge units” are arranged in an abstraction hierarchy
[Grafman 1989]. Jaques presents a comprehensive psychological theory of levels of
abstraction and relates it to theories ranging from developmental to organizational
psychology [Jaques, Gibson, and Isaac 1978].

Jackendoff’s theory utilizes various notions of abstraction, and he makes explicit a

23

compositional notion of abstraction that appears in several modular theories. This idea, that

higher levels are built up out of lower level entities, contrasts with the idea of abstraction-
as-simplification used in reduced partition abstraction:

Let me be slightly more precise about what I mean by a level of representation: it
consists of a structured repertoire of distinctions that can be encoded by the
combinatorial organization of the computational mind. In the theories to be discussed
here this structured repertoire is built up from a finite set of primitive distinctions, plus
a finite set of principles of combination that make it possible to build primitives into
larger information structures. [Jackendoff 1987, 47]

Gerard takes the compositional conception further, noting that in some hierarchies the
whole is greater than the sum of its parts:

Again, many of you will remember Eddington’s lovely statement, “We used to think if
we knew one, we knew two, because one and one are two. We are finding out that we
must learn a great deal more about ‘and’.” This is the combinatorial problem and the
essence of hierarchies; they are more than mere assemblies of units. [Gerard 1969, 220]

The modularity theses from psychology can have an impact on the design of dynamic-
world planning systems. Some of the theories (e.g., that of [Grafman 1989]) present
explicit prescriptions for models of planning. Others, though not addressed to planning per
se, provide insights into techniques that might be used to provide sought-after properties of
planning systems. For example, the hypotheses of Jackendoff have direct bearing on the
problems of integrated behavior that were discussed in Section 2.3:

By breaking up processing into these components, we can achieve the observed
interpenetration of top-down, bottom-up, and intralevel holistic effects, without
resorting to a chaotic unstructured free-for-all in processing; what we have instead is a
very tightly structured free-for-all! [Jackendoff 1987, 258]

Nilsson, in his Forward to Readings in Planning [Allen, Hendler, and Tate 1990],
points out that a concept of hierarchy has been implicit in the idea of “planning” from the
earliest days of AI planning research. Hints of abstraction and of hierarchy can even be
found in dictionary definitions of “plan,” such as, “A systematic arrangement of details; an
outline or sketch: the plan of a story” [Morris 1978]. Hence work in planning is relevant to
a discussion of abstraction, just as much of the work on abstraction (e.g., the hierarchical
knowledge structures of [Schank 1982]) is directly applicable to planning. As it would be
impractical to follow all of these connections, the remainder of this chapter details only the
two notions of abstraction that appear to be most important for dynamic-world planning.
The next section examines reduced partition abstraction, which is the most prevalent form
of abstraction in the static-world total-planning framework. The following section
examines partitioned control abstraction, which captures important level-based ideas from
hierarchical control theory and robotics.

3.2 Reduced Partition Abstraction
In the previous section, I defined partitioning abstraction as a type of abstraction in

24

which the problem-solving domain is partitioned into distinct segments, and simplification

abstraction as a type of abstraction in which abstract representations are merely simplified
versions or their lower-level counterparts. In addition, I noted that relaxed-model
abstraction has been used to refer to instances of simplification abstraction in which
simplification is achieved by nothing more than the removal of information. I will refer to
the variant of simplification abstraction which is both partitioned and based on
simplification-by-information-removal as reduced partition abstraction.8 Simplification
abstraction as has been studied extensively, and has proven useful in areas outside of
planning, for example in automatic theorem proving [Plaisted 1981]. Within the planning
literature reduced partition abstraction has been the dominant form of simplification
abstraction. Reduced partition abstraction is often referred to as ABSTRIPS-style
abstraction since ABSTRIPS and its descendants are all variants of reduced partition
abstraction. Several recent papers have contributed significantly to the development and
formalization of the theory (e.g., [Bacchus and Yang 1991], [Elkan 1990], [Knoblock
1991a], [Knoblock 1991b], [Knoblock, Tenenberg, and Yang 1991]). In this section I
outline the basic ideas of this work and provide an example, taken from [Knoblock,
Tenenberg, and Yang 1991], that shows reduced partition abstraction in action. I will return
to this example in Chapter 6 where I show that reduced partition abstraction is a special
case of a generalized form of abstraction called supervenience.

Sacerdoti’s ABSTRIPS (Abstraction-Based STRIPS) system [Sacerdoti 1974]
introduced reduced partition abstraction to AI planning systems. ABSTRIPS is an
extension of STRIPS, and is based on the same operator formalism and representational
conventions as is STRIPS. A STRIPS operator is specified as a list of preconditions, an
add list, and a delete list. The preconditions specify the set of formulae that must be true in
order for the operator to be applicable, the add list specifies the set of formulae that will be
made true by the application of the operator, and the delete list specifies the set of formulae
that will be made false by the application of the operator. As with STRIPS, the system
operates by applying operators to “reduce differences” between specified initial and goal
states. A recursive algorithm can be employed to back-chain on preconditions not satisfied
in the initial state and to forward-chain on residual differences not reduced by the chosen
operator. Much of the research in the total-planning framework has focused on the
improvement of this algorithm (e.g., [Sacerdoti 1975], [Tate 1977], and [Chapman 1987]).

ABSTRIPS differs from STRIPS in that an ABSTRIPS system defines a set of reduced
search spaces, formed from the original search space by the removal of preconditions from
the operators. Each literal in the domain is assigned an integer “criticality” value, and
operators at abstraction-level n are formed by removing all preconditions containing
literals with criticality less than n. This allows for a search strategy, called “length-first”
search in [Sacerdoti 1974], in which high-level “skeletal” plans are generated first, to be
refined at lower levels by the reintroduction of the eliminated preconditions.

The use of abstraction in ABSTRIPS has had a significant impact on planning research,

25

8A distinction has been made in the literature between relaxed model abstraction, considered to
occur when only preconditions are removed, and reduced model abstraction, considered to occur when other
removals (e.g., from the state descriptions) are allowed as well [Knoblock 1991a, 26–28]. The distinction is
not relevant to the purposes of this dissertation. The phrase “reduced partition abstraction” is used in favor of
“relaxed partition abstraction” because it more clearly expresses the idea of information-removal.

and several researchers have developed and extended the idea (see, e.g., [Tenenberg 1987],

[Wilkins 1988], [Yang and Tenenberg 1990], and [Christensen 1991]). Knoblock has
recently provided an analysis of planners of this type, and has shown that a “spectrum” of
abstraction hierarchies can be constructed on the basis of the types of constraints placed on
the assignment of criticalities to operator preconditions [Knoblock, Tenenberg, and Yang
1991]. In addition, he shows that his analysis is useful in designing systems to
automatically generate “good” abstraction hierarchies for ABSTRIPS-style problem
solvers [Knoblock 1991a]. In the course of his analyses Knoblock presents the reduced
partition abstraction approach to the classic Towers of Hanoi problem. This problem will
serve as an exemplar of the kind of abstraction used in reduced partition abstraction
systems.

The Towers of Hanoi domain consists of 3 pegs and some number of disks of varying
sizes (with no two disks being the same size) that can be stacked on the pegs. I will
consider only the 3-disk version of the problem, though the discussion can be easily
generalized to n disks. States in this domain consist of descriptions of the positions of all of
the disks, and problems are specified as pairs of initial and goal states. Operators are
provided for moving any disk that is on the top of a stack to any other peg, provided that a
larger disk is never placed on a smaller disk. Following [Knoblock, Tenenberg, and Yang
1991], I label the three pegs P1, P2, and P3, I label the disks Large, Medium, and Small,
and I represent the locations of the disks using the literals OnLarge(x), OnMedium(x) and
OnSmall(x). Using negated literals to express the delete list of a STRIPS operator, the
following operators can be used for solving problems in the 3-disk Towers of Hanoi
domain:

Operator: MoveL(x,y)
Preconditions: ¬ OnSmall(x), ¬ OnSmall(y),

¬ OnMedium (x), ¬ OnMedium (y), OnLarge(x)
Effects: ¬ OnLarge(x), OnLarge(y)

Operator: MoveM(x,y)
Preconditions: ¬ OnSmall(x), ¬ OnSmall(y), OnMedium(x)
Effects: ¬ OnMedium (x), OnMedium(y)

Operator: MoveS(x,y)
Preconditions:OnSmall(x)
Effects: ¬ OnSmall(x), OnSmall(y)

A reasonable reduced partition abstraction hierarchy can be formed by assigning a
criticality of 2 to OnLarge, a criticality of 1 to OnMedium, and a criticality of 0 to
OnSmall. A plan at the highest level is generated by removing all preconditions with
criticality less than 2 and invoking a standard planning algorithm. Supposing that all three
disks are initially stacked on peg P1 and that the goal is to stack them all on peg P3, one
resulting plan would be:

<MoveL(P1,P3), MoveM(P1,P3), MoveS(P1,P3)>
This plan must be refined when considered at level 1; for example, the reintroduced

precondition ¬ OnMedium(x) is not true in the initial state. Using the techniques described
in [Knoblock, Tenenberg, and Yang 1991] and elsewhere, the plan can be refined first to:

26

<MoveM(P1,P2), MoveL(P1,P3), MoveM(P2,P1), MoveM(P1,P3), MoveS(P1,P3)>

at level 1 and then to a complete plan at level 0. The details of the algorithms that
accomplish this refinement, and the properties of abstractions that allow such algorithms to
work efficiently, are reviewed in [Knoblock, Tenenberg, and Yang 1991] and will not be
discussed further in this dissertation. The essential point is that reduced partition planners
are able to improve the efficiency of planning by solving simplified versions of planning
problems, obtained by simple syntactic manipulation of the planning operators, and by
subsequently using the solutions of the simplified problems to guide search on the full
problem. The technique of simplification by precondition elimination has been well
studied, and can be extended to an arbitrary number of levels of abstraction. The extent of
the efficiency gains is significant; [Knoblock 1991b] shows that this technique can reduce
the size of the search space from exponential to near linear in the solution length.

3.3 Partitioned Control Abstraction
The principal use of abstraction in planning has been the application of reduced

partition abstraction to static-world domains in the total-planning framework. Other fields
closely related to planning, however, have long utilized a different concept of abstraction
to address problems that arise in dynamic, uncertain domains. This type of abstraction,
which I will call partitioned control abstraction, is defined in terms of the manner in which
control is distributed throughout a system, rather than in terms of the knowledge structures
or search spaces at each level. In this section I will discuss partitioned control abstraction,
distinguish it from reduced partition abstraction, and show how partitioned control
abstraction allows systems to perform well in complex, dynamic worlds. In addition, I will
review some of the dynamic-world planning systems mentioned in Chapter 2 vis-à-vis their
status as instances of partitioned control abstraction.

Churchland and Sejnowski [Churchland and Sejnowski 1988] discuss the notion of
“level” in cognitive science, and expand on the well-known division of cognition into
computational, algorithmic, and implementational levels due to Marr [Marr 1982]. The
computational level consists of the abstract structure of problems and of problem-solving
search-spaces, independent of the methods that may be used to search them. The
algorithmic level consists of particular procedures, data-structures, etc., that may be used in
problem-solving, while the implementational level consists of the physical artifacts that
execute the algorithms. Churchland and Sejnowski note that in the brain and in reasonable
models of cognition “there are many levels of implementation and . . . the notion of the
algorithmic level is as oversimplified as the notion of the implementation level” (p. 742).
They paint a picture in which there are many levels, each of which is in some sense
computational, algorithmic, and implementational.

A similar view has become popular in dynamic-world planning research and is implicit
in hierarchical control theory and other approaches to the design of real-time robotic
systems. The concept of levels that emerges from such a view is a form of partitioning
abstraction in which each level contains not only a set of representations and perhaps
procedures, but also full-fledged level-specific problem-solving systems. It is such systems
that I will refer to as instances of partitioned control abstraction.

27

In 1969 Mesarovic and Macko, who have been credited as founders of hierarchical

control theory,9 listed five general characteristics of “stratified” systems. Three of their
characteristics are particularly relevant:

3) There exists an asymmetrical interdependence between functioning of a system on
different strata. . . .
4) Each stratum has its own set of terms, concepts and principles and what is
considered as a system and its objects are different on each stratum. Furthermore, there
is a hierarchy of objects and languages in which they are described. . . .
5) Starting from any given stratum, understanding of a system increases by crossing
strata: moving down the hierarchy one obtains a more detailed explanation while
moving up the hierarchy one obtains a deeper understanding of its significance.
[Mesarovic and Macko 1969, 33–35]

Characteristic #5 also applies to reduced partition abstraction, except that in that case
the “deeper understanding of its significance” may not be as profound as the language of
Mesarovic and Macko suggests. Characteristic #3 describes an important feature of most
multilevel systems; in fact, a notion of asymmetrical interdependence forms the core of the
theory of supervenience that will be presented in Part II of this dissertation. Characteristic
#4 contributes significantly to the attractiveness of hierarchical control systems, and I will
consider it to be part of the concept of partitioned control abstraction even though the
connection to the concept of control is not explicit. The ability to use different languages
within each module often emerges naturally when a system is partitioned into modules
with independent control.

The distinction between control partitioned abstraction and partitioned abstraction
simpliciter is not always crisp; for example, some ABSTRIPS-style systems could be
viewed as either control partitioned or not, depending on their implementations. The
distinction is useful nonetheless, as it serves to distinguish systems that are clearly not
control partitioned, such as CAKE (which has 8 layers which must all cooperate: the
truth-maintenance layer, the equality layer, the demon layer, the algebraic layer, the types
layer, the plan calculus layer, the plan recognition layer, and the plan synthesis layer [Rich
1985]) from systems that clearly are control partitioned, such as the blackboard system in
[Hayes-Roth and Hayes-Roth 1979].

Hanks and Firby discuss general issues in the design of dynamic-world planning
architectures and argue explicitly for systems that use partitioned control abstraction
(which they refer to as “layered architectures” or as “partitioned architectures”) [Hanks and
Firby 1990]. They claim that “different reasoning processes are appropriate for acting and
deliberation because action is driven by urgency while deliberation needs time to consider
alternatives and consequences” (p. 68). They also note that partitioned architectures face
communication problems that don’t arise in “uniform” architectures, and they propose to
handle such problems by employing a single plan representation at both levels of their
2-level system. They note that in other layered architectures such as the Entropy Reduction
Engine [Bresina and Drummond 1990] limitations on the communication between layers
restrict the flexibility of systems in uncertain domains.

The suggestions of Hanks and Firby have a long history in the literature of robotics and

28

9In the Preface to [Findeisen et al. 1980].

control theory, as well as in the literature of planning proper. Hierarchical control systems

based upon similar principles have been put to a wide range of uses, ranging from the
control of steel plants [Williams 1985] to the control of autonomous vehicles (e.g.,
[Payton, Rosenblatt, and Keirsey 1990]). Mitchell, Payton, and Keirsey describe their
architecture in terms similar to those used in the dynamic-world planning literature:

The architecture is structured such that lower-level modules perform tasks requiring
greatest immediacy, while higher-level modules perform tasks involving greater
assimilation of sensor data, making use of large amounts of a priori knowledge.
[Mitchell, Payton, and Keirsey 1987, 129]

Each specialized layer processes data in a manner specific to its own operational goals,
and issues control commands accordingly. Although higher level layers are expected to
exert influence upon lower level layers, the lower layers are free to exert control over
the vehicle without waiting for assimilation to be completed by the upper levels.
[Mitchell, Payton, and Keirsey 1987, 137]

Perhaps the most ambitious control partitioned architectures have been those developed
by Albus and his associates at the National Institute of Standards and Technology
(formerly the National Bureau of Standards). In a paper entitled “Outline for a Theory of
Intelligence” Albus synthesizes much of this work into a hierarchical, control partitioned
“general theoretical model of intelligence.” Partitioned control abstraction is a central
feature of the model, as evidenced in the abstract:

At each level, functional modules perform behavior generation (task decomposition
planning and execution), world modeling, sensory processing, and value judgement.
Sensory feedback control loops are closed at every level. [Albus 1991, 473]

Knowledge-rich architectures such as Albus’s (see also [Meystel 1987] and [Arkin
1990]) are often distinguished from the subsumption architecture developed by Brooks, in
which world modeling is avoided entirely, and in which all levels have access to sensor
input and actuator control [Brooks 1991]. However, the principles of control abstraction
are utilized by all of these systems, regardless of differences in philosophy on other points.
Arkin has also argued that the opposition between the two camps are artificial; using
“reactive” and “hierarchical” to refer to the knowledge-poor and knowledge-rich control
architectures respectively, he writes, “The illusion that reactive and hierarchical planning
methods are at odds with each other needs to be dropped” [Arkin 1989]. All of these
systems partition their active elements into control modules, arranged into abstraction
hierarchies, in order to organize the flow of information and to allow for flexible response
to events in dynamic environments.

Several dynamic-world planning systems have been partitioned on the premise that
lower levels can be engineered to use faster, simpler algorithms to obtain improved
reactivity. Firby [Firby 1989] describes a three level architecture in which the lowest level
performs robot control, the central level is a reactive executor called the RAP system, and
the highest level is a more traditional planner. The central level uses precomputed “reactive
action packages” that are run by a fairly simple execution algorithm. The highest level,
which is responsible for predicting future events, creating “sketchy plans” and monitoring

29

execution, would presumably use more complex algorithms. Firby’s system has been

influential, and several other systems use similar partitioning schemes (e.g., [Durfee 1990],
[McDermott 1990]).

Hayes-Roth and Hayes-Roth, as early as 1979, proposed a planning model that utilizes
a robust form of partitioned control abstraction [Hayes-Roth and Hayes-Roth 1979]. Their
blackboard-based model, motivated largely by psychological evidence regarding human
plan construction, plans at multiple levels simultaneously in order to model “opportunistic”
reasoning processes. Although their planning task is not performed in a dynamic domain,
they are attempting to model the dynamics of the planning process itself, and hence similar
considerations apply. Later work by Hayes-Roth combines reduced partition abstraction
with partitioned control abstraction in a more dynamic domain [Washington and Hayes-
Roth 1990]. Once again, levels of control are used to partition the activity of a large
system, providing for flexibility in the face of a complex domain.

Further examples of partitioned control abstraction are prevalent, both in the planning
literature and in the literature of hierarchical control theory. Gat alludes to the ubiquity of
the concept in his summary of “Other Architectures”:

There is a vast array of other robot control architectures in the literature. Nearly all of
them are variants on the traditional sense-plan-act architecture where a planner
constructs a plan from a world model to be executed by an execution system. There are
innumerable variations on this theme. The most common is some sort of hierarchical
generalization of the basic approach, where one planner generates a plan at a high level
of abstraction which gets fed to another planner which fills in the details (e.g.
NASREM [Smith89]).

[Smith89] D. B. Smith and J. R. Matijevic, “A System Architecture for a Planetary
Rover,” Proceedings of the NASA Conference on Space Telerobotics, vol. 1, JPL
Publication 89-7 California Institute of Technology Jet Propulsion Laboratory, 1989.

In the next Section I will compare control partitioned abstraction, the dominant form of
abstraction in control and reactive systems, with reduced partition abstraction, the most
thoroughly investigated form of abstraction in the planning literature. It will turn out that
the two types of abstraction are compatible, and that their synthesis forms an important
concept for the design of systems that must function in complex, dynamic domains.

3.4 Reduced Partitions and Partitioned Control
Reduced partition abstraction systems are characterized by the relation between

knowledge structures at different levels; higher levels use “simpler” representations, and
the particular kind of simplification that is employed differentiates between variants of the
framework. Partitioned control systems are characterized by the relation between processes
at different levels, and hence they may be compared with one another according to criteria
such as the following:

1) How are the levels related with respect to the problems that they solve?
2) How are the levels related with respect to the algorithms used?
3) How are the levels integrated into a single physical/computational system?
These criteria also allow for the comparison of partitioned control abstraction with

30

reduced partition abstraction. Reduced partition systems might provide the following

answers to these questions:
1) Higher-level problems are simplified versions of the lower level problems.
2) All levels use the same basic planning algorithm.
3) The levels are run one at a time, from most to least abstract, with possible

backtracking to higher levels.
Control partitioned systems may provide broader answers to all three questions; levels

need not be related by simplification, variations in algorithm are acceptable, and
concurrency and flexible interaction between levels are desirable. This characterization
leads to the view that partitioned control abstraction is simply a generalization of reduced
partition abstraction. Indeed, some partitioned control systems explicitly call for the use of
simplification in generating higher-level representations (e.g., see [Albus 1991, 481]).
Hayes-Roth and Hayes-Roth also suggest such a view when they compare the
“opportunistic” planning that their system models to the “top-down” planning methods
used in systems such as NOAH [Sacerdoti 1975], [Sacerdoti 1977]. They suggest that “One
resolution of the apparent conflict between the two models would simply incorporate the
top-down model as a special case of the opportunistic model” [Hayes-Roth and Hayes-
Roth 1979, 307].

On the other hand, the problems that reduced partition abstraction was developed to
solve (complex static search problems) are qualitatively different from those (principally
problems of dynamics) that motivated the development of partitioned control abstraction.
As a result, the methodologies of the two types of abstraction are sufficiently dissimilar
that the statement that one type is simply a generalization of the other is not appropriate. A
system utilizing reduced partition abstraction might, in addition, partition control; but this
says nothing about the nature of the partitioning schemes, the reasons that the two kinds of
partitioning are helpful, or the reasons that the two partitioning schemes may or may not
coincide. Previous dynamic-world planning systems have married the two types of
abstraction (e.g., [Washington and Hayes-Roth 1990]), but little has been written to support
the hypothesis that the marriage will be a happy one.

Nonetheless, there is an important sense in which the two types of abstraction can be
unified. Reduced partition abstraction was developed to reduce large search spaces by
removing (temporarily) insignificant details, while partitioned control abstraction was
developed to organize large processes by ignoring (delegating) routine tasks. Both of these
frameworks benefit by abstracting away from the world; that is, by reasoning in some
idealized (though not always simpler) model of the real world. The idealized model of the
world is in both cases determined by the more realistic, lower level model, but for various
reasons it is advantageous to form and to compute within the idealized models. These
notions of abstraction as distance from the world, and of the “determination” relation
between levels of abstraction, allow for a more principled unification of reduced partition
abstraction and partitioned control abstraction; they will be expanded upon and formalized
in the subsequent chapters.

31

32

Part II

33

Supervenient Levels

34

Chapter 4

Supervenience

First there will be the usual crabby complaints from philosophers
that we are misusing phrases like “theory of knowledge” and
“epistemology”, and that our discussions have nothing whatever to
do with what has been meant by those phrases. . . .

. . . Fortunately, we need not detain ourselves with that sort
of argument because, as luck would have it, no one in AI will
understand it anyway.

Warwick Yolks
[From “There’s Always Room at the Top,
or How Frames Gave My Life Meaning,”

in SIGART Newsletter, August 1975.]

In the preceding chapters, I discussed the trend toward multilevel architectures for the
integration of reasoning and action, and the use of multilevel representation systems in AI
planning systems. In this chapter I provide an intuitive characterization of a variety of
partitioning abstraction—called “supervenience”—that ties together various notions of
partitioning abstraction in the literature. In particular, supervenience can be seen as a
generalization of reduced partition abstraction, and as a special case of partitioned control
abstraction. In the subsequent chapter, I will provide a formal definition for supervenience,
and will further relate supervenience to other forms of abstraction.

The principal goal of this dissertation is to examine and to refine the notion of
“knowledge level” that is most consequential in the design of intelligent reactive agents.
We have seen that certain specialized notions of knowledge abstraction, or of knowledge
layering, have benefits for search-space reduction and/or for flexible control. I will argue
that the most important of these notions of layering and of abstraction are manifestations of
a more general principle—that representations at the lower levels are epistemologically
“closer to the world,” while representations at higher levels in some sense “depend” on
those at lower levels. This dependence needs not be so strong as to imply that the higher
level knowledge structures are merely simplifications of those at lower levels. While the
lowest level of an ABSTRIPS system in fact contains the knowledge of the entire system,
the lowest level of a multilevel control architecture might be the most knowledge-poor
level of the system. Nonetheless, in both cases the higher levels “depend” on the lower
levels. On the other hand, a more intimate dependency relation can be specified than is
mandated by the structure of multilevel control systems. Such systems generally rely on a

35

criterion of modularity holding between levels, but no dependency relation between

knowledge structures is enforced by the architectures. I shall argue that such a relation
forms the core idea of abstraction, and of “knowledge levels,” that is most useful for
dynamic-world planning. I will adopt a term from philosophy—supervenience—to label
this relation. The discussions of supervenience in the philosophic literature provide
important insight into the supervenience relation, even though the philosophers are
generally concerned with matters quite distant from dynamic-world planning, and even
though they do not speak with a single voice (far from it). The idea of a non-reductive (i.e.,
the levels are distinct) dependency relation between domains of discourse involves certain
subtleties and leads to certain formal structures whether the subject under consideration is
ethics or robotics (or both).

The concept of supervenience originated in the 1950’s in discussions of the objectivity
of moral laws. In 1983 a conference was held at Memphis State University on the topic
“The Concept of Supervenience in Contemporary Philosophy,” and papers from the
conference were published as a supplement to The Southern Journal of Philosophy [Horgan
1984]. In his contribution to the supplement, Gillespie provides the following history of the
concept:

When G.E. Moore introduced the concept of supervenience, he was attempting to
explicate what he took to be the relationship between the descriptive and the evaluative
properties of individual acts, objects, etc. Having argued that the two cannot be
identical, he nonetheless believed the latter to be objective, and was searching for a
way to explain the nonidentical, objective relation between descriptive and evaluative
properties (or truths). The concept of supervenience has recently been employed in the
philosophy of mind to characterize the relation . . . between mental and physical
properties; and some materialists have proposed generalizing this approach to all
phenomena so that, in their words, “the (micro) physical facts determine all the facts,”
or as it is sometimes put, “no change without physical change.”3 [Gillespie 1984, 111]

3 Geoffrey Hellman and Frank Wilson Thompson in “Physicalist Materialism,” Nous
XI (1977), pp. 309–345, and Terrance Horgan in “Supervenience and Microphysics,”
Pacific Philosophical Quarterly 63 (1982), pp. 29–43, develop the basic principles for
this conception of materialism and (micro)physical determination.

The 1983 conference brought forward a number of new uses for the concept of
supervenience, ranging from aesthetics to an analysis of public moods [Levinson 1984].
Additionally, several of the participants provided formal-logical accounts of
supervenience, or critiques of formal accounts that had been provided by others.10 The
various accounts, formal and otherwise, diverged from one another considerably, resulting
in some measure of controversy and perhaps even cynicism:

‘Supervenience’ seems over the years to have become an accordion-word: indefinitely
stretchable, covering a bewildering variety of ideas related perhaps only by family-
resemblance. [Post 1984, 163]

Subsequently, and possibly due to this embarrassment of riches, the concept seems to

36

10More recent formal analyses are also available; see, for example, [Blackburn 1988].

have fallen into even greater disfavor. In 1990 we find the following characterization:

In 1952 Hare, in The Language of Morals, did use and explain the term ‘supervenience’
as a philosophical term of art. He has acknowledged that he did not originate the use,
but was only following a use already familiar at Oxford. (Indeed, I am sure he would
not want to be responsible for introducing the term, given the morass of confusion it
has produced.) [Klagge 1990]

The controversy continues,11 but the concept has its uses nonetheless. Several authors
have seized upon “supervenience” as the most appropriate term for some particular relation
under study, and we need not be deterred by the fact that all of the relations so described
are not strictly identical. Within the literature of AI the term is not well known, but John
Pollock makes use of it in his How to Build a Person, where he provides the following
intuitive example:

Perhaps the simplest example is that of a statue and the lump of clay from which it is
fashioned. It is not wholly inaccurate to say that the statue is the lump of clay formed
into a certain shape, but there is a simple argument that shows quite conclusively that
the statue is not the same thing as the lump of clay. . . . Thus the statue and the lump of
clay do not share all the same properties and hence must be different objects. Still, it is
obvious that there is an intimate connection between them. In some sense, the statue
consists of the lump of clay, or as I will say, it supervenes on the lump of clay. [Pollock
1989, 32]

He makes this more precise by stating that, “A supervenient object is one that is
composed of another object or group of objects without being identical with that object or
group of objects” [Pollock 1989, 34]. He distinguishes this sort of “object supervenience”
from the more primitive “property supervenience,” for which he also provides a more
formal account (which I will not adopt, but see Section 5.3). An important aspect of
Pollock’s definition is that he has generalized the notion of supervenience from a two-level
notion (moral/physical, mental/physical, aesthetic/physical, etc.) to a multilevel notion.
Object supervenience, for example, leads to the observation that “Physical objects can be
arranged into a multi-level hierarchy, with the objects higher in the hierarchy being
composed of objects lower in the hierarchy” [Pollock 1989, 33]. Several of the formal
accounts in [Horgan 1984] are similarly extensible to multilevel systems, but Pollock
provides intuitive examples that make the multilevel nature of supervenience more
conspicuous.

Lennon expresses the supervenience of one (higher-level) body of facts upon another
(lower-level) body of facts by saying that the lower-level facts are the facts “in virtue of
which” the higher-level facts are true [Lennon 1990, 106].12 This very general notion of
supervenience leads to cases of supervenience well outside of the scope of the earlier
two-level notions:

(a) ‘The dish is fragile’ may be true in virtue of the dish being made of glass, or of its
being made of china;

37

11See, for example, [Miller 1990] and [Hellman 1992].
12Lennon credits previous authors for this phrase.

(b) ‘A signalled’ may be true in virtue of A putting her arm out of the window of her

car (given certain conventions governing signalling);
(c) ‘Britain entered the war’ may be true in virtue of Parliament making a declaration,
armies being mobilised, given certain directives, etc. [Lennon 1990, 107]

This characterization is interesting in part because Lennon’s examples are almost
identical to examples used by other writers as instances of “level generation.” Level
generation was devised by Goldman [Goldman 1970] to formalize the logical
underpinnings of the “by” locution, used in sentence such as “A signalled by putting her
hand out the window.” Goldman’s notion has been imported into AI in work on event
representation by Allen [Allen 1984], and formalized in work on discourse processing
[Pollack 1986]. Hence it is likely that fruitful comparisons could be made between work on
level generation and supervenience, although such comparisons are outside the scope of
this dissertation. Note that such a characterization says nothing about the higher levels
being simpler than the lower levels—the lower levels are lower not because they are more
detailed but because they correspond more obviously to the world as physically described.

Lennon’s discussion is also interesting because it deals explicitly with the factors that
make supervenience, in its broader formulations, so intuitively appealing. Lennon is
concerned with issues involving the explanation of human action. Irrespective of a
particular philosopher’s willingness to reduce higher to lower levels (for example, the
mental to the physical), it is clear that the higher, supervening levels of description are
useful in providing explanations of human actions in ways that the lower levels are not. For
example, if we are interested in explaining how A signalled a turn, an answer in terms of
signalling conventions and A’s gross body motions (“she opened the window and extended
her arm”) would be appropriate. An answer in terms of lower-level physical primitives
(“the molecules in the car moved according to the formula...”) might describe the same
event,13 but the explanatory power has been lost by moving to the lower level of
description. This captures something of the motivation within many fields for using
multiple levels of description. Certain facts are simply easier or more natural to describe
using high level descriptive terms. In many cases the “laws” of a system, or in planning
applications we might say the “operators” of a system, can only be reasonably expressed in
such a high-level language. Simon observes that “In the face of complexity, an in-principle
reductionist may be at the same time a pragmatic holist” [Simon 1969, 86], implying that a
hierarchical description can be useful even when the higher levels could “in principle” be
reduced to lower level descriptions. From this pragmatic perspective, the question of
whether or not the high-level descriptions could in some sense be reduced to the lowest
level is not the issue; the issue is whether it is useful to have distinct levels. When the
difference in utility is significant, the distinction between “in principle” anti-reductionism
and “pragmatic” anti-reductionism loses its force. Lennon concludes that:

... if we were to abandon our psychological mode of classification we would both lose a
way of grouping together states, which in terms of our physical theory are distinct, and
lose a way of capturing law-like generalisations which transcend those expressible in

38

13The question of how many events take place in such a situation, and of how they are to be
individuated, is a major issue in the philosophical literature of events and actions, of which [Goldman 1970]
is a part. See [Davis 1979] for contrasting opinions and further references.

purely physical vocabulary. [Lennon 1990, 122]

Resistance to “reductionism” on the basis of the greater explanatory power of higher-
level descriptions is also evidenced by Steiner’s opposition to the Quinean reduction of
arithmetic to set theory [Steiner 1979]. Steiner shows that explanatory mathematical proofs
perform their explanatory function by exploiting analogies in the domain of high-level
algebraic and geometric concepts. Mathematical entities fall into “natural kinds” that
disintegrate upon reduction to their set theoretic bases. Hence while a geometric proof may
in some sense be “reduced” to set theory, it will in the process lose its explanatory force.
Therefore the geometric domain has some sort of autonomy, even though it “depends” on
set theory. Although he doesn’t use the term, we might say that Steiner is asserting that
geometry supervenes on set theory.14

In a more explicitly computational framework, Marr also motivates the adoption of
multilevel systems with a discussion of the utility (or necessity) of high-level languages in
forming explanations:

If one hopes to achieve a full understanding of a system as complicated as a nervous
system, a developing embryo, a set of metabolic pathways, a bottle of gas, or even a
large computer program, then one must be prepared to contemplate different kinds of
explanation at different levels of description that are linked, at least in principle, into a
cohesive whole, even if linking the levels in complete detail is impractical. [Marr 1982,
20].

The levels idea is crucial, and perception cannot be understood without it—never by
thinking just about synaptic vesicles or about neurons and axons, just as flight cannot
be understood by studying only feathers. Aerodynamics provides the context in which
to properly understand feathers. Another key point is that explanations of a given
phenomenon must be sought at the appropriate level. It’s no use, for example, trying to
understand the fast Fourier transform in terms of transistors as it runs on an IBM 370.
There’s just no point—it’s too difficult. [Marr 1982, 336–337]

Marr does not speak of supervenience per se, but his call for multiple levels of
representation is similar in spirit to the arguments of several proponents of supervenience.
The actual levels that he proposes (computational, representational, and implementational
[Marr 1982]) are, on the other hand, of a very different flavor than the levels proposed, for
example, by the ethical theorists. But Marr is not the only aberration; even the level
systems suggested by those who explicitly use the term “supervenience” form a strikingly
non-uniform set. For example, the levels of physical composition suggested by Pollack are
certainly not identical to the levels of explanatory power suggested by Lennon. What then
are we to make of this array of “supervenience” concepts? I will not try to formulate a
universal definition that subsumes all previous definitions of supervenience, if only
because it is not quite clear how to spell out the previous definitions themselves. (However,
see [Teller 1984] for a valiant effort at just that.) I will try, however, to sum up the
essential features of the accounts, and to reformulate these features in a manner that will

39

14Further discussion of the relation between supervenience and explanation may be found in
[Sayre-McCord 1988].

15Chapters 5 and 10 include further, albeit brief, remarks on the relations between various forms of

turn out to be useful for dynamic-world planning.15

All of the accounts of supervenience are concerned with a relation between two or
more domains of discourse, neither of which is reducible to the other. The operative notion
of “reducible” varies, but each account is motivated by a conviction that the domains of
discourse ought to be (or must be) kept distinct from one another. In many cases the
supervenient levels all “represent the same things,” or even “do the same things,” although
again, the senses in which these terms might apply vary from theory to theory. Each
account expresses a need for multiple levels of description, and each account allows
individual levels to apply level-specific representations and methodologies to a problem at
hand.

The relation between levels is not arbitrary. Rather, a critical idea shared by all
accounts of supervenience is that the set of levels is ordered by an asymmetric dependency
relation—that the higher levels depend on the lower levels or equivalently that the lower
levels determine the higher levels. This dependency relation has been expressed in various
ways, but each account specifies some notion of dependence that makes supervenience an
asymmetric relation.

Another reading of the dependence/determination relation that accords with most of the
previous definitions is that the lower levels are “closer to the facts,” or “closer to the
world.” We can flesh this out a bit by saying that the lower levels “know more about the
facts” that are expressible at both levels. This is the notion of supervenience that will be
used in the remainder of this dissertation. As an example, if level L1 and level L2 can both
express A, and if L2 supervenes on L1, then L1 “knows more about” A than does L2; that is,
if L1 says A is false, and L2 says that A is true, then L1 is right and L2 is wrong—A is false.
This is just what it means for L1 to determine the facts at L2, or for L2 to depend on L1,
etc.16

The next chapter formalizes this relation in the context of nonmonotonic reasoning
systems, using the concept of “defeasibility” inherent in nonmonotonic systems to spell out
the meaning of “knowing more”. Supervenience is defined to be the case in which lower
levels can defeat higher level facts but not vice versa.

This definition accords well with many of the uses to which supervenience has
historically been put. For example, to say that the mental supervenes on the physical is to
say that the physical facts determine the mental facts, which is to say that the physical is
“closer to the world” than the mental, which is to say that although we might make certain
presumptions about a person’s mental state (for example, that she is happy), these
presumptions may be defeated by physical level facts (for example, that she is dead).

The concept of supervenience has had a stormy history but has nonetheless proven to
be a useful idea in several areas. The essential idea is that of an asymmetric dependency
relation between two or more domains of discourse which are not reducible to one another.
This dependency relation can be characterized as a metric on epistemological “closeness to
the world” or in terms of unidirectional defeasibility. These characterizations will be
particularly useful in formalizing supervenience and in relating the theory of supervenience

40

supervenience.
16The logic of supervenience is slightly more complicated than this suggests; see Chapter 5 for

details.

to work in dynamic-world planning.

Chapter 5

Supervenience Formalized

5.1 The Role and Nature of the Formalism
In the previous chapter I outlined the theory of supervenience, and in subsequent

chapters I will discuss the role that supervenience plays in understanding and in designing
intelligent agents. In the present chapter I provide a formal characterization of
supervenience within the context of nonmonotonic reasoning systems. In this section I will
discuss the reasons for developing a formal characterization at all, as well as motivations
for the particular choice of the formal framework.

Formalization plays many roles in artificial intelligence research and in computer
science generally. Although AI, at least insofar as its trends are reflected in the major
conferences, is becoming increasingly enamored with formal models, there are those who
question the wisdom of this tendency. Leith, in the Preface to his Formalism in AI and
Computer Science, states that, “Computer science has... got its head stuck in the ditch of
formalism. I would like to help pull it out” [Leith 1990, 9]. Davis and Hersh provide the
following characterization:

Formalism is a medical researcher who uses a computer to calculate standard
deviations in an experiment that was ill conceived and ill executed. The statistical
information is put into the paper simply because in today’s research world it is
expected. It is part of the credentiation process. [Davis and Hersh 1986, 287]

Such scepticism may provide an important counter-balance to unrestrained
formalization, but there are good reasons to formalize in computer science. Formalization
is a prerequisite for many types of analysis and comparison; an empirical study of the use
of formal analysis in recent AI, along with methodological prescriptions for the field as a
whole, can be found in [Cohen 1991]. One lesson to be learned from the debates about the
role of formalism is that it is important to be clear about why formal models are being
developed and the about the uses to which the formal models will be put.

The role of the formalism in this dissertation is largely descriptive; that is, by
formalizing the notion of supervenience I hope to be able to communicate it more
precisely. This use of logic is similar to that expressed by Shoham:

Let me then summarize my position on logic. I will be using it as a way of lending
clarity to my formulations. There may be other ways, but I have chosen logic, which on
the one hand enjoys uncontested solid foundations, and on the other hand turns out to
be useful for my purposes. [Shoham 1988, 24]

41

The purpose of the formal description of supervenience is to make precise the intuitive
notion of supervenience outlined in Chapter 4. I will formalize a computational structure,
called a supervenient planning hierarchy, that turns out to be quite powerful—powerful in
the sense that just about any computational system that one might devise (more precisely,
any computational system that can be formalized in one of the prevailing nonmonotonic
logics) can be expressed as a supervenient planning hierarchy. Whether it would be useful
to cast some given system as a supervenient planning hierarchy is another question
entirely. I contend only that it is useful to look at dynamic-world planning systems in this
way, and that the formalism can help researchers understand the notions of hierarchy and
of levels of abstraction that have been used in the literature of dynamic-world planning.

I do not prove any theorems about supervenient planning hierarchies, nor, aside from a
demonstration of the relation between supervenience and ABSTRIPS-style abstraction, do
I prove anything about the relation between supervenience and other formal theories of
reasoning. The implementation of the supervenience architecture, described in Part III, is
not a direct implementation of the formal characterization of supervenience. Nonetheless,
the formalism plays an important role in the exposition of the theory.17 The existence of the
formal characterization also allows for analyses and comparisons that would not otherwise
be possible; some suggestions for future work along these lines are provided in Chapter 10.

Previous accounts of supervenience have included formal theories, and the literature
also contains arguments concerning the extent to which each formal theory captures the
appropriate intuitive notions (e.g., several papers in [Horgan 1984]). There is no consensus
regarding which formal characterization is best, and the characterization provided in this
dissertation is qualitatively different from those that have appeared before. For this reason
it is not particularly useful to compare the present theory to past formalizations of
supervenience in detail. Very broadly, however, the following characterization is
appropriate: while previous formal theories of supervenience have modeled the notion of
dependence indirectly, as an effect of equivalence and indiscernability relations that hold
within and between levels of representation, the present theory models dependence
directly, as an explicit feature of the logical machinery.18

At the end of Chapter 4, supervenience was characterized as follows:

The essential idea is that of an asymmetric dependency relation between two or more
domains of discourse which are not reducible to one another. This dependency relation
can be characterized as a metric on “closeness to the world” or in terms of
unidirectional defeasibility.

Domain A supervenes on domain B just in case representations in domain A depend on
representations in domain B; that is, just in case, in matters of interest to both domains, the
representations in domain B take precedence (because domain B is “closer to the world”).
The motivation for the use of supervenience, rather than just “reduction” of
A–representations to B–representations, is that A and B might use different languages (with

42

17See Section 7.2 for a discussion of the relation between the formal characterization of
supervenience and its implementation in the supervenience architecture.

18I will have a bit more to say about comparisons to previous theories of supervenience in Chapter
10.

neither a subset of the other), different rules of inference, etc. This idea of multiple

domains of discourse, each with its own rules, is modeled as a set of separate logical
reasoning systems. The reasoning systems are connected to one another in a hierarchical
structure, and the notion of supervenience is formalized as a particular communication
regime defined over the hierarchy.

The intuitive descriptions of supervenience use several terms that have been previously
formalized in the context of nonmonotonic reasoning systems (for example, preference,
dependence, defeasibility, etc.) Hence it is natural to formalize supervenience in a
nonmonotonic framework. In particular, the notion of defeasibility can play a central role;
the asymmetry of supervenience is modeled in the formalism as an asymmetric definition
of defeasibility across the levels of a supervenient planning hierarchy.

There are additional reasons for basing the formalism on theories of nonmonotonic
reasoning. Nonmonotonic reasoning systems have historically been motivated by the very
domains of reasoning—reasoning about action, time, causality, etc.—that are of greatest
concern in developing dynamic-world planners. As interest in nonmonotonic reasoning has
grown, it has become clear that nonmonotonicity is an important part of many aspects of
intelligence, and nonmonotonic logics have been proposed for a wide range of AI
applications. Further, nonmonotonic logics generally subsume the standard monotonic
logics as special cases, so formalizing in a nonmonotonic framework provides some
measure of generality.

Konolige has developed a hierarchical theory of nonmonotonic reasoning, called
hierarchic autoepistemic logic (HAEL), based on the autoepistemic logic of [Moore 1987].
He describes it as follows:

In HAEL, the primary structure is not a single uniform theory, but rather, a collection
of spaces linked in a hierarchy. Spaces represent different sources of information
available to an agent, and the hierarchy expresses the way in which this information is
combined. [Konolige 1988, 43]

HAEL might form an attractive basis for a formal theory of supervenience, except that
the “spaces” in an HAEL theory are each individually monotonic. Defeasibility in HAEL
occurs only between, and never within, levels. This is useful for Konolige, since he is
seeking to avoid semantic and computational difficulties of more general nonmonotonic
reasoning schemes. The formalization of supervenience is more general, but work on
HAEL systems should be applicable to instances of supervenience that meet the HAEL
restrictions.

Another possible basis for a formal theory of supervenience is the planning level
hierarchies of [Hendler and Subrahmanian 1990], in which a set of planning levels, each
based on an independent abstract logic, communicate by sharing logical conclusions. This
model was motivated by many of the same considerations that motivated the present
dissertation, and initial attempts were made to extend the theory to model supervenience.
But the theory of planning level hierarchies, despite its generality in other respects, is an
inappropriate basis for supervenience for the same reason as is HAEL: the nonmonotonic
character of supervenience cannot be easily expressed. Hendler and Subrahmanian view

43

their monotonicity restriction as temporary, even though it is currently stronger than that of

HAEL.19 Perhaps the theory of supervenience will be more readily expressed within the
theory of planning level hierarchies once this restriction is removed.

5.2 Argument Systems
Lin and Shoham have developed a very general variety of nonmonotonic logic called

an argument system [Lin and Shoham 1989]. Lin and Shoham’s argument systems were
chosen as the basis of the formal characterization of supervenience because of the
generality of the argument system framework,20 and because the proof-theoretic character
of argument systems is more akin to the algorithmic specifications used in the planning
literature than are the fixed-point and minimal model specifications used for other
nonmonotonic reasoning systems.21

In this section Argument Systems are formally defined. The definitions are for the most
part taken from [Lin 1991]; the syntax and notation have been modified to conform to the
style of this dissertation, and explicit statements have been added pertaining to the use of
variables.

Definition: Argument System
An Argument System Ψ is a 7-tuple (Lang, Base, Mon, Non, Arg , Comp, Struct)

where:
• Lang is any language containing some set of well-formed formulae (wffs) and the

symbol “¬” such that for any wff w in Lang, ¬ w is also in Lang. The symbol “True”
must also be in Lang. Lang will not be specified in examples unless it is necessary to
do so.

• Base is a subset of the wffs of Lang also called the set of base facts.
• Mon is a set of expressions called monotonic rules of the form a1, ..., an → c, where the

a’s and c are wffs of Lang. For any rule containing variables (specified with lower-
case Greek letters; for example, α, β, γ, ...), rules corresponding to all possible
instantiations of the variables are also assumed to be present.

• Non is a set of expressions called nonmonotonic rules of the form a1, ..., an ⇒ c, where
the a’s and c are wffs of Lang. For any rule containing variables (specified with
lower-case Greek letters; for example, α , β, γ, ...), rules corresponding to all possible
instantiations of the variables are also assumed to be present.

• Arg is a set of arguments, formed by chaining elements of Base, Mon, and Non
together into trees. The set of arguments is defined inductively as follows:

1. If b is a base fact then the tree consisting of b as a single node is an argument. b
is the called the root of that argument.

44

19In HAEL each individual level is monotonic; in the planning level hierarchies of Hendler and
Subrahmanian the entire system must be monotonic as well.

20Lin and Shoham claim that default logic, autoepistemic logic, the negation as failure principle,
and circumscription are all special cases of their argument system framework [Lin and Shoham 1989].

21Lin provides further motivations for the study of argument-based systems, including the claim that
the reasoning in argument-based systems “tends to be closer to human commonsense reasoning” [Lin 1991].

2. If A1, ..., An are arguments whose roots are a1, ..., an, respectively, and

a1, ..., an → c is a monotonic rule such that c is not a node in any one of the
trees A1, ..., An, then the tree with c as its root and A1, ..., An as its immediate
subtrees is an argument, formed monotonically from A1, ..., An.

3. If A1, ..., An are arguments whose roots are a1, ..., an, respectively, and
a1, ..., an ⇒ c is a nonmonotonic rule such that c is not a node in any one of the
trees A1, ..., An, then the tree with c as its root and A1, ..., An as its immediate
subtrees is an argument, formed nonmonotonically from A1, ..., An.

• Comp is a subset of the wffs of Lang called the completeness conditions.
• Struct is a set of argument structures, each of which is a logically consistent subset of

Arg which meets the completeness conditions Comp. A subset S of Arg is an
argument structure (and hence may be in Struct) if the following conditions are
satisfied:

1. If b is a base fact in Ψ, then b ∈ S.
2. S is closed by the subtree relation, that is, for any t ∈ S, if t' is a subtree of t,

then t' ∈ S.
3. S is monotonically closed, that is, if t' is formed from t1, ..., tn in S by a

monotonic rule, then t' is also in S.
4. S is consistent, that is, it does not contain arguments for both w and ¬ w, for any

wff w.
5. S is complete, that is, for any c ∈ Comp, either there is an argument in S for c

or there is an argument in S for ¬ c.

Additional Terminology
An argument with c as its root is said to be an argument for c, and c is said to be

supported by the given argument.
If S is an argument structure then we use Sup(S) to refer to the set of all wffs supported

by the arguments in S.

Example
The following is a simple syntactic reformulation of the “Penguins do not fly” example

from [Lin 1991]. The “ab” predicate is to be read as “abnormal,” with ab(α , β, γ) read as
“α is an abnormal β with respect to γ.” For example, the monotonic rule
Penguin(α) → ab(α, bird, flight) is to read as “from the fact that α is a penguin, infer
(monotonically) that α is an abnormal bird with respect to flight.”

Let Animal-Categories = (Lang, Base, Mon, Non, Arg , Struct), where:

Base={ b1: True,
b2: Penguin(Opus) }

Mon={ m1: Penguin(α) → Bird(α),
m2: Penguin(α), ¬ ab(α, penguin, nonflight) → ¬ Fly(α),
m3: Bird(α), ¬ ab(α, bird, flight) → Fly(α),

45

m4: Penguin(α) → ab(α, bird, flight) }

Non={ n1: True ⇒ ¬ ab(α, penguin, nonflight),
n2: True ⇒ ¬ ab(α, bird, flight) }

Arg={ p1: True,
p2: Penguin(Opus),
p3: p1 ⇒

n1 ¬ ab(Opus, penguin, nonflight),
p4: p1 ⇒

n2 ¬ ab(Opus, bird, flight),
p5: p2 →

m1 Bird(Opus),
p6: p2 →

m4 ab(Opus, bird, flight),
p7: p3, p2 →

m2 ¬ Fly(Opus),
p8: p4, p5 →

m3 Fly(Opus) }

If the completeness conditions are:

Comp={ ab(Opus, penguin, nonflight),
ab(Opus, bird, flight) }

then S is an argument structure which may be in Struct:

S={p1, p2, p3, p5, p6, p7}
Sup(S)={ True,

Penguin(Opus),
Bird(Opus),
¬ ab(Opus, penguin, nonflight),
ab(Opus, bird, flight)
¬ Fly(Opus) }

5.3 Layered Argument Systems and Supervenient Planning Hierarchies
The notion of an argument system can be extended to that of a layered argument

system as follows: A layered argument system is a collection of some number of argument
systems, over which a partial order « has been defined. The set of wffs supported by any
argument in any argument structure of a given argument system is referred to as the
proclamations of the system. The component systems of a layered argument system
communicate by sharing proclamations; if system S1 proclaims wff w, and if w is
comprehensible to system S2 (that is, if it is in the language of S2), then w is made
“available” to system S2. The effect of such availability can be defined in various ways,
resulting in different varieties of layered argument systems. The simplest communication
mechanism would be for wffs available to a given system to be added as base facts in that
system.

In a supervenient planning hierarchy the effects of availability are defined with respect
to the ordering relation «. If S1 makes w available to S2 and S1 « S2, then w is added as a
base fact of S2, but if S1 makes w available to S2 and it is not the case that S1 « S2 then
“True ⇒ w” is added as a nonmonotonic rule of S2. In other words, wffs made available
from below are absorbed as facts, while wffs made available from elsewhere are absorbed
as possible assumptions. Two new components are added to each argument system to
accommodate the newly available wffs: Baseavail and Nonavail. For the purposes of within-
system reasoning, wffs in Baseavail are considered to be in Base, and wffs in Nonavail are

46

considered to be in Non. The new components allow for expression of the dynamism of the

communicative process; Baseavail and Nonavail are determined at any given time from the
proclamations of other systems, while Base and Non are static components of each
argument system.

Definition: Supervenient Planning Hierarchy
A Supervenient Planning Hierarchy Λ is a pair (Σ, «) where:
• Σ is a set of argument systems.
• The set of wffs supported by any argument structure of argument system Ψ in Σ is

referred to as Proclamations(Ψ); that is,
Proclamations(Ψ)={ w | S∈ Struct(Ψ) and w∈ Sup(S)}

• « is a partial order defined over Σ.
• Each argument system Ψ in Σ has an additional component Baseavail(Ψ). For the sake of

argument construction, Base(Ψ) is considered to be Base(Ψ) ∪ Baseavail(Ψ).
Baseavail(Ψ) is determined from the proclamations of other argument systems in Σ:
Baseavail(Ψ) = Lang(Ψ) ∩ {Proclamations(Φ) | Φ « Ψ}.

• Each argument system Ψ in Σ has an additional component Nonavail(Ψ). For the sake of
argument construction, Non(Ψ) is considered to be Non(Ψ) ∪ Nonavail(Ψ). Nonavail(Ψ)
is determined from the proclamations of other argument systems in Σ:
Nonavail(Ψ)={“True ⇒ w”|w∈{ Lang(Ψ)∩{ Proclamations(Φ)|¬(Φ « Ψ)}}}.

Example
Consider the two-level argument system with Σ={Animal-Categories, Animal-

Physics}, where Animal-Categories is the argument system of the previous example, where
Animal-Physics « Animal-Categories, and where Animal-Physics is specified as follows:

Let Animal-Physics = (Lang, Base, Mon, Non, Arg , Comp, Struct), where:

Base={ b1: True,
b2: Bird(Tweety),
b3: Broken-wing(Tweety) }

Mon={ m1: Broken-wing(α) → ab(α, bird, flight) }
Non={ }
Arg={ p1: True,

p2: Bird(Tweety),
p3: Broken-wing(Tweety),
p4: p3 →

m1 ab(Tweety, bird, flight) }
Struct={ {p 1, p2, p3, p4}}
Comp={ }
Proclamations(Animal-Physics)={ True,

Bird(Tweety),
Broken-wing(Tweety),
ab(Tweety, bird, flight) }

Since Animal-Physics « Animal-Categories, the proclamations of Animal-Physics that
are comprehensible to Animal-Categories are added to the base facts of Animal-Categories
as elements of Baseavail(Animal-Categories). Assuming that Broken-wing is the only
predicate of Animal-Physics that is not in Lang(Animal-Categories), the following two

47

base facts are added to Animal-Categories:

b3: Bird(Tweety),
b4: ab(Tweety, bird, flight)

This prevents argument structures of Animal-Categories from including Fly(Tweety);
the lower-level knowledge of Tweety’s broken wing defeats the higher level assumption of
Tweety’s flying ability, even though the Broken-wing predicate is available only at the
lower level. Such an effect could also be achieved in a one-level system, but the multilevel
approach allows for use of the abstraction and modularization mechanisms of partitioned
control abstraction. Even in this tiny example, the rules and languages of each component
system are smaller than those of the system as a whole;22 it is therefore likely that the
modularization will allow proofs to be more efficiently found. Note also that different
proof strategies could be used at each level. Once Animal-Physics proclaims that Tweety is
abnormal with respect to flight, Animal-Categories must revise its argument structures to
accord with that knowledge. It is immaterial to Animal-Categories, however, how or why
Animal-Physics comes to make such a proclamation.

48

22Although the languages have not been explicitly specified, it is reasonable to suppose that
predicates such as Penguin are not in the lower-level (Animal-Physics) language. Each system clearly has
rules that are not present in the other system.

Chapter 6

Supervenience and ABSTRIPS

The nonmonotonic formulation of supervenience is a generalization of simplification
abstraction as used in ABSTRIPS-style systems. There is a trivial sense in which this is
true: since each level of a supervenient planning hierarchy is a fairly general nonmonotonic
reasoning system [Lin and Shoham 1989], any formulation of ABSTRIPS within a
nonmonotonic reasoning system could be expressed as a single level of a supervenient
planning hierarchy, and the supervenience relation would play no part in the formulation. I
will show, however, that ABSTRIPS can be expressed as supervenience in the more
intuitive sense in which levels of “criticality” in ABSTRIPS are transformed into the
component systems in a supervenient planning hierarchy. The supervenience relation on
the layered argument system corresponds to a relation between levels that is implicit in
ABSTRIPS systems, but the more general nature of supervenience allows for the
integration of hierarchical control concepts as well.

The demonstration in this chapter serves to show that the type of abstraction used in
ABSTRIPS style systems is a special case of supervenience. But an implemented
ABSTRIPS system is more than an embodiment of a type of abstraction—it is also a set of
algorithms (for example, for plan refinement). No explicit transformation of ABSTRIPS
algorithms into proof strategies on supervenient planning hierarchies is given in this
dissertation. This is because the translation of such algorithms into logic is complex, and
because such translations are not directly relevant to the issue at hand. The relation
between supervenience and ABSTRIPS-style abstraction is addressed by exploring the
relation between unidirectional defeasibility and simplification. The translation of
algorithms from one formal system to the other is a different matter entirely.

The first step in the transformation involves the reformulation of STRIPS operators as
logical inference rules. Expressing a delete-list as a set of negated literals, a typical
STRIPS operator might be the following:

Operator: PutOn(x,y)
Preconditions:Clear(x), Clear(y)
Effects: On(x,y), ¬ Clear(y)

The logical construction of this operator involves the introduction of an additional
variable for the situation in which the operator is applied, as in the situation calculus of
[McCarthy 1968]. The operator is expressed as a rule in which the preconditions imply that
the effects will be true in the situation that results from the performance of the action:

49

Clear(α, σ), Clear(β, σ) → On(α, β, PutOn(α,β,σ))
&¬ Clear(β, PutOn(α,β,σ))

The problem of finding a plan to satisfy a particular goal becomes one of finding an
argument that proves that the goal holds in a situation formed by applying a sequence of
operators. This technique has been referred to as Green’s Formulation (e.g., see [Nilsson
1980, 308]). In order to mimic planning systems that make the STRIPS assumption, frame
axioms must be added as well.

To model ABSTRIPS as a supervenient planning hierarchy an argument system is
created for each criticality level, with each argument system having the same (complete)
language. The operator-to-rule mappings just described are performed for each level, but at
level i we remove all base facts with criticality less than i, and we also remove all literals
with criticality less than i from the consequents of the monotonic rules. Rules for which
this results in null consequents can be deleted altogether. In addition, we add
nonmonotonic inference rules “True ⇒ p” corresponding to all literals with criticality less
than i. Note that the “proof power” of a level is not reduced by the deletions of sub-critical
base facts or consequents; any deleted base fact or consequent will also be the consequent
of a nonmonotonic rule, and may therefore be presumed at any time. Hence planning at
level i is just like planning at the base level except that it is assumed that all preconditions
of criticality less than i are satisfied without proof (or action). In ABSTRIPS this
assumption is implemented by removing the preconditions from the operators; in the
supervenient planning hierarchy the assumption is implemented by allowing the
preconditions to be proven nonmonotonically, and by removing the possibility that the
preconditions will be monotonically contradicted. This reformulation allows for easier
expression of the interaction between levels during the development of a plan. For
example, if p is assumed at level 2 but later ¬ p is proven at level 1, the assumption at level
2 will be defeated and operators with ¬ p as a precondition will be applicable at both levels.
This upward communication is more important for a supervenient planning hierarchy
operating in a dynamic domain than for an ABSTRIPS-style system in which control flow
is primarily top-down.

Consider the 3-disk Towers of Hanoi problem that was discussed in Section 3.2. The
criticality assignments <OnLarge, 2>, <OnMedium, 1>, and <OnSmall, 0> were used
with the operators:

Operator: MoveL(x,y)
Preconditions: ¬ OnSmall(x), ¬ OnSmall(y), ¬ OnMedium (x),

¬ OnMedium (y), OnLarge(x)
Effects: ¬ OnLarge(x), OnLarge(y)

Operator: MoveM(x,y)
Preconditions: ¬ OnSmall(x), ¬ OnSmall(y), OnMedium(x)
Effects: ¬ OnMedium (x), OnMedium(y)

Operator: MoveS(x,y)
Preconditions:OnSmall(x)
Effects: ¬ OnSmall(x), OnSmall(y)

50

Translating this system into the layered argument system formalism we get at the base
level:

Hanoi-0 = (Lang, Base, Mon, Non, Arg , Comp, Struct), where:
Base={ b1: True,

b2: OnSmall(P1, Init),
b3: OnMedium (P1, Init),
b4: OnLarge(P1, Init) }

Mon={ m1: ¬ OnSmall(α, σ), ¬ OnSmall(β, σ), ¬ OnMedium(α, σ),
¬ OnMedium (β, σ), OnLarge(α, σ)
→ ¬ OnLarge(α, MoveL(α,β,σ)),

OnLarge(β, MoveL(α,β,σ)),
m2: ¬ OnSmall(α, σ), ¬ OnSmall(β, σ), OnMedium (α, σ)

→ ¬ OnMedium (α, MoveM(α,β,σ)),
OnMedium(β, MoveM(α,β,σ)),

m3: OnSmall(α, σ)
→ ¬ OnSmall(α, MoveS(α,β,σ)),

OnSmall(β, MoveS(α,β,σ)),
m4: OnSmall(α, σ) → OnSmall(α, MoveM(α,β,σ)),
m5: OnSmall(α, σ) → OnSmall(α, MoveL(α,β,σ)),
m6: OnMedium(α, σ) → OnMedium (α, MoveS(α,β,σ)),
m7: OnMedium(α, σ) → OnMedium (α, MoveL(α,β,σ)),
m8: OnLarge(α, σ) → OnLarge(α, MoveS(α,β,σ)),
m9: OnLarge(α, σ) → OnLarge(α, MoveM(α,β,σ)),
m10: ¬ OnSmall(α, σ) → ¬ OnSmall(α, MoveM(α,β,σ)),
m11: ¬ OnSmall(α, σ) → ¬ OnSmall(α, MoveL(α,β,σ)),
m12: ¬ OnMedium (α, σ) → ¬ OnMedium(α, MoveS(α,β,σ)),
m13: ¬ OnMedium (α, σ) → ¬ OnMedium(α, MoveL(α,β,σ)),
m14: ¬ OnLarge(α, σ) → ¬ OnLarge(α, MoveS(α,β,σ)),
m15: ¬ OnLarge(α, σ) → ¬ OnLarge(α, MoveM(α,β,σ))}

Non={ }

Monotonic rules m1–m3 are derived directly from the STRIPS operators. Monotonic
rules m4–m15 are frame axioms; they are not needed in an ABSTRIPS-style system because
the STRIPS-assumption is implicit in the planning algorithm, but in the present formalism
the frame axioms are introduced explicitly. Various techniques exist for reducing the
number of required frame axioms (e.g., Kowalski’s Formulation [Nilsson 1980, 311–315]),
but they are not pertinent to the arguments of this dissertation. Alternatively, the frame
problem might be handled by making use of the nonmonotonicity inherent in the argument
systems.23

At level 1 the system is reduced by the removal of all base facts and monotonic
consequents containing OnSmall. In addition, nonmonotonic rules are added to allow the
presumption of any needed OnSmall formulae:

Hanoi-1 = (Lang, Base, Mon, Non, Arg , Comp, Struct), where
Base={ b1: True,

b2: OnMedium (P1, Init),

51

23Several nonmonotonic approaches have been suggested for the frame problem; see discussions in
[Hanks and McDermott 1990] and [Kyburg, Loui, and Carlson 1990, Part I].

b3: OnLarge(P1, Init) }

Mon={ m1: ¬ OnSmall(α, σ), ¬ OnSmall(β, σ), ¬ OnMedium(α, σ),
¬ OnMedium (β, σ), OnLarge(α, σ)
→ ¬ OnLarge(α, MoveL(α,β,σ)),

OnLarge(β, MoveL(α,β,σ)),
m2: ¬ OnSmall(α, σ), ¬ OnSmall(β, σ), OnMedium (α, σ)

→ ¬ OnMedium (α, MoveM(α,β,σ)),
OnMedium(β, MoveM(α,β,σ)),

m3: OnMedium(α, σ) → OnMedium (α, MoveS(α,β,σ)),
m4: OnMedium(α, σ) → OnMedium (α, MoveL(α,β,σ)),
m5: OnLarge(α, σ) → OnLarge(α, MoveS(α,β,σ)),
m6: OnLarge(α, σ) → OnLarge(α, MoveM(α,β,σ)),
m7: ¬ OnMedium (α, σ) → ¬ OnMedium(α, MoveS(α,β,σ)),
m8: ¬ OnMedium (α, σ) → ¬ OnMedium(α, MoveL(α,β,σ)),
m9: ¬ OnLarge(α, σ) → ¬ OnLarge(α, MoveS(α,β,σ)),
m10: ¬ OnLarge(α, σ) → ¬ OnLarge(α, MoveM(α,β,σ))}

Non={ n1: True ⇒ OnSmall(α, σ),
n2: True ⇒ ¬ OnSmall(α, σ)}

At level 2 the OnMedium base facts and monotonic consequents are removed, and
nonmonotonic rules for OnMedium are added:

Hanoi-2 = (Lang, Base, Mon, Non, Arg , Comp, Struct), where
Base={ b1: True,

b2: OnLarge(P1, Init) }
Mon={ m1: ¬ OnSmall(α, σ), ¬ OnSmall(β, σ), ¬ OnMedium(α, σ),

¬ OnMedium (β, σ), OnLarge(α, σ)
→ ¬ OnLarge(α, MoveL(α,β,σ)),

OnLarge(β, MoveL(α,β,σ))
m2: OnLarge(α, σ) → OnLarge(α, MoveS(α,β,σ)),
m3: OnLarge(α, σ) → OnLarge(α, MoveM(α,β,σ))
m4: ¬ OnLarge(α, σ) → ¬ OnLarge(α, MoveS(α,β,σ)),
m5: ¬ OnLarge(α, σ) → ¬ OnLarge(α, MoveM(α,β,σ))}

Non={ n1: True ⇒ OnSmall(α, σ),
n2: True ⇒ ¬ OnSmall(α, σ),
n3: True ⇒ OnMedium(α, σ),
n4: True ⇒ ¬ OnMedium(α, σ) }

The set of arguments and argument structures generated by this example are
considerably more complex than for the simple examples considered earlier. However, it is
fairly easy to see how an argument for the abstract plan from Section 3.2 can be formed.
The abstract plan:

<MoveL(P1,P3), MoveM(P1,P3), MoveS(P1,P3)>
is expressed in our new formalism as:
MoveS(P1,P3, MoveM(P1,P3, MoveL(P1,P3, Init)))
The statement that this plan solves the given problem is expressed as the following

52

24A more complete statement of the solution might include additional statements indicating, for
example, that the disks are not on peg P1 at the completion of the plan. Such complications will be omitted as
they add nothing to the substance of the discussion.

three assertions:24

OnLarge(P3, MoveS(P1,P3, MoveM(P1,P3, MoveL(P1,P3, Init)))),
OnMedium(P3, MoveS(P1,P3, MoveM(P1,P3, MoveL(P1,P3, Init)))),
OnSmall(P3, MoveS(P1,P3, MoveM(P1,P3, MoveL(P1,P3, Init)))).

An argument for the first of these is formed at level 2 as follows:
p1: True ⇒ n2 ¬ OnSmall(P1, Init)
p2: True ⇒ n2 ¬ OnSmall(P3, Init)
p3: True ⇒ n4 ¬ OnMedium(P1, Init)
p4: True ⇒ n4 ¬ OnMedium(P3, Init)
p5: p1, p2, p3, p4, b2 →

m1 ¬ OnLarge(P1, MoveL(P1,P3,Init)),
OnLarge(P3, MoveL(P1,P3,Init))

p6: p5 →
m5 OnLarge(P3, MoveM(P1,P3,MoveL(P1,P3,Init)))

p7: p6 →
m4 OnLarge(P3, MoveS(P1,P3,MoveM(P1,P3,MoveL(P1,P3,Init))))

Arguments for the second and third assertions follow trivially from the nonmonotonic
rules. The Hanoi-2 argument system produces a plan for the Towers of Hanoi problem
assuming that the small and medium disks are always in the “right” places at the right
times. This use of “default” assumptions for search-space reduction is implicit in
[Knoblock, Tenenberg, and Yang 1991], and is discussed explicitly in [Elkan 1990] and
[Ginsberg 1991]. Of course, the assumptions are not true in the given problem at level 1.
At level 1 arguments must be produced to show that the medium disk is in the right place
or to describe the actions which would make it be in the right place. As with ABSTRIPS-
style systems, proof-control algorithms could be constructed to use the level 2 solution to
guide the construction of a level 1 argument, and such a procedures could be generalized to
an arbitrary number of levels.25 Unlike ABSTRIPS systems, the supervenient planning
hierarchy specifies that disproved assumptions are made available to the higher-level
system, which may combine the new information with other knowledge, possibly
unavailable at the lower level, in order to formulate additional plans.

The nature of the top-down communication is roughly, “Here is a skeletal plan that
might work.” As with ABSTRIPS, the lower levels of a supervenient planning hierarchy
can be used to refine and eventually to execute the plan.26 The supervenient planning
hierarchy also provides bottom-up communication of the form, “Here is an assumption that
turned out to be incorrect.” This information may be ignored by the higher level (if it has
no relevant rules), or it may be used to revise or to revoke the original skeletal plan. This
kind of “backtracking” also occurs in some ABSTRIPS-style systems, as part of the search
process in the static-world total-planning framework.27 Within the framework of generating
planned activity, such “backtracking” is essential—it allows for reaction to changes in the
world, and for the integration of reaction with higher-level planning as discussed in Section
2.3. The theory of supervenience formalizes this bidirectional communication and the

53

25The details of such procedures are outside the scope of this dissertation.
26For purposes of comparison it is assumed that the ABSTRIPS system is connected to an execution

module at its lowest level.
27Knoblock has shown that under certain conditions such backtracking can be avoided [Knoblock

1991a].

intuition that the essential constraint on such communication is that the lower levels, being

closer to the world, “know more” about the world. In saying that the lower levels “know
more” about the world I mean that their knowledge of the world cannot be defeated from
above. In ABSTRIPS-style systems this constraint is met because lower levels know
more—period. In a supervenient planning hierarchy the lower levels know more about the
world, but the higher levels may know more about abstract representations of the world
and about their interactions. It is in this sense that supervenience is a generalization of
ABSTRIPS-style abstraction.

The above transformation of ABSTRIPS systems to layered argument systems is not
particularly concise,28 but it does serve to show that reduced partition abstraction can be
expressed in a supervenient planning hierarchy. The unidirectional flow of defeasibility
models the condition, implicit in ABSTRIPS-style systems, that the lower-level constraints
are more restrictive than higher-level constraints. However, in matters not constrained by
lower level knowledge, supervenience allows for arbitrary higher level reasoning, while
reduced partition abstraction allows for none.

Knoblock has studied various properties of abstraction hierarchies and their impact on
the efficiency of ABSTRIPS-style problem solvers. For example, the ordered monotonicity
property states that high-level solutions may have to be refined, but will never have to be
reformulated, at the lower levels of an abstraction hierarchy. Hierarchies that have the
ordered monotonicity property allow for the use of more efficient search algorithms, and
hierarchies with this property can be generated automatically [Knoblock 1991a]. There is
no reason that such an analysis cannot be brought to bear on the algorithms of supervenient
planning systems as well. But they are not always appropriate; dynamic domains
sometimes force the reformulation of high-level plans, and in such cases the hierarchical
control principles of robotic systems and of recent dynamic-world planners provide better
guidance to a problem solver than do the principles of reduced partition abstraction.
Supervenient planning hierarchies were designed to capture the essential aspects of both
paradigms of abstraction, insofar as they contribute to the design of intelligent reactive
agents.

The transformed Towers of Hanoi problem serves to relate supervenience to reduced
partition abstraction, but the Towers of Hanoi problem is a static-world problem. The
problem can be made dynamic by assuming the existence of demons that manipulate the
disks during the game.29 Of course, if the demons are fast enough then the problem solver
will always fail. But assuming some lethargy on the part of the demons, the problem-solver
should eventually succeed by noticing changes in the world and reformulating its plans
appropriately.

It is not clear that the above supervenient planning hierarchy would be the best
supervenient planning hierarchy for the Demons of Hanoi domain. This is because size of a
disk has little to do with “closeness to the world” in the sense that motivates the use of
supervenience. Smaller disks are closer to the world in one sense, and this is also the
reason that the partitioning by disk size works well for ABSTRIPS: smaller disks can be
moved more directly (they’ll have less on top of them) and plans for the movements of

54

28The frame axioms are to blame for much of the mess, but the transformation is somewhat
cumbersome even without them.

29Cf. the “mischief in the blocks world” domain of [Schoppers 1987].

smaller disks will therefore generally run into less complications. Plans for the movement

of large disks are messier and therefore “further from the world.” The benefits of the
supervenient planning hierarchy will be more apparent, however, if we complicate the
domain a bit more. Suppose that the game-playing robot has a vision system that is much
better at detecting small disks than it is at detecting large disks. The position of the medium
disk could be inferred from the position of the small disk or through further perceptual
processing, but this would take time. Likewise the position of the large disk could be
inferred or computed through an even greater expenditure of computational resources. This
domain is intentionally rigged to fit the supervenient planning system that has already been
developed, but it can be used to reveal the strengths of the supervenience approach
nonetheless.

The rules for inferring the positions of the larger disks constitute new non-simplifying
knowledge at higher levels, which supervenience allows but which reduced partition
abstraction does not. The procedures of the lowest level could be optimized for discovering
plans that only involve movement of the small disk, the middle level could be similarly
optimized for the medium disk, and the highest level for the large disk. When an
unexpected disk position is detected, the lowest level could attempt to fix the problem first,
since the small disk is always directly movable and since knowledge of the small disk’s
position is most sure. If time permits, or if it becomes necessary, higher levels could make
their analyses known. When the world is “static enough” the behavior of an ABSTRIPS-
style system could re-emerge; the higher levels could direct the search of the lowest level,
which would eventually solve the problem.

Further complications of the domain can make the supervenient planning hierarchy
even more attractive. For example, suppose that the problem solver knows that the demons
can be appeased by the construction of a temporary tower on the middle peg. This
knowledge could be encoded into the rules of the highest level, where it could be used to
generate skeletal plans that include demon-appeasement. There is no reason to incorporate
such knowledge into the lowest level, as mandated in ABSTRIPS-style systems—it would
only contribute to the bloating of the lower levels and to the diminution of reactivity. The
bottom levels of a reactive system are the worst place to introduce complexity, and in a
supervenient planning hierarchy the lowest levels need not be burdened with high-level
knowledge.

Hence ABSTRIPS-style reasoning can be used in a supervenient planning hierarchy to
improve search efficiency on essentially static components of dynamic problems while the
hierarchical control features of the system are used to improve reactivity. Finding domain
partitions that facilitate such applications in real-world domains may be more difficult; this
topic is given further attention in Section 8.2.

55

56

Part III

57

Implementation

58

Chapter 7

The Supervenience Architecture

7.1 Introduction
In Part II of this dissertation I described a relation called supervenience that holds

between levels in certain multilevel reasoning systems. I provided an intuitive
characterization of supervenience, related supervenience to other level-based ideas from
AI, philosophy and psychology, and provided a formal characterization of supervenience in
terms of nonmonotonic reasoning systems. In Part III, I will describe an implemented
dynamic-world planning system developed on the basis of this notion of supervenience.

The implementation serves to highlight the connection, implied by the theory of
supervenience, between dynamic-world planning research and hierarchical control theory.
While the programming concepts are reasonably typical of dynamic-world planning
research, the resulting system is accurately described by accounts of hierarchical control
theory:

If we now look at the hierarchical systems as a whole . . . we see that they have one
feature in common: the decision making has been divided. Moreover, it has been
divided in a way leading to hierarchical dependence. This means, that there exist
several decision units in the structure, but only some of them have direct access to the
controlled system. The others are at a higher level of the hierarchy—they define the
tasks and coordinate the lower-level units, but they do not override their decisions.
[Findeisen et al. 1980, 12]

In the remainder of this chapter I will describe the supervenience architecture, which is
the general architectural model that embodies the notion of supervenience. In the following
chapters I will describe the Abstraction-Partitioned Evaluator (APE), which is an
implementation of the supervenience architecture, and HomeBot, a system built using
APE.

7.2 The Gulf Between Theory and Practice
The program that will be described is not a direct implementation of the formal

characterization of supervenience. It is rather an application of the idea of supervenience to
a procedural programming system; it resembles previous dynamic-world planning systems
more closely than it resembles logic programming systems. The formal characterization of
supervenience was expressed in a layered, proof-theoretic argument system. It should be
possible to implement such an argument system, to formulate planning problems as proof

59

problems at various levels, and to thereby implement a dynamic-world planner. While such

a direct implementation would provide the best support for the theoretical work, it also
presents certain difficulties, and a procedural implementation strategy was adopted instead.

There are several reasons for this gap between theory and practice. Foremost is the fact
that procedural specifications have played a greater role than have logic-based
representations in modern implementation-based planning research. This is true for the
expression of basic planning algorithms and in some cases for the expression of problem-
solving knowledge (for example, procedural operators expressed in the SOUP code of
NOAH [Sacerdoti 1975]). In dynamic-world planning systems in particular, complex
control structures with intuitive procedural definitions have often been used (for example,
the plan nets of [Drummond 1990] or the RAPS of [Firby 1989]). While the translation of
such control concepts into a logic-based formalism is possible in theory, the retention of
the procedural style of programming and representation allows for more natural
specifications, and for straightforward comparisons to other work in the field.

Another problem with “direct implementation” is that logical argument systems are
difficult to implement in the first place. While [Lin 1991] describes work in this direction,
including an implemented system that answers queries for certain default theories, this
work is still preliminary. Problems regarding termination and correctness still remain (e.g.,
see [Lin 1991, 39]). The representational requirements of large dynamic-world planning
systems are not yet well enough understood to ascertain the extent to which they are
compatible with the restrictions of currently implemented argument systems.

An additional reason for the gap between theory and practice has to do with the process
by which the theory was developed. For purposes of exposition the theory has been
presented as the foundation on which the implementation would be built. This is only
partially true—in fact, the theoretical and implementational aspects of the work were
carried out in tandem. Requirements discovered during programming sessions influenced
the development of the theory, just as principles from the emerging theory influenced the
design of the program. Only once the theory had been fully developed could a project of
“direct implementation” be launched (this is a possible avenue for future work).

The idea of supervenience influenced the design of the program in several ways. The
overall architecture, consisting of a number of independent reasoning systems, organized
into levels by “closeness to the world,” is an obvious influence. The choice of specific
levels for any implementation should also be based on the idea that upper levels should
supervene on the lower levels in the sense explicated in Chapter 4.30 Most significantly, the
manner in which levels of representation are permitted to communicate is based on the
concept of unidirectional defeasibility developed in formalizing supervenience.

The formal characterization of supervenience in Part II can be abbreviated as
“assertions up, assumptions down.” This captures the idea that higher-level systems in a
supervenient planning hierarchy absorb lower-level knowledge as facts, while lower-level
systems absorb higher-level knowledge as assumptions or defaults. In the supervenience
architecture the characterization becomes “world knowledge up, goals down.” The change
in terminology follows the transition from a logical to a procedural framework. The logical
equivalence of defaults and goals is a presupposition of this transition; evidence for such an

60

30See Section 8.2 for a discussion of the supervenience relations that hold amongst the specific
levels chosen for APE.

equivalence is provided by Horty’s analysis of imperatives in the context of default logic

[Horty 1992].

7.3 General Architecture
In this section I provide a generic specification for the design of supervenient dynamic-

world planners. I refer to this generic specification as the supervenience architecture.
Many of the details that must be specified for an actual implementation are not specified by
the architecture per se. Rather, the architecture specifies, in general terms, the set of basic
components out of which any such implementation would be composed, and the manner in
which these components may be connected. The purpose of the generic specification is to
describe a framework for planning at multiple levels of supervenience, uncluttered by the
implementation details of any given system. In the subsequent chapter I describe the
Abstraction Partitioned Evaluator (APE), an implemented dynamic-world planning system
for which the generic specifications of the supervenience architecture have been
specialized to concrete details.

The supervenience architecture is based on the architectural model of multi-level
blackboard systems [Erman and Lesser 1975], [Erman et al. 1980]. Even in the earliest
blackboard systems, provisions were made for blackboards that could be partitioned by
“level of abstraction,” and for systems in which procedural components were allowed to
execute in parallel. More recently, several researchers have been exploring techniques for
actually realizing the promise of parallelizability inherent in the blackboard model [Bisiani
and Forin 1989], [Corkill 1989], [Craig 1989], [Jagannathan 1989]. Others have been
exploring the requirements of real-time AI systems, and the modifications of the
blackboard model that may be necessary for their satisfaction [Dodhiawala, Sridharan, and
Pickering 1989], [Fehling, Altman, and Wilber 1989], [Hewett and Hayes-Roth 1989],
[Lesser, Pavlin, and Durfee 1989], [Raulefs 1989].

61

SensorsEffectors

Figure 2. A partially ordered set of planning levels.

The supervenience architecture consists of a number of data/processing levels arranged
in a partial order, with the minimal elements of the partial order connected to sensors and
effectors. Figure 2 shows one such possible arrangement. The solid arrows define the
partial order, while both the solid and dotted arrows indicate flow of information. Figure 3
illustrates the special case of total-ordering. Each level communicates only with those
levels immediately above and below itself in the hierarchy. This communication regime is
more restrictive than that specified in the formalization of Chapter 5, in which each level
can communicate with each other level in the system. The same effect can be achieved in
the supervenience architecture either by adding links to the partial order or by “relaying”
information through intermediate levels. The restriction to communication between
immediate neighbors is of no theoretical significance, but it simplifies implementation of
the communication procedures. Only the lowest levels (the minimal elements of the partial
order) have direct access to sensors and effectors. The levels are permitted to run in parallel
and to communicate asynchronously.

62

(highest level)

(lowest level)

Effectors Sensors

Figure 3. A totally ordered supervenient planning hierarchy.

Figure 4 shows a single level of the system in greater detail. Each level contains both
procedural and declarative components. The declarative knowledge at each level resides in
a blackboard structure accessible to all procedures at that level. This shared knowledge
forms a representation of the current state of the world as seen by the given level. Borrow-
ing terminology from [Hendler and Sanborn 1987], this state-of-the-world-at-a-given-level
is called the “state of affairs” or SOA.

63

local
representation

system
(blackboard)

operations
defined
over the

representation
system

World
Input

Goal
Output

translation
system

Figure 4. A single level of the supervenience architecture.

Communication between levels is facilitated by translation systems situated “beneath”
each planning level (except for those at the bottom of the hierarchy). The translation
systems pass goals downward and information about the state of the world upward. They
also perform syntactic manipulation of blackboard sentences in order to accommodate the
variations in languages across the levels of the hierarchy. Translation systems play a
critical role in the supervenience architecture. They implement the asymmetric superve-
nience relation between levels; that is, they implement the dependence of high-level
knowledge upon low-level knowledge, as described in Part II. This is accomplished by
specifying that only goal-related knowledge is passed downward, while knowledge about
the state of the world is passed upward. This “world knowledge up, goals down” style of
communication is the implementational analog to the “assertions up, assumptions down”
communications regime developed for the formal characterization of supervenience in Part
II. In APE, translation systems are specified using an economic producer/consumer met-
aphor, casting lower levels as producers and higher levels as consumers (see Section 8.6).
The translation systems are also permitted to run in parallel with the operations at each
level.

Although the procedures at each level should possess certain general properties (such
as interruptability at some level of temporal granularity) the architecture makes no stip-
ulations about the reasoning strategies or micro-architectures within the levels themselves.
The system might even allow the use of radically different planning methodologies at each

64

level. For example, one might use a connectionist system at the lowest level, logic program-

ming techniques at intermediate levels, and a planning system such as NONLIN at the
highest levels. The supervenience architecture is intended to accommodate any such a
range of techniques, as long as all of the planning systems interact with the blackboard
mechanism using a uniform protocol.

7.4 Comparison to the Subsumption Architecture
The subsumption architecture of Brooks is a successful and well known architecture

for mobile robots [Brooks 1990]. Although Brooks’s anti-representation stance is at odds
with the approach to dynamic-world planning advocated in this dissertation (see Section
3.3), it can nonetheless be useful to compare the subsumption and supervenience architec-
tures. Representational philosophy aside, the subsumption and supervenience architectures
can be meaningfully compared with respect to the issues of horizontal vs. vertical decompo-
sition, the complexity of reasoning allowed at each level, and the kind of communication
allowed between levels.

Brooks characterizes previous systems as decomposing behavioral problems into a
series of “functional units” that can be illustrated by a series of “vertical slices” (see Figure
5). He prefers a decomposition into “task achieving behaviors,” illustrated by a series of
“horizontal slices” (see Figure 6).

The supervenience architecture combines these two methods of decomposition (as do
others, e.g. [Albus 1991]). The supervenience architecture allows, as does the subsumption
architecture, the direct coupling of sensation to action at the lowest level of the system. The
lowest levels can provide basic “competencies” without the intervention of higher, more
complex levels. On the other hand, the supervenience architecture stipulates that the higher
levels receive their knowledge of the world via the lower levels of the system, and that they
pass commands for action through the lower levels as well. This accords with some of the
principles of “vertically sliced” systems; for example, that the knowledge required for
planning is provided via modeling from perception, and not from the sensors directly. The
resulting mix of horizontal and vertical decomposition is quite practical—indeed, some
examples of the subsumption architecture exhibit such a combination [Brooks 1990,
15–19].

sensors actuators

p
e

rc
e

p
ti

o
n

m
o

d
e

lli
n

g

p
la

n
n

in
g

ta
sk

ex

ec
ut

io
n

m
ot

or
 c

on
tr

ol

Figure 5. “Traditional” control system decomposition adapted from [Brooks 1990].

65

sensors actuators

work usefully

use maps

build maps

explore

wander

avoid obstacles

Figure 6. “Task achieving” decomposition adapted from [Brooks 1990].

In the subsumption architecture, the “reasoning” at each level is performed by a set of
“modules” implemented as finite state machines. The finite state machines are “hard
wired”—they are created when the system is built and are never changed. The topology of
the module network is also static. The modules may contain Lisp data and reasonably
complex functions for computing outputs, changing state, etc., but their power is still quite
limited. Regardless of the theoretical computational power of such systems, it is not at all
clear how one would encode complex symbolic AI systems as finite state machines. The
supervenience architecture, in contrast, allows for arbitrary symbolic processes at each
level.

Bottom-up communication in the subsumption architecture is simply a matter of
connecting the appropriate “wires” so that low-level data flows to high-level modules.
Modulo the existence of translation systems, bottom-up communication in the superve-
nience architecture is similar. A more significant difference appears with respect to top-
down communication. In the subsumption architecture, top-down communication occurs
by “inhibition” of the outputs of low-level modules, and by the “suppression” and “replace-
ment” of the inputs to low-level modules. In the case of inhibition, high-level modules
simply cancel the effects of low-level modules that continue to run. In the case of substitu-
tion/replacement, higher-level modules replace the inputs of lower-level modules, thereby
altering their behavior.

The use of suppression/replacement for knowledge about the world is entirely inconsis-
tent with the principles of the supervenience architecture. In the supervenience architecture
lower levels are epistemologically “closer to the world”—their knowledge cannot be
defeated by knowledge from higher levels. Higher levels in the supervenience architecture
communicate with lower levels via goals—they configure the behavior of the lower levels,
but they do not override lower-level knowledge of the world.

The use of action inhibition is also inconsistent with the principles of the supervenience
architecture. Lower-level procedures, on the basis of goals (perhaps obtained from higher
levels) and knowledge of the world, compute and execute actions to achieve goals; they are
presumed to have the necessary knowledge to achieve their goals at their level. The higher
levels may provide goals, but the determination of appropriate lower-level actions to
achieve such goals is the prerogative of the lower, not the higher, level.

It is possible to restrict the top-down communication in a subsumption system to
conform with the principles of the supervenience architecture; the use of inhibition can be

66

avoided, and inputs can be grouped as “goal” and “world” inputs, with suppression/replace-

ment allowed only for the former. Such restrictions are not part of the subsumption architec-
ture, however, and their absence marks an important difference between the subsumption

67

and supervenience architectures.

68

Chapter 8

The Abstraction-Partitioned Evaluator (APE)

8.1 Introduction
The Abstraction Partitioned Evaluator (APE) is an implementation of one example of a

system based on the supervenience architecture. While the supervenience architecture
specifies the general structure of supervenient planning systems, APE specifies concrete
implementation decisions for a single program.31 APE is important as a demonstration of
the supervenience architecture, but the mechanisms described in this chapter should not be
viewed as essential to the architecture; rather, they should be viewed as illustrative of the
implementational possibilities.

APE was programmed in Common Lisp on an Apple Macintosh computer.32 The
graphing tools and a few of the timing procedures used for simulating parallelism depend
on specifics of Macintosh Common Lisp. The bulk of the code, however, is in portable
Common Lisp (with CLOS). Although I have endeavored to keep details of coding to a
minimum, some familiarity with the Common Lisp language, as described in [Steele 1990],
will be assumed in the description of APE.

8.2 Specific Levels
The supervenience architecture does not dictate any particular set of levels, but each

implementation of the supervenience architecture must make some such choice. The
concept of supervenience provides guidance in choosing levels, stipulating that knowledge
at the higher levels should depend on knowledge at the lower levels in the appropriate
sense, and that knowledge at the lower levels should be epistemologically “closer to the
world.” The levels should also be chosen such that a significant portion of the agent’s
functionality is implemented by each level, and such that the ordering of the levels is
consistent with the principles of reactive, hierarchical control. The lowest levels should be
fast, and time-critical reactions should not require the propagation of knowledge to the
higher, slower levels.

There may be many sets of levels that meet these constraints, and the issue of how a set
of levels ought to be chosen is interesting in its own right. One approach would be
empirical and domain-specific; a system designer could collect a large set of

69

31APE, though a single program, is actually a “shell” with which any number of dynamic-world
planning systems may be generated. HomeBot (Chapter 9) is one such system.

32Most of the development work was done on a Macintosh IIcx, which contains a Motorola 68030
processor and a Motorola 68882 floating-point coprocessor, running with a clock frequency of 15.6672 MHz.

representations from a given domain and divide them into appropriate levels either by

inspection or by trial and error. A rather different, non-empirical approach is to devise a set
of domain-independent levels based on a priori knowledge representation considerations.
This latter approach was used in the development of APE, but both of these approaches are
compatible with the supervenience architecture.

The levels for APE were chosen on the basis of an analysis of the general structure of
event-related knowledge, as exposed in the philosophical and psychological literature.
Section 8.2.1 surveys the philosophical and psychological sources that influenced the
choice of specific levels. Section 8.2.2 summarizes the set of levels used in APE, and
Section 8.2.3 describes, in more concrete terms, the types of knowledge represented at each
level.

8.2.1 Philosophical and Psychological Evidence
The knowledge in a dynamic-world planning system is likely to be primarily about

events in the world and about actions that an agent can perform. The representation of
events and actions is a topic with a considerable history in philosophy (see [Davis 1979]
for a survey). Goldman’s theory of human action [Goldman 1970] was mentioned
previously in Chapter 4 because his concept of level generation is similar to the concept of
supervenience. Goldman distinguishes four sub-species of the level generation relation:
causal generation, conventional generation, simple generation, and augmentation
generation. Thalberg, in his rival “component” account, distinguishes several classes of
potential components of a given event, including: “purely relational” consequences, causal
consequences, and conventional consequences [Thalberg 1977].

The classes of consequences offered by Thalberg and the types of level generation
specified by Goldman have certain similarities. Both accounts make use of a category
based on the existence of “conventions.” In addition, both accounts have a special place for
knowledge about causality. Thalberg’s “purely relational” consequences and Goldman’s
“simple generation” are also very close; referring to the case in which A level generates A',
Goldman says that, “In simple generation the existence of certain circumstances, conjoined
with the performance of A, ensures that the agent has performed A' ” [Goldman 1970, 26].

The relative autonomy of some domain of causal reasoning is evidenced by the volume
of literature, across many disciplines, on theories of causation and of causal modelling.
This literature ranges from the presocratic Greek philosophers to current work in
developmental psychology, computational simulation, and theoretical AI. Piaget, for
example, discusses a range of conceptions of causality in the developing child (see, e.g.,
[Piaget and Inhelder 1969]). Shoham provides a survey and discussion of philosophical
theories of causation and develops a computational account based on temporal logic
[Shoham 1988]. Further discussions of reasoning about causation in AI systems may be
found in several papers in [Brachman and Levesque 1985], [Horn 1990], and [Weld and de
Kleer 1990, Chapter 9].

Causal relations may be related to various other types of knowledge, but “theories of
causation” generally provide systems or sets of principles by which statements about
causality can be analyzed and manipulated independent from other descriptions of the
world. For example, a theory of causation might assert that causation is irreflexive; this

70

would sanction the denial of the statement “A caused A” regardless of the status of A

vis-à-vis other relations. While there is considerable controversy about the proper analysis
of causal relations, the existence of a separable domain of causal reasoning is well
entrenched in the Western intellectual framework.

Similar remarks may be made for conventional reasoning, although the literature is not
as extensive. An analysis of conventional behavior as a separable domain of reasoning can
be found in [Shwayder 1965]. The “personal intelligences” in Gardner’s theory of
“multiple intelligences” are responsible for the cognitive aspects of culturally and
conventionally constrained interactions [Gardner 1983]. The papers in [Gellatly, Rogers,
and Sloboda 1989] document several recent trends in the study of socially organized
cognition in cognitive psychology. Aspects of certain speech acts (for example, promising,
apologizing, protesting, etc.) might also be seen as defining a domain of conventional
reasoning [Austin 1975]. If so, then current AI work in speech act theory (see, e.g., several
papers in [Cohen, Morgan, and Pollack 1990]) would also attest to the existence of a
conventional domain.

These considerations suggest at least two general, domain independent levels of event
representation: a conventional level and a causal level. In contrast to “simple” or “purely
relational” descriptions of events and actions, causal and conventional descriptions rely on
large bodies of knowledge about the world. Causal descriptions (for example, “The heat
made the milk boil.”) rely on access to some theory of the causal structure of the universe,
be it a theory from modern physics or of some common sense “naive physics” [Hayes
1985]. Likewise conventional descriptions (for example, “Ginger snubbed Oliver”) rely on
some theory of human conventions and social practices.

I will also argue that conventional knowledge supervenes on causal knowledge, and
thus I place the conventional level above the causal level in APE. Conventional facts
depend on causal facts in the manner specified in the definition and discussion of
supervenience in Chapter 4. For example, if Ginger charmed Oliver by dropping her
handkerchief in his path, then “Ginger charmed Oliver” (conventional) depends on “Ginger
dropped her handkerchief in Oliver’s path” (causal). Had the handkerchief not been
dropped, Oliver would not have been charmed (at least not for the specified reason).

This is not to say that conventional and causal facts cannot be commingled such that
some dependency relations go the other way; for example, “Ginger’s snub raised Oliver’s
blood pressure.” This does not refute the claim that non-conventional causal statements are
“closer to the world” than are conventional statements. Facts about conventions don’t
refute facts about the causal structure of the world, and this is the essence of the
supervenience relation. Ginger’s claim that there was no snub, merely a lapse of memory,
wouldn’t lead us to send the sphygmomanometer in for repairs. The supervenience of the
conventional on the causal is similar in spirit to the supervenience of the moral on the
physical; this is the relation that brought “supervenience” into the philosophical lexicon in
the first place (see Chapter 4).

The supervenience architecture specifies that only the “minimal” levels are connected
directly to sensors and effectors. In APE a single level, called the perceptual/manual level,
is dedicated to all sensor and effector interaction. All other levels in APE supervene on the
perceptual/manual level, which is “closest to the world” of all.

The perceptual/manual level also has a basis in the psychological literature. Gardner’s

71

“bodily-kinesthetic intelligence” is the intelligence that provides “the capacity to work

skillfully with objects, both those that involve the fine motor movements of one’s fingers
and hands and those that exploit gross motor movements of the body” [Gardner 1983, 206].
Gardner defends the designation of bodily-kinesthetic intelligence as an intelligence, and
argues for the modularity of bodily-kinesthetic intelligence on neurophysiological grounds.

Jaques, Gibson, and Isaac, in a book entitled Levels of Abstraction in Logic and
Human Action, provide five different five-level systems, based on a variety of
considerations ranging from developmental and organizational psychology to an analysis
of the relations between symbolic logic and human action [Jaques, Gibson, and Isaac
1978]. These level systems are similar to the levels chosen for APE in several respects, but
the most obvious point of contact is at the perceptual/manual level. In summarizing the
first levels of the various systems, they write:

The relationship with the object of activity is direct and concrete. Work is by the
immediate process of operation upon the object, usually referred to as skill. This skill is
based upon the ‘touch and feel’ of the situation . . . [Jaques, Gibson, and Isaac 1978,
insert]

The volume of psychological literature on “motor behavior” and “motor learning” also
speaks to the existence of a perceptual/manual level; see, for example, [Cratty 1973] and
[Heuer, Kleinbeck, and Schmidt 1985].

A large class of robotic tasks can be accomplished without explicit manipulation of
causal or conventional knowledge. Some such tasks may nonetheless require access to
abstract (i.e., non-perceptual/manual) knowledge about the world.33 APE therefore includes
intermediate levels of representation that contain spatial and temporal models of the world,
as well as procedures for reasoning about such models.

Although spatial and temporal reasoning processes are similar in certain respects, they
have generally been discussed separately in psychology, and modeled independently in AI
systems. A large body of literature exists on the modeling of spatial relations (for example,
for cartographic knowledge bases), and there has also been progress in the development of
qualitative spatial representations (e.g., [Mukerjee and Joe 1990]). Several papers on AI
approaches to reasoning about shape and space may be found in [Weld and de Kleer 1990,
Chapter 8]. Gardner posits a modular “spatial intelligence” in addition to the bodily-
kinesthetic and personal intelligences mentioned above. The conception of space in
children is an important topic in developmental psychology as well (see, e.g., [Piaget and
Inhelder, 1967]). A range of topics on the psychology of spatial representation and spatial
skills, including correlations to neurophysiological data, are surveyed in [Liben, Patterson,
and Newcombe 1981] and [Potegal 1982].

The study of time and temporal cognition dates at least to Parmenides in the fifth
century B.C., and plays a central role in many branches of modern philosophy and
psychology. On the independence of space and time there is a range of opinions; Gale
makes a case for independent treatment, stating, “the disanalogies between ‘here’ and

72

33Proponents of theories of “pure reaction” would disagree; see Section 2.2.
34Reichenbach also objects to the parallel treatment of space and time, but argues, on the basis of

the theory of relativity in physics, that “time is more fundamental than space” [Reichenbach 1958, 112].
Depending on one’s interpretation of “fundamental,” this view may or may not be compatible with the

‘now’ are profound: space and time are radically different” [Gale 1971, 85].34 Temporal

representation and reasoning are well developed topics in psychology (see, e.g., [Levin and
Zakay 1989], and the literature on the representation of temporal relations in AI (much of
which derives from [Allen 1984]) is also large and varied. Papers on qualitative reasoning
about temporal relations may be found in [Weld and de Kleer 1991, Chapter 4].

The relation between temporal and spatial knowledge can also be seen as one of
supervenience; temporal descriptions of the world supervene on spatial descriptions of the
world. Statements about temporal relations holding in the world are often statements about
changes, non-changes, coincidences, etc., of spatial relations over time. For example, “The
cat was on the mat when the doorbell rang.” This sentence asserts a temporal relation that
holds in virtue of the holding of a spatial relation.

The supervenience of temporal upon spatial knowledge also accords with the greater
immediacy with which spatial relations are perceived. Situated agents perceive spatial
relations “now” while temporal relations (except for simultaneity) are computed after the
fact; hence the spatial relations are epistemologically “closer to the world.” It might be
objected that this is an argument that temporal knowledge supervenes on all non-temporal
(as opposed to just spatial) knowledge. The concept of “space” should be construed
broadly to meet this objection; i.e., the entire structure of the immediate, atemporal,
physical world is thought of as comprising the “spatial” structure of the world. With regard
to non-temporal aspects of the higher (causal and conventional) levels of representation,
comments similar to those made for the commingling of causal and conventional
knowledge apply. The difference between the spatial and temporal levels is that the
temporal level introduces explicit reasoning about time; temporal representations exist at
all levels of the system, but explicit reasoning about time emerges only at the temporal
level.

8.2.2 Summary of Levels in APE
The levels chosen for APE are, from lowest to highest: perceptual/manual, spatial,

temporal, causal, and conventional (see Figure 7). A linear order is imposed on the levels,
although the supervenience architecture allows any partial order. This is of little theoretical
consequence, as supervenience is a transitive relation. The pragmatic effect of the linear
order is that certain details of implementation are simplified (for example, the construction
of translation systems), but representations must sometimes be passed through intervening
levels.

73

supervenience of the temporal on the spatial, for which I argue below.

Conventional

Effectors Sensors

Causal

Temporal

Spatial

Perceptual/Manual

Figure 7. The specific levels of APE.

Supervenience claims are often couched in phrases of the form “no x change without y
change”; for example, for psycho-physical supervenience, “No mental change without
physical change.”35 The supervenience claims entailed by the choice of levels in APE can
be summarized as follows:

• No conventional change without causal change. That is, the causal structure of the an
agent’s world-view determines its conventional structure. The belief in a conventional
difference between two situations can always be traced to a belief in a causal difference;
for example, if action x is believed to be polite in one situation and impolite in another,
then the beliefs about the causal relations between x and other events must also differ
between the two situations.

• No causal change without temporal change. That is, the temporal structure of an
agent’s world-view determines its causal structure. The belief in a causal difference
between two situations can always be traced to belief in a difference in the occurrence of
non-causally described events over time; for example, if x is believed to cause y in one
situation but not in another, then beliefs in the temporal, non-causal circumstances of x
must also differ between the two situations.

• No temporal change without spatial change. That is, the spatial structure of an agent’s
world-view determines its temporal structure. Any difference between two situations
vis-à-vis the temporal relations that are believed to hold can be traced to a difference
vis-à-vis believed spatial relations, where “spatial” is construed broadly as “physical,

74

35See the discussion in Chapter 4.

non-temporal”; for example, if x is believed to precede y in one situation but not in another,

then the situations must differ with respect to non-temporal beliefs as well.
• No spatial change without perceptual/manual change. That is, the perceptual/manual

structure of an agent’s world-view determines its spatial structure. Any difference between
two situations vis-à-vis believed spatial relations can be traced to a difference vis-à-vis
believed perceptual/manual relations; for example, if x is believed to be on top of y in one
situation but not in another, then the situations must also differ with respect to beliefs about
actions and/or perceptual processes.

It is again useful to make a comparison to Brooks’s subsumption architecture; the
similarities with respect to choice of levels are interesting, even though there are significant
differences on other points. Brooks has used the following “levels of competence”:

0 Avoid contact with objects (whether the objects move or are stationary).
1 Wander aimlessly around without hitting things.
2 “Explore” the world by seeing places in the distance which look reachable

and heading for them.
3 Build a map of the environment and plan routes from one place to another.
4 Note changes in the “static” environment.
5 Reason about the world in terms of identifiable objects and perform tasks

related to certain objects.
6 Formulate and execute plans which involve changing the state of the world

in some desirable way.
7 Reason about the behavior of objects in the world and modify plans

accordingly. [Brooks 1990, 9]

While there are differences between these levels and the levels used in APE—for
example, objects may have identities even at the lowest level in APE, while object
identities arise only at level 5 in Brooks’s scheme—there are also striking similarities.
Levels 0 and 1 provide competencies similar to those of APE’s perceptual manual level,
levels 2 and 3 add spatial competencies, levels 4 and up introduce explicitly temporal
concepts, and level 7 appears to perform some sort of causal reasoning.

8.2.2 Types of Knowledge at Each Level
APE provides knowledge representation and programming facilities with which

knowledge structures and procedures can be implemented at each level, but it is in the
application of APE to a given domain that the capabilities of each level are actually
realized. Hence, while I will state, for example, that temporal projection is performed at the
temporal level, this will only be true in instances of APE for which the appropriate
temporal-level operators have been defined. In this sense APE can be thought of as a
five-level “shell” for programming dynamic-world planning systems.

The perceptual/manual level represents events as simple sensory reports and as oper-
ators for effector manipulation. Perceptual/manual representations might be rendered in
English as, “I see a sock at position 12, 17, 26, at time 3:45 PM,” or “To move forward, I
should gain control of the main body motor, run it forwards, and check to see that I’ve
moved.” The only “reasoning” at this level is the composition of such sequences of percep-
tual and manual tasks. The coupling of perception to action that results is in some ways

75

analogous to simple “reflex arcs” in animals. Note that although spatial and temporal data

is present at this level, reasoning about space and time occurs elsewhere.
The spatial level contains structures that organize perceptual data with respect to spatial

relations. Synthetic spatial relations such as on, above, near etc., arise at this level, and
hence representations such as “The cat is on the mat” become expressible. At the perceptu-
al/manual level this would be represented only as the conjunction of two sensory reports:
one describing the position of the cat, and one describing the position of the mat. Represen-
tations about events and actions that change the status of spatial relations (for example, “I
put the banana peel into the trash can at 12:15 PM”) are expressible here, but the temporal
and causal dimensions of such changes are not the subjects of spatial level reasoning.
Operators for complex spatial reasoning (for example, path planning) also reside here.

The temporal level augments spatial representations with temporal relations, allowing
for reasoning about deadlines and temporal projection. New concepts at this level include
synthetic temporal relations such as before, during, and after, and other concepts specific
to temporal reasoning such as expect, delay, and late. While every level represents time in
some manner (and certainly every level acts in time), only at the temporal level do represen-
tations such as “The casserole has been in the oven too long” arise. Lower levels simply
tag representations with temporal information, and perform actions as quickly as they can.
It is at the temporal level that the system can reason about time, scheduling actions to meet
deadlines. This reasoning might be accomplished, for example, with a temporal logic or a
“time map management” system [Dean 1985].

The causal level contains representations that embody the agent’s conception of the
causal structure of the world. This may include causal rules and causally deduced facts
such as “I prevented the human from falling.” At this level concepts that are defined on the
basis of causal models of the world are introduced; for example, cause, effect, boil, and
melt . While the representation of a melting of an ice cube might be represented at the
temporal level as a conjunction of observations or predictions about the relative sizes of the
cube and of the resulting puddle over time, at the causal level there may be a melt concept
that is integrated into a theory of temperatures, state changes, etc.

The conventional level contains knowledge about facts that are true by convention; for
example, that a certain hand gesture is a signal for a turn, or that a dirty sock “belongs” in
the dirty clothes hamper. Procedures at this level should embody some theory of social
rules and interaction. For example, the knowledge that it is impolite to leave the room
when being addressed might be encoded here.

These levels partition the system’s knowledge (both declarative and procedural) into a
set of connected, communicating systems, each of which exhibits expertise at a particular
level of “abstraction” from the world. It is important to note that this is not to say that the
representations characteristic of one level are entirely absent from all other levels. As
mentioned earlier, for example, temporal representations exist at all levels of the system,
even though explicit reasoning about time occurs only at the temporal level. Similar
statements can be made for the other levels as well.

76

8.3 Specialization of the Supervenience Architecture
The supervenience architecture, described in Chapter 7, specifies a general design for

multilevel dynamic-world planning systems. In this section I describe the details by which
the general design is implemented in APE.

Operators Blackboard

Goals

State of Affairs

DemonsInstances

Triggers

Translation System

Resource
Arbitrator

Figure 8. A single level of APE in detail.

Figure 8 adds detail to the picture of the individual levels of the supervenience architec-
ture for APE (cf. Figure 4). The problem-solving (planning) procedures are implemented as
operators that are instantiated in a goal-driven fashion. Operators in the APE are similar to
the knowledge sources of traditional blackboard systems; i.e., “diverse and independent
programs” [Erman et al. 1980, 218]. Within the literature of dynamic-world planning, they
are similar to the Knowledge Areas of PRS [Georgeff and Lansky 1990], [Georgeff and
Ingrand 1989]. There are differences in detail, but APE operators, like PRS knowledge
areas, are procedural behavior specifications that allow for incremental expansion and
execution. The architecture of APE at a single level also bears comparison to the architec-
ture of PRS systems,36 and I have taken the liberty of borrowing some of the terminology
used in describing PRS; for example, “triggers” and “invocation conditions” (see below).
APE’s operator formalism is described in detail in Section 8.5.

Structures called triggers handle the instantiation of operators, allowing for multiple
instantiations of the same operator (for different goals) and for instantiations of different

77

36PRS was also “designed to allow several instantiations of the basic system to run in parallel”
[Georgeff and Lansky 1990]. This raises the possibility of implementing the supervenience architecture as a
collection of PRS systems, one per level.

operators working on the same goal. Each operator has an invocation condition which is

matched against goals on the blackboard. When such a match is detected, the correspond-
ing trigger checks if the given operator has already been instantiated for the given match. If
not, the trigger fires, generating a new instance of the operator. The new instance becomes
an active procedural element of the given level of the planning hierarchy, running asynchro-
nously and in parallel with the other operator instances at that level.37 The instance runs
until it succeeds, fails, or simply terminates. An operator may specify different blackboard
modifications and “cleanup procedures” for each of these outcomes.

Operator instances have priorities that can be passed through goals; if a goal is posted
with a high priority then that priority is inherited by operators triggered by the goal. These
priorities are used by resource arbitrators to handle resource conflicts amongst operator
instances. The resource arbitrators store information about resource usage on the black-
board, and this information can be accessed and reasoned about by operator instances. The
resource arbitrators suspend lower-priority operator instances competing for a given
resource and resume the highest-priority suspended instance when the resource becomes
available. Operators may perform special actions upon suspension and upon resumption.

APE supports two types of goals: teleological goals, which are goals for the achieve-
ment of states of affairs, and teleoepistemic goals, which are goals for the attainment of
knowledge. Other researchers have described a wide range of goal types, and have dis-
cussed the possible relations between various types of goals (e.g., [Lesser et al. 1989],
[Wilensky 1983]). Such work can provide a basis for extending goal representation in
APE, but at present only teleological and teleoepistemic goals are supported. The mech-
anisms provided for goal representation in APE are explained in greater detail in Section
8.4.

APE also provides for “active” elements on the blackboard called demons. Demons
provide an intuitive mechanism for monitoring the state of affairs and for reporting chang-
es to operator instances. (See Section 8.7 for further discussion on strategies for monitoring
in APE). The use of demons to inform operator instances that pending goals have been
satisfied also helps to simplify the simulation of parallelism in APE (see Section 8.4).

The lowest level of APE is responsible for communication with sensors and effectors,
and hence its structure is somewhat different (see Figure 9). There is no translation system
since there are no lower-level planning systems with which to communicate. The operator
instances call sensor and effector functions directly, and sensor data is returned to the
calling operator instances for processing. Knowledge ascertained from sensor input can
then be entered by the operator instances into the state of affairs.

78

37The parallelism in APE is simulated; see section 8.8.

Operators Blackboard

Goals

State of Affairs

DemonsInstances

Triggers

Resource
Arbitrator

Sensors

Effectors World

Figure 9. A detailed look at the bottom level of APE.

8.4 Knowledge Representation

Warning: Use At Your Own Risk
This machine is not a certified knowledge server: it is not sound, it is not complete, and
there is no guarantee that it will produce an answer in a tractable amount of time. There
is in fact no precise characterization of its running time at all. How any being in its
right mind could use such a service is utterly beyond me.

(signed)
F. Lou deKoop
Knowledge Representation General

[Davis 1991]

The supervenience architecture requires a knowledge representation system to handle
transactions on the blackboards at each level. Different knowledge representation systems
could be used at each level of the system; this is consistent with the design principles of the
supervenience architecture. For simplicity, APE uses the same knowledge representation

79

system at each level, although each level makes use of the system in different ways. The

knowledge representation system described in the remainder of this section was developed
specifically for APE. Of course, the literature of knowledge representation research is large
and well developed, and it is likely that other, more complex knowledge representation
systems could be integrated with APE as well.

Aside from the representation of facts about the world, APE also requires the
representation of demons, priorities and resources, and two types of goals. The types of
goals are teleological goals (or achievement goals) and teleoepistemic goals (or knowledge
goals). The distinction is between goals for bringing about some state of affairs
(teleological) and goals for finding out whether some state of affairs obtains
(teleoepistemic). The distinction is important whenever it is possible for an agent to have
partial information about the state of the world.

Agents with incomplete knowledge must often perform inferences and/or actions to
determine the state of the world. Teleoepistemic goals are the goals that trigger such
inferences and actions, thereby generating activity that updates the system’s beliefs. In
contrast, teleological goals are goals for achieving conditions in the world. An example of
a teleoepistemic goal is the goal of “knowing if the cat is on the mat,” while an example of
a teleological goal is the goal of “getting the cat onto the mat.”

A similar distinction is expressible in PRS through the use of the “!” and “?” goal-
forming operators:

The expression (!p), where p is some state description (possibly involving logical
connectives), is true of a sequence of states if p is true of the last state in the sequence;
that is, it denotes those behaviors that achieve p. . . . Similarly, (?p) is true if p is true of
the first state in a sequence—that is, it can be considered to denote those behaviors that
result from a successful test for p. [Georgeff and Lansky 1990, 731]38

The distinction between teleological and teleoepistemic goals is particularly important
for multilevel architectures. The knowledge in any dynamic-world planning system might
be incomplete on account of insufficient sensing and/or inference. But in multilevel
systems such incompleteness might also be due to insufficient inter-level communication; a
given level might not have the belief that the cat is on the mat only because the belief has
not yet been propagated from the level at which the belief was deduced.

The use of demons allows for intuitive specifications of monitors that inform operator
instances of changes in the state of affairs. Demons are pieces of code that can be placed on
the blackboard to “watch” for the occurrence of certain events, and to “fire” (execute their
code) when such events occur. Demons are also used in APE for communication to goal-
posting operator instances about the achievement of their goals. When an operator instance
posts a subgoal it can also post a call-back demon that will run when the subgoal is
achieved. Until the call-back, the components of the operator that require prior
achievement of the subgoal can be suspended, and it is not necessary for the operator
instance to poll the blackboard to check on the status of the subgoal. Demons in APE are
attached directly to the blackboard items that they are monitoring, and they require no
run-time except when fired. The firing of demons is handled by the blackboard-update

80

38PRS also includes a “#” goal-forming operator that allows for the expression of maintenance
goals, for which there is no analog in APE.

procedures; when a blackboard-update indicates that the goal has been achieved, the

demon will be called, informing the posting operator instance that it can proceed.
The purpose of the priority and resource mechanism is to allow resource arbitrators to

make reasonable decisions about which operator instances to suspend when resource
conflicts are detected. Priorities are attached to goals, and they are inherited by the operator
instances triggered by the goals. When an operator instance posts a subgoal it can either
pass its own priority to the subgoal or it can attach some other priority. APE resources are
single entities (represented as symbolic atoms) that can have only single users,39 and APE
priorities are symbolic atoms arranged in a partial order. The set of priority symbols is a
parameter of the system; examples to date have required only background , normal , and
urgent . The usage of a resource is recorded on the blackboard with a sentence (see next
paragraph) such as (using :arm-control grab-23) . Resource requests that have not yet
been fulfilled are recorded with sentences such as (waiting :arm-control grab-24) .
The invocation of the resource arbitrator is described in Section 8.5. Previous planning
systems have included complex mechanisms for the representation of resources and/or
priorities (e.g., [Wilkins 1988]); such mechanisms could be incorporated into future
versions of APE.

Each item on the blackboard contains a sentence that expresses the semantic “content”
of the item. Sentences are lists of symbolic atoms, possibly including the variable :? . For
example, a belief that the cat is on the mat might be recorded on the blackboard with an
item having the sentence (on cat mat) . Variables in sentences are to be read as
“something”; for example, the sentence (on cat :?) , if believed, would mean that the
system believes that the cat is on something. The system may or may not have additional
beliefs about what it is that the cat is on; for example, (on cat mat) or (on cat car) .
The items on the blackboard are stored in a discrimination net that uses the sequences of
atoms in sentences for discrimination keys, and there can be only one item on the
blackboard for any given sentence.

Each blackboard item also contains three tags, each of which has, at any given time, a
single value from the set {+, –, ?}. The three tags are epistemic, teleoepistemic, and
teleological. The epistemic tag indicates the status of the blackboard item’s sentence with
regard to belief. A “+” value for the epistemic tag means that the system believes that the
sentence is true, a “–” value means that the system believes that the sentence is false, and a
“?” value means that the system has no belief regarding the truth or falsity of the sentence.
The teleoepistemic tag indicates the status of the blackboard item’s sentence as a
teleoepistemic (knowledge) goal. A “+” value for the teleoepistemic tag means that the
system wants to know if the sentence is true, a “–” value means that the system wants to
know if the sentence is false, and a “?” value means that the system has no goal regarding
knowledge about the truth or falsity of the sentence.40 The teleological tag indicates the
status of the blackboard item’s sentence as a teleological (achievement) goal. A “+” value

81

39Two operators working on goals related as subgoals count as a “single user” in this context.
40The attributions of propositional attitudes (e.g., “believes” and “knows”) to the system in this

paragraph, and in the remainder of the dissertation, are not intended to make or to imply metaphysical claims.
They are used for convenience; it is simpler to say “wants to know if x” than “has a goal of changing the
epistemic tag of x to ‘+’ via the application of knowledge-oriented (as opposed to achievement-oriented)
operators.”

for the teleological tag means that the system wants to make the sentence true, a “–” value

means that the system wants to make the sentence false, and a “?” value means that the
system has no goal regarding achievement of truth or falsity of the sentence.

epistemic teleoepistemic teleological
+ believed discovering achieving
– rejected debunking abolishing
? doubted ignoring neglecting

Figure 10. Query functions.

Figure 10 shows the functions that are provided for querying the status of tags
corresponding to a given sentence. When they are called with variable-free sentences their
behavior is straightforward: the single blackboard item that matches the sentence is
examined, and a boolean value is returned indicating whether or not the specified tag has
the specified value. If no match is found, then a new blackboard item with default tag
values (all “?”) is created. When variables are present they can be interpreted as
universally quantified or as existentially quantified: Queries for positive (“+”) and negative
(“–”) values are interpreted as existentially quantified, and queries for neutral (“?”) values
are interpreted as universally quantified. For example, (achieving '(on cat :?)) will
be true if there is any goal of getting the cat onto anything, while (neglecting '(on :?
:?)) will be true only when there are no goals for getting anything onto anything. Variants
of these query functions (for example, queries for positive values that are interpreted
universally) are also provided, and additional variants can be added without difficulty. A
range of miscellaneous query functions have also been implemented as needed. For
example, the function get-all-rejected-ground returns a list of all blackboard items
without variables that match the given sentence, and that have negative epistemic tags.

epistemic teleoepistemic teleological
+ believe discover achieve
– reject debunk abolish
? doubt ignore neglect

Figure 11. Command functions.

Figure 11 shows the command functions that are provided for changing the status of
tags corresponding to a given sentence. In contrast to the query functions, the behavior of
command functions may be complex even for variable-free sentences. This is because the
system maintains the consistency of the knowledge base with respect to sentences that
contain variables. For example, suppose that the system does not initially believe (on :?
mat) , but that the program then executes (believe '(on cat mat)) . The system will set
the epistemic tags of both (on cat mat) and (on :? mat) to “+”. Additional
complications arise here as well; for example, if a sentence is already believed then a call
to achieve it does not change the teleological tag; it merely succeeds and returns
immediately.

82

The commands discover , debunk , achieve , and abolish are all goal-posting

commands. Goal-posting commands may include arbitrary lisp call-back functions that are
installed as demons in the matching blackboard items. Call-back functions are functions of
zero arguments that may be specified as lambda forms. When the sought-after tag states
come to pass, the demons are executed and disposed of. The blackboard-update procedures
are responsible for the firing of demons; whenever a change is made to a tag state, the
update procedure fires any relevant demons. Since the demons are attached directly to their
associated blackboard items, this process is quite efficient. As an example, one might issue
the command (discover '(on cat mat) :call-back #'(lambda () (print "The
cat is on the mat!"))) . This command would post a goal to determine if the cat is on
the mat, and the call-back function would print "The cat is on the mat!" as soon as
the goal was satisfied. A lambda form used as call-back function is defined in the lexical
environment in which the command is issued. Hence the lambda form may refer to lexical
variables; for example, (let ((exclamation "Hey!")) (discover '(hot hand)
:call-back #'(lambda () (print exclamation)))) . Several operators may post the
same goal and thereby attach demons to the same blackboard item.

Goal-posting commands may also include priorities. For example, one might issue the
command (abolish '(on cat stove) :priority :urgent) . The priority of each
matching blackboard item is set to be the maximum of the specified priority and the
pre-existing priority of the item. If no priority is specified then the priority of the posting
operator instance is used.41

APE’s knowledge representation system meets the requirements of the architecture
with few unnecessary complications. In spite of this intentional simplicity, the system has a
few interesting properties. For example, the teleoepistemic and teleological queries
correspond in a certain sense to meta-reasoning capabilities of more sophisticated systems:
one can query not only about beliefs, but also about the status of the system’s quest for
beliefs. Possible enhancements to the knowledge representation system are described in
Chapter 10.

8.5 Operators
APE operators resemble the knowledge sources of more traditional blackboard systems

in that they are complex, independent, goal-triggered procedures. They also share features,
such as add and delete lists, with traditional planning operators. The procedural aspects of
APE operators are specified as Petri nets [Peterson 1981], allowing for comparison to other
net-based procedural specifications in dynamic-world planning (e.g., [Drummond 1990],
[Georgeff and Lansky 1990]). In this section the specification of operators is described in
detail. A simple operator from the HomeBot domain is shown in Figure 12; more elaborate
examples, along with graphic representations, are provided in Chapter 9.

83

41Each blackboard item actually has two priorities, one for teleological goals and one for
teleoepistemic goals. For example, one can be simultaneously discovering if x with a priority of
:normal , and achieving x with a priority of :urgent .

(defoperator do-laundry
 :level :causal
 :for (achieving (clean :?))
 :filters ((believed ̀ (clothing ,?1)))
 :steps ((TAKE-TO-MACHINE
 (achieve ̀ (on ,?1 laundry-machine)
 :call-back
 #'(lambda () (finish TAKE-TO-MACHINE))))
 (TAKE-TO-BED-WHEN-DONE
 (achieve ̀ (after laundry-done on ,?1 bed)
 :call-back
 #'(lambda ()
 (if (believed ̀ (smells-bad ,?1))
 (fail)
 (succeed))))))
 :initially (TAKE-TO-MACHINE)
 :transitions ((TAKE-TO-MACHINE :> TAKE-TO-BED-WHEN-DONE))
 :on-success ((believe ̀ (clean ,?1)))
 :on-failure ((believe '(probably-broken laundry-machine)))

Figure 12. A simple APE operator for doing laundry.

Operators are defined with the defoperator macro, which takes a name and the
following keyword arguments: level , for , variables , filters , steps , transitions ,
initially , on-failure , on-success , on-suspension , on-resumption , and on-
termination . Operator names are symbols, each of which must be unique.

The level argument specifies the level of the supervenient planning hierarchy at which
the operator will be defined; its value must be :perceptual-manual , :spatial ,
:temporal , :causal , or :conventional .

The for argument specifies the invocation condition of the operator. The invocation
condition is a goal that will trigger the instantiation of the operator. For example, an
instance of the do-laundry operator in Figure 12 will be created whenever there is a goal
of achieving (clean :?) . The present system allows only goals of the form (<query>
<sentence>) . An obvious extension is to allow conjunctive and/or disjunctive goals to be
specified in the for argument.42 Conjunctive goal capabilities can be “faked” to some
extent by posting goals that represent conjunctions; for example, dog-fed-and-floor-
swept . This maneuver is not entirely satisfactory, but it suffices for the examples we have
implemented to date.

When an operator is triggered the blackboard item that matches the for form is used to
set the values of local variables of the form ?0, ?1, ?2, etc. The first element of the
sentence of the matching item is assigned to ?0, the second to ?1, and so on. These
variables can be accessed by various other elements of the operator. For example, if the
do-laundry operator is triggered by a goal to achieve (clean shirt) , then the references
to ?1 in the filters , in the steps , and in the on-success form will all refer to shirt .

The variables argument specifies an additional list of local variables that can be set

84

42This is allowed, for example, in PRS [Georgeff and Lansky 1990].

and accessed within the operator. The variables are local to each instance of the operator,

and persist for the life of the instance. The do-laundry operator requires no such variables
(but see Chapter 9 for further examples).

The filters argument specifies a list of arbitrary lisp forms, all of which must
evaluate to a positive (non-null) value if the operator is to be instantiated. The numbered
variables are bound prior to the evaluation of the filters, and the values of these variables
are typically tested for the applicability of the operator. For example, the do-laundry
operator will not be instantiated for the goal of achieving (clean floor) because the
system will not have a belief that (clothing floor) .

The heart of an operator—the description of what it does—is specified in the steps ,
transitions , and initially arguments, which collectively describe a Petri net. Petri nets
were chosen because of their capability for specifying asynchronous parallel activity:

In the Petri net model, two events which are both enabled and do not interact may
occur independently. There is no need to synchronize events unless it is required by the
underlying system which is being modeled. When synchronization is needed, it is easy
to model this also. Thus, Petri nets would seem ideal for modeling systems of
distributed control with multiple processes executing concurrently in time. [Peterson
1981, 35]

Petri nets are composed of two types of nodes, called places and transitions, and
directed links that connect places to transitions and transitions to places (but never places
to places or transitions to transitions). A place may contain tokens, in which case it is said
to be marked. While the number of tokens in a place is usually significant in Petri net
theory, in APE this number is limited to 1 or 0. Hence the state of a place in APE can
always be described simply as marked or unmarked. The places from which links are
directed at a given transition are called the input places of the transition, and the places to
which links are directed from the transition are called the output places of the transition. A
transition is enabled and can fire when all of its input places are marked. When a transition
fires it removes a token from each of its input places (leaving them unmarked) and adds a
token to each of its output places (marking those that were not marked already). The
sequence of transition firings is nondeterministic; enabled transitions may fire at any time,
and the sequence in which they fire may not be related to the sequence in which they
became enabled. Sequential effects are obtained by structuring the net such that earlier
transitions must fire in order to enable later transitions.

The basic Petri net model does not include mechanisms for modeling events that take
time [Peterson 1981, 37–38], or for attaching code to events in the net.43 In APE code is
attached to places in the net, and execution (and hence delay) occurs during the marking
process. When a transition fires it does not immediately mark its output places; it merely
queues the code from each output place for execution. When the code from a given place
finishes execution, the corresponding place is actually marked and may thereby contribute
to the enablement of other transitions.

The places of the Petri net are specified in the steps argument to defoperator . Each
place is specified as a list containing the name of the place (a symbol) and the code for the

85

43The introduction of timing information into Petri nets is an area of active research. See [Holliday
and Vernon 1987] for an overview of some recent techniques.

place. The code for a place must execute (finish <place-name>) to inform the Petri net

executor that it has completed, and that the corresponding place should be marked. The
code for an place may also include (succeed) , (fail) , or (terminate) . Each of these
results in the termination and deallocation of the operator instance; they differ only in the
code that is executed during termination (see below). Whenever an operator instance
terminates, all other operator instances working on subgoals of the operator also terminate.
Operator instances are also terminated when their triggering goals are revoked.

The code in operator steps may also include calls to the resource-handling functions
start-using and stop-using . These functions cause annotations about resource usage to
be made on the blackboard and invoke the resource arbitrator if there is a conflict. If an
operator is already using the :arm-control resource and a second operator executes
(start-using :arm-control) , then the resource arbitrator will be invoked and the
operator with the lower priority will be suspended. Priority ties are broken randomly.
Resources are level-specific; for example, a resource at the perceptual/manual level can be
used only by perceptual/manual operators.

The transitions of the Petri net are specified in the transitions argument to
defoperator . Each transition is specified as a list of input place names, the special symbol
“ :> ”, and a list of output place names. The do-laundry operator has only one transition,
with the single place TAKE-TO-MACHINE as an input place, and the single place TAKE-TO-
BED-WHEN-DONE as an output place.

The initial marking of the Petri net is specified in the initially argument to
defoperator . The code at each of the places named in initially is queued for execution
when the operator is instantiated. Each place is marked when its code finishes executing.

The remaining arguments to defoperator —on-failure , on-success , on-
suspension , on-resumption , and on-termination —each take arbitrary lisp code (lists
of forms that will be evaluated within an implicit progn). Each is evaluated in the
conditions suggested by its name, and code within each may refer to local variables
specified in the variables argument, as well as to the numbered variables corresponding
to elements of the triggering goal sentence.

The on-success argument corresponds to the add and delete lists of traditional
STRIPS-like planning operators—it specifies the effects of the operator when all goes well.
The on-success form typically includes calls to believe (corresponding to elements of a
STRIPS operator’s add list) and/or calls to reject (corresponding to elements of a
STRIPS operator’s delete list). In the do-laundry operator there is one such effect: when
the operator succeeds it will assert a belief that the previously dirty object is now clean.

The on-failure argument specifies effects of the operator when all does not go well.
Of course, some operators may be capable of failing in a variety of ways, and it may be
difficult to specify the appropriate modifications to the blackboard in the wake of failures
of such operators. Nonetheless, such specifications are often appropriate. The do-laundry
operator can fail only by noticing, near the end of its task, that the piece of clothing still

86

44The operator can “go wrong” in various other ways as well. For example, it can get “stuck” while
a subgoal remains unachieved, and it can be terminated by the revocation of its triggering goal. But failure
per se occurs only as a result of the execution of the (fail) form. Note also that the choice of success or
failure in do-laundry depends on the proper maintenance of (smells-bad x) sentences by other
elements of the system.

smells bad.44 In such a case it is reasonable to assume that the laundry machine is broken,

and the operator asserts a belief to that effect.
Code in the on-termination argument is evaluated whenever the operator instance

terminates, whether termination is caused by success, failure, revocation of the triggering
goal, or an explicit call to (terminate) . The on-termination argument is the appropriate
place for “clean up” procedures that must be executed before an operator instance is
deallocated. For example, the low-level roll operator uses the :body-motion resource.
The on-termination argument for roll includes the form (stop-using :body-
motion) , ensuring that the :body-motion resource is released whenever an instance of
roll that had seized :body-motion is terminated.

Code in the on-suspension argument is evaluated whenever the resource arbitrator
suspends the operator to resolve a resource conflict. It can be used to specify “suspension
clean up” procedures and to note the context in which suspension occurred. Recall the
Wesson Oil problem of Section 2.3, in which a woman is frying chicken when her child
gets hurt. The child screams and the woman stops cooking to take the child to the hospital,
but only after turning off the stove. This example could be encoded in APE by using a
priority of :urgent for the goal of taking the child to the hospital, and a priority of
:normal for the goal of frying chicken. The screaming child would trigger a resource
conflict, since both the hospital task and the frying task require use of the woman’s body.
Since the hospital goal would have a higher priority, the frying task would be suspended.
Inclusion of the form (abolish '(turned-on stove)) in the on-suspension argument
of the fry-chicken operator would cause actions for turning off the stove to be triggered
when the woman suspends the frying task.45 The on-resumption argument can be used to
reverse the effects of the on-suspension argument; for example, to post a goal to (achieve
'(turned-on stove)) . The on-resumption argument can also be used check the context
in which the operator is resumed, possibly triggering immediate success or failure; for
example, (if (believed '(soggy chicken)) (fail)) .

8.6 Translators
The between-level translation systems of the supervenience architecture are

implemented in APE as collections of units called translators. All communication between
levels in APE is effected by the translators, and the asymmetry of the supervenience
relation is reflected in the design of the translator system. Translators facilitate the
“upward” movement of world knowledge, and the “downward” movement of goals; this is
the implementational analog to the “assertions up, assumptions down” communications
regime in the formal characterization of supervenience. Translators are small data
structures containing lisp code that are similar in some respects to APE operators. In this
section the specification of translators is presented in detail.

87

45Inclusion of goal-posting commands in on-suspension forms is actually a bit more
complicated, since the same resources that caused the suspension might also be required for the operators that
would achieve the newly posted goals. One solution is to use a “super-urgent” priority—in the given example
the goal of abolishing (turned-on stove) should have the highest priority, the goal of going to the
hospital should have the next highest priority, and the goal of frying chicken should have the lowest priority.
Such complications do not arise when non-goal-posting commands (e.g., believe , reject) are used in
on-suspension forms.

The laundry-pile translator, specified in Figure 13, assumes that the locations of

objects are represented at the perceptual/manual level using sentences of the form (at
<object-type> <object-name> <x> <y> <z>) . The spatial level concept of a “laundry-
pile” describes a collection of pieces of laundry at the same <x, y> coordinates, with one at
the height of the floor (with z=1) and one somewhat higher (with z=3). The locations of
laundry-piles are recorded at the spatial level with sentences of the form: (at laundry-
pile <x> <y> <z>) .

(deftranslator laundry-pile
 :xlevel :below-spatial
 :demand (discovering (locations laundry-pile))
 :commands ((discover ̀ (locations laundry)))
 :supplies ((laundry-on-floor
 (get-all-believed ̀ (at laundry :? :? :? 1)))
 (laundry-up-high
 (get-all-believed ̀ (at laundry :? :? :? 3))))
 :test (and (eql (nth 3 (sentence laundry-on-floor)) ;; same x value
 (nth 3 (sentence laundry-up-high)))
 (eql (nth 4 (sentence laundry-on-floor)) ;; same y value
 (nth 4 (sentence laundry-up-high))))
 :products ((believe
 ̀ (at laundry-pile ,(nth 3 (sentence laundry-on-floor))
 ,(nth 4 (sentence laundry-on-floor))
 1)))
 :advertisements ((believe
 ̀ (looked for laundry-pile at ,(the-time)))))

Figure 13. A translator for laundry-piles.

Translators are defined with the deftranslator macro, which takes a name and the
following keyword arguments: xlevel , demand, commands, supplies , test , products ,
and advertisements .

The xlevel argument specifies the level beneath which the given translator is to be
situated; its value must be one of :below-spatial , :below-temporal , :below-causal ,
or :below-conventional .

The remaining arguments specify the function of the translator with respect to an
economic metaphor of communication. The economic model was chosen because it
provides an intuitive metaphor for supervenience. The metaphor also provides mnemonic
names for the various elements of the translator data structure (demand, supplies, products,
etc.).

Each translator is situated between two planning levels, one higher and one lower. The
higher level is conceptualized as an economic consumer and the lower level is
conceptualized as an economic producer. The translator, on the basis of a perceived
demand at the higher level, issues a set of production commands to the lower level. The
translator then collects supplies from the lower level and forms the combinations of them
that pass the test into products. The products are then provided to the higher level, possibly
accompanied by advertisements.

88

Note that an economic consumer depends on producers for material needs, and that

producers are, with respect to their materials and products, “closer to the world.” Producers
and consumers are also independent entities, each of which has expertise that the other
lacks. Consumers can procure only those things that producers produce, but the products
are generally conceptualized differently by producer and consumer. While consumers can
“demand” that certain products be produced, the availability of materials, feasibility of
construction, etc., depend on factors to which the producer has more immediate access and
more certain knowledge. In all of these respects, the economic relation of producer to
consumer is similar to the relation of a lower level to a higher, supervenient level in a
supervenient planning hierarchy.46 These observations led to the development of the
economic metaphor for knowledge transactions across levels of APE.

Once instantiated, a translator instance runs “continuously,” issuing commands at the
lower level and massaging low level supplies into high level products. In this respect
APE’s translators are similar to the translation systems of Jackendoff’s multilevel cognitive
model:

For each set of correspondence rules that provides a translation from one level of
representation Li to another level Lj, there is a translation processor that automatically
and compulsively translates whatever information is available at level Li into
information of level Lj, whenever such translation is possible. [Jackendoff 1987, 258]

The continuity of translation is simulated. Whenever processor time is allocated to a
translator it re-posts its commands to the lower level, collects supplies , filters out supply
combinations that don’t pass the test , creates products and posts advertisements at the
higher level.

Like operators, translators are triggered by goals on the blackboard. The demand
argument of deftranslator is similar to the for argument of defoperator in that it sets
up a trigger for the translator. Whenever the demand condition is met the translator is
instantiated; for example, an instance of the laundry-pile translator will be created
whenever there is a goal for discovering the locations of piles of laundry. Numbered
variables (?0, ?1, etc.) are set to the corresponding elements of the matching sentence and
may be referenced by other elements of the translator.47 As with operators, multiple
instantiations of the same translator are allowed, but not for the same goal.

Translators also effect downward communication through their commands. While it is
possible to include arbitrary lisp forms in the commands, the intention is that this capability
be used for posting goals to the lower level. For example, the laundry-pile translator
posts a goal to discover the locations of pieces of laundry at the lower, perceptual/manual
level. Sometimes it may be appropriate to pass knowledge structures to lower levels that
encode goals implicitly. For example, a path may be passed from the spatial to the
perceptual/manual level, implicitly encoding several repositioning goals. Representation of
the path in a non-goal form might be preferable due to details of the knowledge
representation system.

89

46C.f. Part II of this dissertation.
47Such references are unnecessary in the laundry-pile translator, but see further examples in

Chapter 9.

The supplies argument to deftranslator is specified as a list of (<supply-type>

<generating-form>) pairs. Each generating form should return a list of values of the
given supply type. If multiple generating forms are provided for a single supply type then
they are evaluated in an implicit progn and the value of the last form is used. In the
laundry-pile translator there are two types of supplies: blackboard items representing
pieces of laundry on the floor (with z=1) and blackboard items representing pieces of
laundry “up high” (with z=3).

Each translator generates supply tuples from the lists of supplies that it obtains. A
supply tuple contains one supply element of each type, and supply tuples are generated for
all possible such combinations. Each supply tuple is a “data set” upon which the test is
run; supply tuples that pass the test are then used for the generation of products . In the
laundry-pile example, if there are two pieces of laundry on the floor (say, shirt-17 and
poncho-3) and three pieces of laundry at z=3 (say sock-32 , towel-2 and jeans-5), then
supply tuples will be generated for all of the combinations shown in Figure 14.

laundry-on-floor laundry-up-high
shirt-17 sock-32
shirt-17 towel-2
shirt-17 jeans-5
poncho-3 sock-32
poncho-3 towel-2
poncho-3 jeans-5

Figure 14. Supply tuples for the laundry-pile translator example.

The test argument to deftranslator takes a single lisp form that is evaluated once
for each supply tuple. The tuple’s supply element of a given type can be referenced within
the test with the symbol that names the supply type. The test in laundry-pile specifies
that the x and y coordinates of the laundry-on-floor and the laundry-up-high must
match exactly. Suppose that the <x, y> coordinates of the pieces of laundry are as follows:
shirt-17 = <1, 1>, poncho-3 = <2, 2>, sock-32 = <2, 2>, towel-2 = <1, 2>, jeans-5
= <1, 1>. Then the supply tuples that will pass the test are <poncho-3 , sock-32 > and
<shirt-17 , jeans-5 >.

The products and advertisements arguments to deftranslator each take lists of
arbitrary lisp forms. The products forms are evaluated once for each supply tuple that
passes the test , with blackboard modifications being made to the blackboard at the higher
level. Within products the elements of the supply tuple can again be referenced with
supply type symbols. In the laundry-pile example two sentences about the locations of
laundry piles would be asserted at the spatial level: one at <x, y, z> = <1, 1, 1> and one at
<x, y, z> = <2, 2, 1>. The advertisements forms are also evaluated at the higher level, but
they are evaluated only once per activation of the translator, after all of the products
forms have been evaluated. In the example a single form would be posted to the spatial
level upon each activation, indicating the time at which the translator completed running.

8.7 Strategies for Monitoring

90

An important aspect of any dynamic-world planning system is the ease with which the

system designer can incorporate monitoring tasks into the planning process. Monitoring
tasks are tasks that continuously (or at least repetitively) check for the truth of some
condition, triggering an appropriate reaction when the condition becomes true. APE
provides several mechanisms for monitoring change in the environment. In this section I
will briefly describe monitoring with demons, monitoring with looping steps, and
monitoring with translators. These three mechanisms may also be combined to allow for
more complex monitoring strategies.

In the supervenience architecture, only the lowest levels have direct access to sensors,
and hence to the world. At the lowest levels, one can speak of the monitoring mechanisms
as monitoring change “in the world,” although it is more precise to speak of them as
monitoring change “in the world-as-sensed.” For higher levels the monitoring is less direct
still; one can monitor changes in the state of affairs at that level when monitoring with
demons or with looping steps, or at the immediately lower levels when monitoring with
translators.

Demons are the simplest and most intuitive mechanism for monitoring the state of
affairs. To monitor with a demon, one posts a teleoepistemic goal of discovering (or
debunking) the existence of a condition of interest. All goal-posting blackboard commands
allow for the specification a call-back function that is evaluated when the goal is achieved
(see Section 8.4). Any actions that should result from the firing of the monitor can be
included in the code of the call-back function. The reaction to a monitored condition may
be a simple command to finish the step containing the monitor, thereby allowing for the
firing of other transitions. But call-back reactions may also be arbitrarily complex; for
example, if the coordinates of a known laundry pile are x, y, and z, then the step in Figure
15 can be used to monitor the position of the laundry pile, and to print a message and to
cause the operator to fail if the pile moves.

(monitor-laundry-pile
 (debunk ̀ (at laundry-pile ,x ,y ,z)
 :call-back #'(lambda () (print "The laundry moved!") (fail)))

Figure 15. Monitoring with a demon.

When demons are used for monitoring, the responsibility for actually discovering if the
monitored condition holds falls on other operators and translators in the system. The
demon posted in Figure 15 will fire when the belief that there is a laundry pile at the given
location is debunked, but the demon itself performs no actions or inferences to bring about
such a change of belief. The posting of the demon simply sets up a reaction to the
discovery that the condition holds.

If a demon’s condition holds when it is posted, the call-back function will be evaluated
immediately. Otherwise, the demon will remain dormant until the condition is asserted.
Other operators or translators may be instantiated by the system in an attempt to achieve
the demon’s goal. For example, the goal posted in Figure 15 might trigger a watch-
laundry-pile operator with a for argument of (debunking (at laundry-pile :? :?

91

:?)) . Such a watch-laundry-pile operator would presumably trigger actions and/or

inferences that would cause `(at laundry-pile ,x ,y ,z) to be rejected when the
laundry pile in question is moved. This would cause the demon posted in Figure 15 to fire,
printing the message "The laundry moved!" and triggering the failure of the operator that
contains the step. It is also possible that other operators or translators would reject (̀at
laundry-pile ,x ,y ,z) serendipitously, as a side effect of some other process.

(monitor-laundry-pile
 (debunk ̀ (at laundry-pile ,x ,y ,z)
 :call-back #'(lambda ()
 (if (believed ̀ (near laundry-pile ,x ,y ,z))
 (print "The laundry moved!")
 (print "The laundry disappeared!"))
 (fail)))

Figure 16. Monitoring with a demon that checks other items on the blackboard.

Because demons are attached to individual blackboard items, demon-based monitoring
works best when the condition to be monitored is expressed as a single sentence on the
blackboard. It is possible, however, for a demon to check for other items on the blackboard
when fired, allowing for demon-based monitoring of more complex conditions. The demon
posted by the step in Figure 16 prints one of two messages, depending on the presence or
absence of a second sentence on the blackboard. This technique becomes cumbersome,
however, when the conditions of interest become more complex.

When it is necessary for an operator to monitor for a complex set of conditions, it is
generally simpler to introduce an explicit monitoring loop in the operator’s Petri net. This
also allows the full power of the operator construction formalism to be utilized in
structuring complex monitoring behaviors. There is a price for this added flexibility; in
contrast to demons, looping step monitors require CPU time even when they have yet to
detect the condition of interest.

The code fragment in Figure 17 shows part of an operator with a looping step monitor.
The corresponding fragment of the operator’s Petri net is graphed in Figure 18. The
check-for-pile-change step checks for a variety of beliefs about laundry piles at and
adjacent to the known laundry pile location. If the known pile is unmoved, but an
additional pile is detected in an adjacent location, then a notation is made on the
blackboard that there exists a laundry “mess.” If there is no longer a pile at the original
location, but there is a pile at an adjacent location then the operator assumes that the
original pile was moved—if there is an explicit statement on the blackboard that such
movements are unacceptable, then the operator fails. If there is no longer a pile at the
original location, and there is not a pile at an adjacent location then the operator makes one
of two assumptions, depending on the existence of other notations on the blackboard—if
humans are believed to be home then the operator assumes that someone else took care of
the laundry and the operator succeeds; otherwise it fails. The check-if-care and check-
for-pile-change steps form a loop, allowing the check-for-pile-change step to run
repeatedly. The loop can be turned off and on by other steps in the operator, or by other
operators at the same level; asserting a belief in (care-about pile-change) turns the

92

loop on, while rejecting such a belief turns the loop off.

Demons and looping step monitors provide mechanisms for monitoring the state of
affairs at a given level, but access to other levels can be accomplished only with the aid of
translators. In this context translators can be viewed as monitors; the translator runs
continuously, monitoring the lower level for a condition (expressed in its supplies and
test) and reporting to the higher level (via its products and advertisements) when the
condition is met.

:level :spatial
:steps ...
(watch-for-new-piles
 (discover '(locations laundry-pile))
 (discover ̀ (adjacent laundry-pile ,x ,y ,z))
 (finish watch-for-new-piles))
(care-about-pile-change
 (believe '(care-about pile-change))
 (finish care-about-pile-change))
(check-if-care
 (discover '(care-about pile-change)
 :call-back #'(lambda () (finish check-if-care))))
(check-for-pile-change
 (cond (;; pile unmoved, adjacent pile present also
 (and (believed ̀ (adjacent laundry-pile ,x ,y :?))
 (believed ̀ (at laundry-pile ,x ,y :?)))
 (believe ̀ (laundry-mess ,x ,y :?))
 (finish check-for-pile-change))
 (;; pile moved to adjacent location
 (believed ̀ (adjacent laundry-pile ,x ,y :?))
 (if (rejected '(acceptable laundry-movement))
 (fail)
 (finish check-for-pile-change)))
 (;; pile gone and nowhere close
 (rejected ̀ (at laundry-pile ,x ,y :?))
 (if (believed '(home humans))
 (progn (print "Thanks for doing the laundry!")
 (succeed))
 (fail)))
 (t ;; otherwise continue looping
 (finish check-for-pile-change))))
...
:transitions ...
(watch-for-new-piles :> care-about-pile-change)
(care-about-pile-change :> check-if-care)
(check-if-care :> check-for-pile-change)
(check-for-pile-change :> check-if-care)
...

Figure 17. A looping step monitor.

93

Watch-For-New-Piles Care-About-Pile-Change Check-If-Care

Check-For-Pile-Change

Figure 18. The Petri net fragment corresponding to the code in Figure 17.

The code fragment in Figure 17, in conjunction with the laundry-pile translator
shown previously in Figure 13, serves to illustrate the use of translators in monitoring. The
looping step monitor shown in Figures 17 and 18 monitors for appropriate changes at the
spatial level. But in order for the changes to be noticed, they must first be propagated to the
spatial level. The laundry-pile translator will be instantiated for this purpose (in response
to the goal to (discover '(locations laundry-pile))), and will continually generate
representations of laundry piles from perceptual/manual data. The looping step monitor is
monitoring the spatial-level blackboard for laundry piles in certain locations, while the
translator-based monitor is monitoring the perceptual/manual-level blackboard for new
laundry piles that may be of interest to the looping step monitor. The laundry-pile
translator can be thought of as monitoring the perceptual/manual level for the sake of the
spatial level operator. This illustrates how cross-level (translator-based) monitoring can be
combined with looping step monitoring; combinations with demon-based monitoring are
possible as well.

Each of APE’s monitoring techniques is appropriate in different circumstances. An
operator can monitor a lower level of representation only with the aid of a translator. But
while translators are well-suited for monitoring across levels, they cannot be used for
monitoring within levels. Within a given level, the simplest and most efficient monitoring
technique is provided by APE’s demons. The monitoring of complex conditions can be
accomplished with looping steps in an operator’s Petri net, but such monitors may use CPU
time even when the conditions of interest do not hold. The appropriateness of any
monitoring method for a given task depends additionally on the details of the knowledge
representation conventions employed by the programmer.

8.8 Parallelism: Theoretical and Simulated
One of the reasons that the blackboard model was chosen as a basis for the

supervenience architecture was the promise of parallelizability inherent in the blackboard
model. Parallel implementation has been a topic of interest in blackboard research since its
earliest days (e.g., [Erman and Lesser 1975]). Recently, several researchers have been
exploring techniques for actually realizing the promise of parallelizability [Bisiani and
Forin 1989], [Corkill 1989], [Craig 1989], [Jagannathan 1989].

The supervenience architecture provides many opportunities for parallelism. APE was
developed on an Apple Macintosh computer, and is written, for the most part, in generic
Common Lisp. Since the Macintosh is a single processor machine, the parallelism inherent

94

in the supervenience architecture is simulated by use of a scheduling mechanism. The

simulation helps to illustrate that the program does not rely on sequence-related effects that
would fail to obtain in a true parallel implementation.

The largest units of APE that may run in parallel are the planning levels. Each level is
an independent planning system, receiving goals from above and world-knowledge from
below. Each of the major components within each level may also run in parallel.
Translation systems may run “continuously,” moving goals and knowledge between
adjacent levels. Blackboard maintenance procedures, including demons, may also run in
parallel, assuming that some method is employed to avoid read/write conflicts and the like.
The operator maintenance procedures, including triggers and resource arbitrators, may also
run asynchronously and in parallel. While all of these processes are running, the operators
themselves can be running, planning and initiating actions in the world. Of course, the
number of active operator instances is dynamic, and this must be taken into account in
simulating parallelism and in making optimal use of parallel hardware; the same holds for
the number of translators, demons, etc.

The active operators at a given level may run in parallel with each other, and
parallelism may also occur within operators. The Petri nets used in specifying operator
steps allow not only for nondeterministic ordering of the execution of code, but also for the
parallel execution of code. When a transition with two output places fires, the code from
the two output places may be executed in parallel.

This aspect of APE, and of the supervenience architecture in general, is based on a very
liberal notion of MIMD parallelism, in which the number of independent processors is
essentially unlimited, and in which new processors can be allocated upon demand.

Parallelism in APE is simulated through the use of a data structure called a feap (short
for “function heap”) that implements an efficient timed function queue. Functions that are
to be run in parallel are inserted into a queue, sorted by the amount of time that they have
already run. When the feap is allocated processor time, the minimal element of the queue
(i.e., the function that has run for the least time) is removed from the queue and executed.
The execution of the function is timed, and the incremented run time of the function is used
to reinsert the function into the queue at the proper position. A heap data structure is used
to implement the queue, allowing for efficient computation of the removal and reinsertion
operations (see, e.g., [Aho, Hopcroft, and Ullman 1983, 143–145]).

An allocation factor, used in scaling the recorded run time, can also be specified for
each function in a feap. The allocation feature can be used either to simulate processors of
various speeds, or to simulate (roughly) a prioritized scheduling system for a limited
number of processors. If a given feap contains two functions, with allocations of 1 and 2,
then the function with the allocation of 2 will, over time, receive approximately double the
CPU time of the other function.

The use of feaps for the simulation of parallelism relies on the assumption that the
functions to be run in parallel each run “for a little while” each time they are called, and
that they will each be called several times before being removed from the feap. For
example, if functions fun1 and fun2 are to be run in parallel, then they should be written
such that multiple calls are required for each function to “do its job.” After fun1 and fun2
are inserted into feap F, successive calls to (run-next F) will execute whichever of fun1
or fun2 has thus far received the least time. The interleaving of calls to fun1 and fun2 will

95

thereby simulate parallel execution. All of the functions in APE were written to conform to

these assumptions. For example, the internal function that runs active operator instances
executes, for each call, at most one step of one operator instance.

The top-level function of the APE system runs a loop that repeatedly executes and
reinserts the minimal element of the main system feap. This feap contains only two
functions, one of which runs the minimal element of the levels feap, and one of which runs
the minimal element of the translation levels feap. The levels feap is composed of five
functions, one for each planning level, each of which runs the minimal element of the feap
for that level. The feap at each level contains a function for each active operator, and a
single trigger function that performs operator instantiation. The translation levels feap is
composed of four functions, one for each level of translators. The feap at each translation
level contains a function for each active translator, and a single trigger function that
performs translator instantiation.

A problem that arises in using feaps for the simulation of parallel processing is that all
functions on the feap get the same amount of processor time (modulo their allocation
factors), regardless of whether or not they are getting any work done. In an environment
with a large supply of processors, a “spinning” processor is a source of inefficiency but
may not be a major concern. In an environment with only one processor, time wasted
simulating spinning processors can be debilitating. For this reason modifications have been
made to APE’s feap mechanism to allow for intelligent “spin control.” These modifications
range from allowing for a minimum assumed run time (configurable by the user) to a
mechanism whereby functions that are known to be spinning can be idled. Idled functions
are stored on a secondary queue in the feap, and use no run time until they are explicitly
unidled. This mechanism is used, for example, for operators that can make no progress
until reactivated by demons on the blackboard.

The supervenience architecture allows for a great deal of parallelism in theory, but
some of the practical issues of parallel implementation have yet to be addressed. Some of
the issues (for example, asynchrony) have been addressed via simulation in the APE
implementation, while others await further research. Future work may focus on improving
the simulation or on porting the system to true parallel hardware (see Chapter 10).

96

Chapter 9

HomeBot

9.1 Domain Description
Dynamic-world planning is difficult only in complex domains. When a domain is small

enough and well enough understood, one can anticipate nearly all eventualities; in such
cases even exponential searches may perform reasonably well. I have therefore applied
APE within a relatively large and complex domain which is nonetheless familiar enough
that it is easy to introspect about human behavior within it. This domain is suitable for
practical dynamic-world planning research because of its size and complexity, and also
because of the structural richness of the real-world events that can occur. While regimented
domains such as Tileworld [Pollack and Ringuette 1990] are useful for certain quantitative
studies, they do not give rise to high-level symbolic reasoning tasks with which real-world
agents must contend. The Seaworld domain of [Vere and Bickmore 1990] and the Delivery
Truck Domain of [Firby 1989] are both similar to the HomeBot domain in that realistic
segments of the world are simulated to a level of detail intermediate between that of the
real world and that of simple blocks world domains.

HomeBot is a simple one-armed, one-eyed robot that “lives” in a one bedroom apart-
ment. HomeBot is expected to perform household tasks such as cleaning and protecting the
human residents from danger. The apartment consists of six rooms (bedroom, kitchen,
living room, bathroom and closets), quantized into 2,204 spatial locations in our current
simulation.48 A range of objects (furniture, pieces of laundry, etc.) may be present in the
apartment at any given time. In addition, external occurrences may be triggered at any
time. The doorbell may ring, an object may be moved, one of HomeBot’s sensors may fail,
etc.

The layout of the full HomeBot domain is shown in Figure 19. Figure 20 shows a
snapshot of the user interface of the HomeBot system. The solid black square on the left
side of the “World Simulator” window represents HomeBot, and the sparsely dotted square
above it represents HomeBot’s open hand. When HomeBot’s hand is closed its pattern
changes to stripes. The full set of objects shown in figure 19 is not present in the snapshot;
objects can be created and added or deleted from the simulation as needed for a given
problem. The snapshot shows a “popup menu” by which the experimenter can intervene in
a simulation. The set of items in this menu is easily modified. The experimenter can also
click on the various robot control buttons in order to move the robot in the midst of a

97

48Our initial HomeBot world simulator quantized the world into over 70,000 spatial locations. The
planning system performed well with the fine-grained simulation, but the world simulator itself ran slowly,
making experimental use of the system impractical.

simulation. HomeBot will not be aware of such manipulations until it performs sensing

operations and infers that changes have occurred. The “Objects In View” window, created
when the experimenter clicks on the “Sense Visual” button, shows the names of the objects
currently in view of the robot. The experimenter can click on the name of an object to
examine the object’s properties in a separate window. The “Activity” window shows the
names of the operators and translators currently running at each level. Question marks in
the Activity window represent the activity of operator and translator instantiation mech-
anisms. The experimenter can click on the boxes on the right of the Activity window to
change the allocations of the main feaps at each level (see Section 8.8), thereby effecting a
simple form of dynamic load balancing during experiments. The system also includes a

98

Petri net grapher and a scenario record/playback mechanism.

Closet-1

Kitchen

LivingRoom

Bedroom

Closet-2

Hall-1

Bathroom

Sink

Tub

Toilet

Shelves

Door-1 Door-2

Door-3
Door-4

Door-5

Door-6

Door-7

Hamper

FridgeSink

Cabinet

Trash-Can

Stove

Dining-Table

Coffee-Table

Couch

TV

Chair-1

Chair-2

Robot-Hutch

Bed

Laundry-Machine

HomeBot

Figure 19. HomeBot’s domain.

99

Objects In View

Activity

Figure 20. A snapshot of the user interface to the HomeBot system.

100

The HomeBot domain is a simulation; it is implemented as a program that runs
asynchronously with APE. The top level loop of APE, described in Section 8.8, includes a
call to the world simulator to update the state of the simulated environment. The agent
interacts with the simulated world through the use of sensor and effector commands that
approximate those currently used in actual robotic applications.

There are several benefits to working with simulators rather than with actual robots in
the real world. Real robots are expensive, and working with them requires that a great deal
of time be spent on issues peripheral to the topic under study. On the other hand, it is often
difficult to determine if a simulator is simulating the “appropriate” aspects of the real world
for properly testing a proposed system. Firby and Hanks discuss the trade-offs in using
simulators, and argue that simulators can play an important role in the advancement of the
field [Firby and Hanks 1987].

It is important that simulators be used correctly. If an agent is given arbitrary access to
the simulator then it may be possible for it to “cheat” in various ways. For example, it
might be possible for such an agent to know the locations of objects that it has not yet
sensed, or for it to be automatically appraised of distant changes in the world. In order to
avoid such possibilities a simulation-based planning system should include a clearly
defined interface between the simulation and the agent’s internal representations. This
interface is defined for the HomeBot world simulator in Section 9.2 below.

The representation of the apartment, the position of objects within it, etc., is entirely
distinct from HomeBot’s internal representation of the world. HomeBot “knows” only that
which it can infer from the data it receives through its sensors. This data is presented to
HomeBot in real-time as sensory descriptions of pre-recognized objects. Although Home-
Bot is not required to perform object recognition from raw images, the domain forces
system designers to handle some of the dynamism and unpredictableness of real-time
sensory reports.

9.2 Application of APE
The application of APE to the HomeBot domain involves the implementation of the

interface between the world simulator and the HomeBot’s perceptual/manual level, and the
design of operators and translators for the tasks that HomeBot is expected to handle.
Operators and translators for the HomeBot domain are described in Section 9.3, in the
context of the examples in which they are used.

The interface between world simulator and the HomeBot’s perceptual/manual level
consists of two functions: sense and control . All knowledge of the state of the world is
acquired through the sense function, which takes a single modality argument. The valid
sense modalities are: :visual , :negative-visual , :body , :orientation , :hand-
contents , and :tactile . A call to (sense :visual) invokes a routine that simulates
vision from HomeBot’s perspective and returns a list of the objects that are within view.
HomeBot has a limited visual range (approximately one third the length of the apartment)
and the vision routines do not allow vision through objects. The :negative-visual
modality returns a list of the visible coordinates at which there are no objects. The object

101

descriptions returned by (sense :visual) , and by the other sense modalities as well,

consist of the name, coordinates, color, material, and temperature of the sensed object.49

A call to (sense :body) returns a list of the objects that constitute HomeBot’s body.
Since the object descriptions include coordinates, this call can be used to locate HomeBot
within the apartment. The (sense :orientation) command returns the direction (north,
east, south, or west) that HomeBot is currently facing.

The (sense :hand-contents) command returns a list of the objects that HomeBot is
carrying. This command is the principal means by which HomeBot can determine if a
carried object has been dropped. Such information might also be inferred from visual data
(for example, that the object is on the floor).

The (sense :tactile) command returns the temperature of HomeBot’s hand. This is
the principal means by which temperatures in the world are assessed.

The control function can be called with up to three arguments: a body-part , a
motion specification, and a direction . The valid argument combinations are shown in
Figure 21. In each case the simulator attempts to effect the specified motion without
violating world constraints (for example, the solidity of walls). If such constraints would be
violated then the simulator simply ignores the command; no direct feedback is provided for
either success or failure. HomeBot must use the sense command, in conjunction with
previous knowledge, to determine whether actions in the world have succeeded or failed.

body-part motion direction
:body :forward —
:body :right —
:body :backward —
:body :left —
:body :rotate :clockwise
:body :rotate :counter-clockwise
:arm :extend —
:arm :retract —
:arm :raise —
:arm :lower —
:hand :open —
:hand :close —

Figure 21. Valid argument combinations for control .

HomeBot’s sense of time is provided by a system clock synchronized to the top-level
loop of APE. On each passage through the loop the system introduces an updated sentence
of the form (homebot-time <integer>) to the temporal-level blackboard.

102

49APE operators that call (sense :visual) do not generally access the returned temperature
value even though the simulator provides it; infrared sensing capability is not assumed.

9.3 Examples
In this section I provide examples of the operation of the HomeBot system. The

HomeBot domain allows for a large range of tasks, and for a large and complex set of
potential difficulties. The extent to which such tasks can be accomplished, and the extent to
which such difficulties can be handled, depends on the specific set of operators and
translators provided to the system. Section 9.3.1 describes a “basic” set of HomeBot
operators and translators and provides detailed examples of their operation. Section 9.3.2
shows how HomeBot’s functionality can be extended through the addition of new
operators and translators.

HomeBot is a complex system, in which a large number of processes are generally
running “at the same time,” even in the simplest examples. The simulation of asynchronous
parallelism, while helpful in assessing the prospects for future parallelization of the model,
further complicates documentation and analysis of the system’s behavior. Hence the
examples are documented using a variety of devices, including “trace” output, code
listings, graphs of operator Petri nets, operator activation graphs (generated from trace
output), and English text.

9.3.1 Basic Examples
In this section I describe a basic set of operators and translators for HomeBot and

provide detailed examples of their operation. Section 9.3.1.1 describes the operators and
translators, and Sections 9.3.1.2, 9.3.1.3, and 9.3.1.4 provide the examples.

The first example, “HomeBot Feels Pain” (9.3.1.2), demonstrates that APE is capable
of producing low-level reactive behavior. The pain reflex is implemented as a
perceptual/manual process that requires no mediation by higher-level reasoning processes.

The second example, “HomeBot Navigates” (9.3.1.3), demonstrates how
communication between the spatial and perceptual/manual levels allows HomeBot to make
use of spatial reasoning procedures to solve navigation problems. In contrast to the pain
example, the navigation example shows how APE allows for reactions that are computed
on the basis of higher-level knowledge.

The third example, “HomeBot and the Ice Cube” (9.3.1.4), shows how HomeBot
handles the Ice Cube problem described previously in Section 2.3. This example
demonstrates the integration of deliberative and reactive behaviors across multiple levels
of representation. Such problems were the motivation for the development of the
supervenience architecture.

9.3.1.1 Basic Operators and Translators
This section describes the basic set of operators and translators that are used to exhibit

APE’s properties. The operators required for the examples of the next three sub-sections
are listed in Figure 22, and the translators needed for these examples are listed in Figure
23. With these operators and translators installed, HomeBot’s most functional subsystem is
at the lowest level; the operators at the perceptual/manual level are complete enough to
handle a fairly wide range of simple tasks. The spatial level is less complete, but still
non-trivial. The temporal, causal, and conventional levels are quite simple; they are

103

sufficient for a small set of examples, but no claims are made about their generality. In the

following paragraphs I will sketch the capabilities of the operators and translators in this
basic set; detailed expositions are provided in the context of examples in the subsequent
sections.

The perceptual manual level organizes calls to sense and control, implementing
base-level functionality for moving HomeBot around the apartment, for grasping and for
releasing objects. The roll operator performs straight-line navigation, but complex path
planning is performed at the spatial level. When the spatial level provides a path to the
perceptual/manual level, the roll-on-path operator is used instead of the roll operator;
the switching between roll and roll-on-path is accomplished with filter conditions.
(See Section 9.3.1.3 for further detail.)

The spatial level performs path planning and navigational tasks, and is also responsible
for computing and achieving spatial relations. The current capabilities are only for stacking
relations, employing the spatial concept on. The system can be extended to perform
analogous functions for other spatial concepts such as in, around, and so forth.

The temporal level performs scheduling tasks; for example, it passes down periodic
sensing commands to ensure that HomeBot’s world models are reasonably current. The
achieve-after operator provides a primitive sequencing capability. It takes two
conditions and issues a command for the achievement of the second only after the first is
believed. The project operator provides a mechanism for asserting that conditions will
become true in the future. It takes sentences of the form (at-time <time> <condition>)
and creates demons, triggered by the system clock, that will assert beliefs in the appropriate
conditions at the appropriate times.

The causal and conventional levels are quite rudimentary; they simply serve to show
where and how causal and conventional knowledge can be integrated into an APE system.

104

Perceptual/Manual Spatial
look move-object
feel put-on
move-forward find-space-above
move-backward navigate
move-left plan-path
move-right check-for-clear-path
turn-clockwise compute-stacking-relations
turn-counter-clockwise compute-height-relations
raise-arm
lower-arm Temporal
extend-arm track-object-locations
retract-arm maintain-body-awareness
open-hand check-time-since-looked
close-hand check-time-since-felt
pain-reflex achieve-after
hand-pain-reflex project
roll-on-path
roll Causal
rotate do-laundry
figure-direction project-state-change
get-within-reach
get-rid-of-object Conventional
move-hand earn-praise
grab find-impropriety

find-hazard
sponge-trick

Figure 22. Basic HomeBot operators used in examples.

Below Spatial Below Temporal
object-center visual-scene
object-centers spatial-visual-status
spatial-materials tactile-scene
spatial-temperatures spatial-tactile-status
closest-point temporal-stacking
path temporal-materials
object-motion temporal-temperatures
hand-contents
distance Below Causal
motion-blockage causal-stacking
relieved-blockage delayed-achievement
free-space state-of-matter
looking
prmn-visual-status Below Conventional
feeling cleaning
prmn-tactile-status conventional-stacking

slip-hazard-avoidance
slip-hazard-detection

105

Figure 23. Basic HomeBot translators used in examples.

HomeBot’s basic set of translators follows a similar pattern, as shown in Figure 23. The
lowest levels are the most complete, while the translators implemented at higher levels are
targeted to a specific set of examples. The translators below the spatial level convert
perceptual data into sentences about spatial level concepts such as object centers and
distances. Paths and goals for which solutions can be achieved at the perceptual/manual
level are passed down.

Several of the translators in the current HomeBot system exist solely to “relay”
information between levels that must communicate, but that are not immediately adjacent.
For example, when the temporal level schedules and then seeks to execute a sensing
command, the spatial level must mediate the communication to the perceptual/manual level
even when it has no other role to play. This suggests that the linear ordering of levels in
APE, while simple and workable, should give way a more richly interconnected set of
levels in future implementations.

9.3.1.2 HomeBot Feels Pain
This example demonstrates the low-level reactive capabilities of the APE system, as

implemented in HomeBot’s pain reflex.50 At the start of each run the HomeBot system is
initialized with a set of goals. Most of the system’s goals are derived by goal-
decomposition from the initial conventional level goal to (achieve '(praise)) , but
initial goals are posted at lower levels as well. The pain reflex is initialized by an initial
goal to (abolish '(painful :?)) , which is posted at the perceptual/manual level. This

106

50I am not making a metaphysical claim that HomeBot actually feels pain, although related claims
have been made and disputed with reference to cognitive models (see, e.g. [Dennett 1978]). Neither is
HomeBot’s pain reflex intended to model the full behavioral complexity of human or animal pain reactions.
HomeBot’s pain reflex is a low-level “reflex arc” for self-preservation; analogous reflex arcs in humans are
associated with pain, and hence the use of the terms “feel” and “pain.”

goal triggers the instantiation of the pain-reflex operator, shown in Figure 24.

(defoperator pain-reflex
 :level :perceptual-manual
 :for (abolishing (painful :?))
 :filters ((eq ?1 :?))
 :steps ((HAND-PAIN-REFLEX
 (doubt ̀ (painful hand))
 (abolish ̀ (painful hand) :priority :urgent
 :call-back
 #'(lambda () (finish HAND-PAIN-REFLEX))))
 (HEAD-PAIN-REFLEX
 (doubt ̀ (painful head))
 (abolish ̀ (painful head) :priority :urgent
 :call-back
 #'(lambda () (finish HEAD-PAIN-REFLEX)))))
 :initially (HAND-PAIN-REFLEX HEAD-PAIN-REFLEX)
 :transitions ((HAND-PAIN-REFLEX :> HAND-PAIN-REFLEX)
 (HEAD-PAIN-REFLEX :> HEAD-PAIN-REFLEX)))

Figure 24. The pain-reflex operator.

The for argument of the pain-reflex operator specifies that the operator will be
triggered for any goals of abolishing sentences with two symbols, the first of which is
painful . The filters argument specifies that the operator is only really appropriate when
the second symbol is the variable :? ; this ensures that goals for abolishing specific pains
like (painful hand) will be handled only by specialized operators. The pain-reflex
operator contains two steps, each of which sets up a specialized pain reflex. The HAND-
PAIN-REFLEX step first issues a command to doubt the painful status of the hand. This has
the effect of setting the epistemic tag of the blackboard item for (painful hand) to “?”,
regardless of its previous state. It then posts a goal of abolishing (painful hand) with a
priority of :urgent , and attaches a demon to the goal that will finish the HAND-PAIN-
REFLEX step if and when (painful hand) is abolished. The initially argument specifies
that HAND-PAIN-REFLEX will begin executing as soon as the operator is instantiated, and
the first clause of the transitions argument creates a loop in the Petri net that will ensure
that HAND-PAIN-REFLEX is re-executed each time it finishes (see Figure 25). The HEAD-
PAIN-REFLEX step is analogous, and may run in parallel with HAND-PAIN-REFLEX. The
pain-reflex operator has no arguments specifying termination actions (for example,
on-success), because it is intended to run forever.

Hand-Pain-Reflex

Head-Pain-Reflex

107

Figure 25. The Petri net of the pain-reflex operator.

The goal to (abolish '(painful hand)) , posted by the pain-reflex operator,
triggers the instantiation of the hand-pain-reflex operator shown in Figure 26. The
hand-pain-reflex operator has a filter condition complementary to that in pain-reflex
which ensures that it will not be instantiated for goals containing variables. The Petri net
for hand-pain-reflex, shown graphically in Figure 27, contains eight steps, several of which
may run in parallel.

(defoperator hand-pain-reflex
 :level :perceptual-manual
 :for (abolishing (painful hand))
 :filters ((neq ?1 :?))
 :steps ((FEEL (discover ̀ (current body-awareness)
 :call-back
 #'(lambda () (finish FEEL))))
 (DETECT-HEAT
 (discover ̀ (temperature robot-hand hot)
 :call-back
 #'(lambda () (finish DETECT-HEAT))))
 (DETECT-COLD
 (discover ̀ (temperature robot-hand cold)
 :call-back
 #'(lambda () (finish DETECT-COLD))))
 (GAIN-CONTROL (start-using :arm-control)
 (finish GAIN-CONTROL))
 (DROP-CONTENTS (control :hand :open)
 (finish DROP-CONTENTS))
 (RETRACT (control :arm :retract)
 (finish RETRACT))
 (YELL (beep) (format t "~%OUCH!, My hand hurts!")
 (finish YELL))
 (DONE (doubt '(current body-awareness))
 (achieve '(current body-awareness)
 :call-back
 #'(lambda () (succeed)))))
 :initially (FEEL)
 :transitions ((FEEL :> DETECT-HEAT DETECT-COLD)
 (DETECT-HEAT :> GAIN-CONTROL)
 (DETECT-COLD :> GAIN-CONTROL)
 (GAIN-CONTROL :> DROP-CONTENTS RETRACT YELL)
 (DROP-CONTENTS RETRACT YELL :> DONE))
 :on-success ((reject '(painful hand)))
 :on-termination ((stop-using :arm-control)))

Figure 26. The hand-pain-reflex operator.

The first step to be executed is FEEL, which ensures that the sensor information
recorded on the blackboard is current. The notion of “current” at the perceptual/manual
level is not explicitly temporal; sensor commands generally finish by asserting that

108

knowledge is current, and control commands generally finish by rejecting or doubting that

this is the case. On the other hand, the temporal level periodically rejects (current
body-awareness) , so the temporal connotations of “current” are sometimes appropriate.

Feel

Detect-Heat

Detect-Cold

Gain-Control

Drop-Contents

Retract-Arm

Yell

Done

Figure 27. The Petri net of the hand-pain-reflex operator.

When the sensor knowledge is deemed to be current two steps, DETECT-HEAT and
DETECT-COLD are both queued for execution. Each of these posts a knowledge goal (with a
demon) on the blackboard to discover if a certain hand temperature is detected. The
detection of either a hot or cold hand is sufficient to fire a transition in the operator that
queues GAIN-CONTROL for execution.

The GAIN-CONTROL step asks the resource arbitrator to seize control of the :arm-
control resource. Since the (abolish '(painful hand)) goal was posted with a
priority of :urgent , the hand-pain-reflex operator also has a priority of :urgent . This
means that the resource arbitrator will suspend any other operator currently using :arm-
control , unless that operator also has a priority of :urgent (in which case the tie is
broken arbitrarily). Once control of the arm has been seized, a transition can fire that will
queue the code from steps DROP-CONTENTS, RETRACT and YELL for execution.

DROP-CONTENTS calls a primitive control function to open the hand, immediately
releasing its contents. RETRACT calls a primitive control function to retract the arm, a move
intended to maximize the distance between the hand and the offending object. YELL simply
makes a sound and prints a message. These three reactions may occur in any order, and in a
true parallel environment they could occur simultaneously. It might be more rational to
require that DROP-CONTENTS occur before RETRACT; such a constraint could easily be
added. Once all three reactions have been completed, the final transition may fire, queuing
the DONE step for execution. The DONE step asserts doubt of the correctness of the current
sensory knowledge (since it may not have been updated since the opening of the hand and
the retraction of the arm), and declares success once that knowledge has been updated. This
triggers an assertion that the pain has been alleviated (via the on-success argument) and
releases control of the arm (via the on-termination argument). The hand-pain-reflex
operator then terminates, but the loop in pain-reflex ensures that a new instance will be
created shortly.

The remainder of this section describes trace output produced by APE during a
demonstration the pain reflex. In the test run, a hot, dirty sock51 is placed a few steps in

109

51HomeBot is fortunate in not having olfactory sensors.

front of HomeBot, leading via subgoaling from earn-praise , do-laundry , etc., to goals

for picking up the sock.52 The pain reaction ensues when the hot sock is in the hand and a
tactile sensing operation is performed. The numbers in the first columns of the listings
indicate sequence; the number “1” indicates the first message in the run of the system. Note
that there are gaps, particularly in the later listings—the listings have been edited to
highlight the portions most relevant to the pain reaction.53 Gaps in the sequence are
highlighted by an initial “* ” on the line following the gap. The second column indicates the
level at which the described action is taking place, with translation levels indicated by a
level abbreviation preceded by “B” (for “Below”). The third column reports the name of
the relevant operator or translator, or “Checking for matches” for the operator/translator
triggering function. The remaining columns describe the action itself. When the action is
the execution of an operator’s step , the name of the step is printed. When the action is the
instantiation of an operator, the sentence of the triggering goal is printed.

The following listing shows the first twenty output-producing events of the run:

 1 BConv Check for matches
 2 Conv Check for matches
 3 Conv EARN-PRAISE INSTANTIATE (PRAISE)
 4 Temp Check for matches
 5 Temp PROJECT INSTANTIATE (PROJECTIONS
 PROJECTED)
 6 Temp MAINTAIN-BODY-AWARENESS INSTANTIATE (BODY-AWARENESS)
 7 Temp TRACK-OBJECT-LOCATIONS INSTANTIATE (OBJECT-LOCATIONS)
 8 Caus Check for matches
 9 BSpat Check for matches
 10 Pr/Mn Check for matches
 11 Pr/Mn PAIN-REFLEX INSTANTIATE (PAINFUL ?)
 12 Pr/Mn FEEL INSTANTIATE (CURRENT
 BODY-AWARENESS)
 13 Pr/Mn LOOK INSTANTIATE (CURRENT
 VISUAL-SCENE)
 14 BCaus Check for matches
 15 Spat Check for matches
 16 Spat NAVIGATE INSTANTIATE (MOTION-IMPEDED 1)
 17 Pr/Mn LOOK STEP BELIEVE-YOUR-EYES
 18 Pr/Mn LOOK SUCCEED
 19 Pr/Mn LOOK DISPOSE
 20 BTemp Check for matches

Much of the activity in this listing corresponds to the instantiation of operators in
response to the system’s original goals; by the end of the listing, HomeBot has executed
the first visual sensing action. Line number 11 shows the instantiation of the pain-reflex
operator.

The next listing shows the subsequent twenty-two output-producing events, concluding

110

52For the sake of this test run the higher levels were “primed” with knowledge of the dirty
sock—this speeds the onset of the initial actions.

53The full listing for this example, from the beginning of the run to the completion of the hand-
pain-reflex operator, is 895 lines.

with the posting of the (abolish '(painful hand)) subgoal by pain-reflex :

 21 BSpat Check for matches
 22 Caus Check for matches
 23 BSpat Check for matches
 24 Spat NAVIGATE STEP LOOK-FOR-PROBLEM
 25 Conv EARN-PRAISE STEP DETECT-HAZARD
 26 BTemp Check for matches
 27 Temp TRACK-OBJECT-LOCATIONS STEP WAIT-TO-SURVEY
 28 Pr/Mn PAIN-REFLEX STEP HEAD-PAIN-REFLEX
 29 BCaus Check for matches
 30 Conv EARN-PRAISE STEP DETECT-IMPROPRIETY
 31 Temp PROJECT STEP CHECK-FOR-NEW
 32 BConv Check for matches
 33 Caus Check for matches
 34 Spat NAVIGATE STEP (spinning)
 35 BSpat Check for matches
 36 BSpat MOTION-BLOCKAGE INSTANTIATE
 37 Pr/Mn FEEL STEP GET-DATA
 38 Pr/Mn FEEL STEP BELIEVE-YOUR-FEELINGS
 39 Pr/Mn FEEL SUCCEED
 40 Pr/Mn FEEL DISPOSE
 41 BSpat MOTION-BLOCKAGE RUN
 42 Pr/Mn PAIN-REFLEX STEP HAND-PAIN-REFLEX

The HAND-PAIN-REFLEX step of the pain-reflex operator (line 42) posts a goal that
triggers the instantiation of the hand-pain-reflex operator. The next listing shows the
instantiation of the hand-pain-reflex operator, and the execution of its demon-posting
steps, DETECT-HEAT and DETECT-COLD:

* 53 Pr/Mn HAND-PAIN-REFLEX INSTANTIATE (PAINFUL HAND)
 54 BTemp Check for matches
 55 Pr/Mn Check for matches
 56 Pr/Mn HAND-PAIN-REFLEX STEP FEEL
 57 BSpat MOTION-BLOCKAGE RUN
 58 Conv Check for matches
 59 Temp MAINTAIN-BODY-AWARENESS STEP (spinning)
* 64 Pr/Mn PAIN-REFLEX STEP (spinning)
 65 Pr/Mn Check for matches
 66 BCaus Check for matches
 67 Pr/Mn HAND-PAIN-REFLEX STEP DETECT-HEAT
* 76 Pr/Mn HAND-PAIN-REFLEX STEP DETECT-COLD

At this point the hand-pain-reflex operator instance has completed the preparation
of the hand-pain reflex. When the hand-pain-reflex operator next receives processor
time it will only “spin,” since none of its transitions are enabled and it has no code queued
for execution:

* 86 Pr/Mn HAND-PAIN-REFLEX STEP (spinning)

111

This causes the system scheduler to “idle” the operator instance until one of its demons
fires.

The next listings show some of the key events leading to the grabbing of the dirty sock.
Line 142 shows the execution of the REMOVE-IMPROPRIETY step of the conventional-level
earn-praise operator. (The “impropriety” is the dirty sock on the floor.) The cleaning
translator, responding to this goal, posts a goal of (abolishing (dirty-clothing :?))
at the causal level:

*142 Conv EARN-PRAISE STEP REMOVE-IMPROPRIETY
*165 BConv CLEANING INSTANTIATE

The subsequent lines show the decomposition of the sock-related goals through the
levels of the system. The causal-level do-laundry operator posts a goal that triggers the
spatial-level put-on operator, which in turn posts a goal that triggers the
perceptual/manual-level grab operator:

*180 Caus DO-LAUNDRY INSTANTIATE (CLEAN DIRTY-SOCK)
*194 Caus DO-LAUNDRY STEP TAKE-TO-MACHINE
*209 BCaus CAUSAL-STACKING INSTANTIATE
*246 BTemp TEMPORAL-STACKING INSTANTIATE
*263 Spat PUT-ON INSTANTIATE (ON DIRTY-SOCK
 LAUNDRY-MACHINE)
*298 Spat PUT-ON STEP GRAB-TOP
*301 BSpat HAND-CONTENTS INSTANTIATE
*323 Spat PUT-ON STEP MONITOR-BASE
*338 Pr/Mn GRAB INSTANTIATE (HOLDING DIRTY-SOCK)

The grab operator posts a goal that triggers a move-hand operator, eventually
triggering an instances of, roll , move-forward , and other low-level movement operators.
By the end of the following listing HomeBot’s hand has closed around the dirty sock:

*352 Pr/Mn GRAB SEIZE ARM-CONTROL
 353 Pr/Mn GRAB STEP GAIN-ARM-CONTROL
*357 Pr/Mn GRAB STEP OPEN-HAND
 358 Pr/Mn GRAB SEIZE BODY-MOTION
 359 Pr/Mn GRAB SEIZE BODY-ORIENTATION
 360 Pr/Mn GRAB STEP GAIN-BODY-CONTROL
*366 Pr/Mn GRAB STEP MOVE-HAND
*382 Pr/Mn MOVE-HAND INSTANTIATE (HAND-AT 1 14 1)
*423 Pr/Mn ROLL INSTANTIATE (AT 1 15 ?)
*482 Pr/Mn ROLL STEP TAKE-A-STEP
*548 Pr/Mn MOVE-FORWARD SUCCEED
 549 Pr/Mn MOVE-FORWARD DISPOSE
 550 Pr/Mn ROLL STEP RE-LOCATE
*705 Pr/Mn GRAB STEP CLOSE-HAND
*717 Pr/Mn CLOSE-HAND STEP DO-IT

The next listings show the relevant events from the closing of the hand through the

112

activation of the pain reflex. Lines 735–754 show the instantiation and success of the first

tactile sensing operation subsequent to the closing of the hand:

 727 Pr/Mn CLOSE-HAND SUCCEED
 728 Pr/Mn CLOSE-HAND DISPOSE
*735 Pr/Mn FEEL INSTANTIATE (CURRENT
 BODY-AWARENESS)
*741 Pr/Mn FEEL STEP GET-DATA
*752 Pr/Mn FEEL STEP BELIEVE-YOUR-FEELINGS
 753 Pr/Mn FEEL SUCCEED
 754 Pr/Mn FEEL DISPOSE

Because the sock is hot, this operation automatically fires the DETECT-HEAT demon
posted by hand-pain-reflex , enabling the transition in hand-pain-reflex that allows
the pain-reaction to proceed. Lines 759–764 show the execution of the GAIN-CONTROL step
of hand-pain-reflex .54 Since hand-pain-reflex has a priority of :urgent , all other
operators using the :arm-control resource are suspended:

*759 Pr/Mn HAND-PAIN-REFLEX SEIZE ARM-CONTROL
 760 Pr/Mn GRAB SUSPEND
 761 Pr/Mn MOVE-HAND SUSPEND
 762 Pr/Mn GET-WITHIN-REACH SUSPEND
 763 Pr/Mn FIGURE-DIRECTION SUSPEND
 764 Pr/Mn HAND-PAIN-REFLEX STEP GAIN-CONTROL

Lines 811 and 812 show a subsequent attempt by move-hand to regain the :arm-
control resource—the attempt fails because hand-pain-reflex still controls it. Lines
785, 825, and 848 show the execution of the DROP-CONTENTS, RETRACT, and YELL steps of
hand-pain-reflex :

*785 Pr/Mn HAND-PAIN-REFLEX STEP DROP-CONTENTS
*811 Pr/Mn MOVE-HAND Can't seize ARM-CONTROL
 812 Pr/Mn MOVE-HAND SUSPEND
*825 Pr/Mn HAND-PAIN-REFLEX STEP RETRACT
*848 Pr/Mn HAND-PAIN-REFLEX STEP YELL

After the completion of these steps a new goal for tactile sensation is posted by the
DONE step of hand-pain-reflex :

*861 Pr/Mn HAND-PAIN-REFLEX STEP DONE

This triggers an instance of the feel operator; when it is finished, the hand-pain-
reflex operator succeeds, releasing the :arm-control resource and allowing the
resumption of the previously suspended operator instances:

113

54The system prints the “step” message at the end of the execution of a step. The messages printed
in lines 759–763 were all generated during the execution of the GAIN-CONTROL step that is reported in line
764.

*886 Pr/Mn FEEL STEP BELIEVE-YOUR-FEELINGS
 887 Pr/Mn FEEL SUCCEED
 888 Pr/Mn FEEL DISPOSE
*893 Pr/Mn HAND-PAIN-REFLEX SUCCEED
 894 Pr/Mn HAND-PAIN-REFLEX DISPOSE
 895 Pr/Mn HAND-PAIN-REFLEX RELEASE ARM-CONTROL
 896 Pr/Mn GRAB RESUME
 897 Pr/Mn MOVE-HAND RESUME
 898 Pr/Mn GET-WITHIN-REACH RESUME
 899 Pr/Mn FIGURE-DIRECTION RESUME

Many of the lines of output not shown in the above listings pertain to other, unrelated
processes occurring within HomeBot during the same time interval. The activity of the
perceptual-manual level is disrupted by the pain-reaction, but reasoning at other levels (for
example, back-chaining on causal rules) continues without interruption.

9.3.1.3 HomeBot Navigates
HomeBot’s perceptual/manual level is capable of generating only straight-line motion

in the world. The spatial level implements a simple form of path planning that allows
HomeBot to circumvent obstacles that are placed in its way. HomeBot’s paths are simply
intermediate destination points; if the robot is blocked in moving from point a to point b,
then spatial level operators will attempt to find a reasonable point c such that the paths
from a to c and from c to b are both clear. The procedure can also be applied recursively.
This is not a sophisticated form of navigation, but it serves to illustrate several points about
the supervenience architecture.

The spatial level is not involved in low-level movement tasks unless problems are
encountered that require spatial reasoning. Aside from the processes that monitor for such
problems, the computational resources of the spatial level are free for other uses during
motion in the world. When spatial level reasoning and intervention become necessary,
unaffected components of the perceptual/manual level continue to operate. This allows for
progress to be made on other perceptual/manual tasks, and it permits the continuation of
processes that may determine that the previously detected problem has been
serendipitously alleviated. This demonstrates how the supervenience architecture allows
for the application of complex reasoning procedures without interfering unnecessarily with
the reactive behavior of the lower levels.

The roll operator is HomeBot’s perceptual/manual operator most directly responsible
for moving to various locations in the world. The roll operator generates approximately
straight-line motion; its Petri net is shown in Figure 28. For each increment of movement
the operator figures the direction (north, east, south or west) in which HomeBot must move
to approach the target. It then figures which type of movement (left, right, forwards or
backwards) is required and posts a goal for one step of that type. If the movement is
accomplished successfully (determined by relocating and comparing initial and final
locations) then the process is repeated until the target location is reached. Failure may
occur either by a lack of progress determined by the check-progress step, or by a
detection of blockage by the watch-for-blockage step. The watch-for-blockage step

114

posts a demon that will be triggered upon failure of the subgoaling primitive motion

operator (move-forward , move-left , etc.). Whenever failure occurs the operator posts a
belief in an obstacle, possibly of unknown identity, in the appropriate place. Failure also
triggers posting of a statement that the path to the target location is “impassable.”

Gain-Control

Locate

Retract-Arm

Figure-Direction Figure-Motion-Type

Watch-For-BlockageTake-A-Step

Re-Locate

Check-Progress

Figure 28. The Petri net of the roll operator.

An initial goal at the spatial level is to (abolish '(motion-impeded 1)) .55 This goal
triggers the navigate operator, the Petri net of which is shown in Figure 29. The look-
for-problem step posts a goal that, via the motion-blockage translator, detects failed
roll operations at the perceptual/manual level. The motion-blockage translator, shown in
Figure 30, generates sentences about blockages at the spatial level based on conjoined
knowledge about discovered impassable paths and about current achievement goals for
movement of the robot. The monitor-goal step posts a goal that triggers a similar
translator, called relieved-blockage , that monitors the perceptual/manual level for
removal of the obstacle. The find-path step posts a goal that triggers the plan-path
operator in order to find a path around the obstacle. The broadcast step is executed as
soon as either a path is found or the obstacle is noticed to have been removed; it then posts
the new path and triggers the path translator to send the path to the perceptual/manual
level. If the obstacle has been removed then the path-planning operation is cancelled (via a
call to ignore made by the monitor-goal step) and the original path is passed back down.

115

55The “1” in this goal sentence is a counter for the number of navigators that have been instantiated;
it is used to allow for multiple simultaneous navigational processes. This is necessary because APE allows
only one instantiation of a given operator for a given goal at a time.

Look-For-Problem

Monitor-Goal

Find-Path

Broadcast

Figure 29. The Petri net of the navigate operator.

(deftranslator motion-blockage
 :xlevel :below-spatial
 :demand (discovering (blocked-to :? :? :? :?))
 ;the above variables are for x, y, obstacle-x, obstacle-y
 :supplies ((blocked-place ; places that it's impassable to
 (get-all-believed
 ̀ (impassable-to ,?1 ,?2 :? ,?3 ,?4 :?)))
 (destination ; places HomeBot's trying to get to
 (get-all-achieving ̀ (at ,?1 ,?2 :?))))
 :test (and (eql (nth 1 (sentence blocked-place)) ; same x coords
 (nth 1 (sentence destination)))
 (eql (nth 2 (sentence blocked-place)) ; same y coords
 (nth 2 (sentence destination))))
 :products
 ((believe ̀ (blocked-to ,(nth 1 (sentence blocked-place))
 ,(nth 2 (sentence blocked-place))
 ,(nth 4 (sentence blocked-place))
 ,(nth 5 (sentence blocked-place))))))

Figure 30. The motion-blockage translator.

116

(defoperator roll-on-path
 :level :perceptual-manual
 :for (achieving (at :? :? :?))
 :filters ((believed ̀ (path-to ,?1 ,?2 :? :?)))
 :variables (path-x path-y)
 :steps ((GET-PATH-PLACE
 (let ((s (sentence (get-believed-ground
 ̀ (path-to ,?1 ,?2 :? :?)))))
 (setq path-x (nth 3 s))
 (setq path-y (nth 4 s)))
 (finish GET-PATH-PLACE))
 (GET-TO-PATH-PLACE
 (doubt ̀ (impassable-to ,path-x ,path-y :? :? :? :?))
 (achieve ̀ (at ,path-x ,path-y :?)
 :call-back
 #'(lambda () (finish GET-TO-PATH-PLACE))))
 (GET-TO-DEST
 (doubt ̀ (impassable-to ,?1 ,?2 :? :? :? :?))
 (achieve ̀ (at ,?1 ,?2 :?)
 :call-back #'(lambda () (succeed)))))
 :initially (GET-PATH-PLACE)
 :transitions ((GET-PATH-PLACE :> GET-TO-PATH-PLACE)
 (GET-TO-PATH-PLACE :> GET-TO-DEST)))

Figure 31. The roll-on-path operator.

When a path is present at the perceptual/manual level the roll-on-path operator
becomes applicable in place of the roll operator. The roll-on-path operator, shown in
Figure 31, sequentially posts goals for reaching the intermediate and destination targets.
These goals trigger new instantiations of the roll operator. If obstacles are encountered
along the new path then the navigation process continues recursively.

Figure 32 shows an operator activation graph, generated from trace output, for a span
of time during which navigation and path planning were required. The graph shows the
activity of operators with short vertical lines; time is represented by the horizontal axis,
with later events to the right. The double horizontal lines separate levels; from top to
bottom are the conventional, causal, temporal, spatial, and perceptual/manual levels
respectively.

No perceptual/manual activity is shown during path-planning in Figure 32, because the
only active processes at that level are unable to proceed without a resolution of the motion
blockage. However, if the object in the robot’s hand were to suddenly become hot then the
pain reaction of the previous example would occur—the pain reflex functions in the same
way regardless of processes occurring at the spatial level. If the obstacle is removed then
the path-planning process is “short circuited,” and progress continues to the destination.

Figure 33 shows an example of short-circuited path-planning. The square indicates the
last movement before an obstacle was encountered, and the oval indicates the subsequent
navigational and path-planning processes at the spatial level. The obstacle was removed
shortly after it was encountered—this is recorded on the perceptual/manual blackboard

117

upon completion of the look operator (indicated with a circle). Movement resumes almost

immediately (indicated with the rectangle).

Time

Figure 32. Operator activations during navigation.

118

Time

Figure 33. Short-circuited path planning resulting from the removal of an obstacle.

9.3.1.4 HomeBot and the Ice Cube
The Ice Cube problem, described previously in Section 2.3, provides an example of the

need for integration of reactive and deliberative components within dynamic-world
planning systems. In this problem we suppose that HomeBot is in the midst of a chore
when an ice cube is seen in the middle of the floor. We stipulate that there is no built-in
low-level “ice cube reaction rule,” and we further suppose that the ice cube itself is not a
hazard, but that a puddle on the floor is. This latter supposition serves to make more

119

obvious the demand for high-level reasoning; not only must a causal inference of a hazard

take place, but also a causal inference about melting and a temporal inference about the
time taken by such a melting.

The appropriate behavior in the early stages of the Ice Cube problem is for HomeBot to
continue the previous chore while reasoning about the ice cube. Once a hazard is inferred
the previous chore should be suspended, and the hazard should be removed. After the
hazard is removed work should resume on the previous chore with as little replanning as
possible.

As in previous examples, high-level operators perform sufficient reasoning to set up
monitors for “interesting” conditions with respect to their levels of expertise. In this case
the conventional-level earn-praise operator, triggered by the initial goal to (achieve
'(praise)) , monitors for “improper” or “hazardous” conditions. When either is found a
goal is posted for its abolishment. Goals for the removal of improprieties are given
:normal priority, while goals for the removal of hazards are given :urgent priority. This
prioritization can be thought of as a simple piece of conventional knowledge encoded into
the earn-praise operator.

Normal chore-oriented behavior is generated by subgoaling on the goals for
discovering and abolishing improper conditions. In the test run described below, the
improper condition is a dirty piece of clothing (a sock) on the floor. A representation of the
sock propagates to the causal level, where the do-laundry operator generates a plan to
clean the sock via a series of goals that will decompose into temporal, spatial, and
perceptual/manual tasks. Figure 34 shows an operator activation graph, generated from
trace output, for a span of time starting at the beginning of a test run and ending with
HomeBot moving to pick up the dirty sock. In this test run the higher levels were primed
with knowledge of the existence of the dirty sock, as only the later events are of interest.

The circles in Figure 34 show the flow of activity from the conventional level, at which
a decision is made to alleviate the improper condition, to the perceptual/manual level, at
which commands are issued for moving the robot. By the end of the shown trace HomeBot
has made two steps toward the dirty sock, each followed by a re-orienting feel operation.
Note that activity continues at various levels while the motion commands are being
executed. For example, the spatial level begins to reason about the destination of the dirty
sock (with the find-space-above operator, shown with a rectangle) as soon as the put-on
operator has made sufficient progress.

Figure 35 shows a later segment of the same run, during which HomeBot is
simultaneously picking up the sock and noticing the ice cube. The large square indicates
the actions of picking up the sock (extending the arm, closing the hand, and then raising
and retracting the arm), while the circles show the flow of activity relating to the ice cube.
The left-most, lower-most circle indicates the look operation during which the ice cube is
first seen. The subsequent circles show the propagation of the representation of the ice
cube to the causal level, at which a state change (melting) is projected, and to the
conventional level, at which the change is recognized as a hazard. The sponge-trick
operator contains a remedy for ice cube hazards: put a sponge on the cube to absorb the
water as the ice melts. Although this solution is contrived it is not “hard wired”—once the
goal of preventing the puddle is posted, more realistic operators could also be employed to
discover a solution. The more important point, however, is that the solution is not hard

120

wired to the conditions in the world. The fact that sponge-trick is applicable requires

inference of the hazard, and the inference processes can progress in parallel with action.

Time

Figure 34. Operator activations leading to initial steps.

121

Time

Figure 35. Operator activations while grabbing the dirty sock.

Figure 36 shows the decomposition and execution of the plan for moving the sponge.
The circles indicate the major events in this process, while the rectangle indicates the
suspension of the previous task. Note that work on the previous task continues until the
hazard-prevention task is decomposed to the point at which a resource conflict occurs. (The
roll and get-rid-of-object operators both use the :arm-control resource.) Once the
operator instances for the new task have seized control of the robot’s arm and body, the
sock is dropped (via get-rid-of-object , lower-arm , and open-hand) and actions are
initiated for the tasks of retrieving and moving the sponge. By the end of the trace shown in

122

Figure 36 a new instance of the roll operator has begun to execute.

Time

Figure 36. Operator activations during the transition between tasks.

Figure 37 shows the eventual completion of the hazard-prevention task and the
resumption of the laundry task. The circles show the principal events in the completion of
the hazard-prevention task: the dropping of the sponge onto the ice cube, the computation
that the proper stacking relation holds, and the propagation of the new knowledge to the
operators at the conventional level. The squares in Figure 37 indicate the principal events
in the resumption of the laundry task. When the sponge is dropped the get-rid-of-

123

object operator releases the :hand-control resource, allowing for the resumption of

operator instances that had previously been suspended.
The instance of the move-object operator that was involved in moving the sock failed

during the hazard-prevention task; it had posted a demon to monitor '(holding dirty-
sock) that executed, triggering failure, shortly after the sock was dropped. The operators
working on subgoals of move-object (for example, roll) were also terminated at that
time. The goal of moving the sock remained, however, and a new instance of move-object
was instantiated, leading also to an instance of grab . This instance of grab was suspended
as soon as it requested the :arm-control resource.

When the sponge is dropped and the :arm-control resource once again becomes
available, the suspended grab operator is resumed. This allows for resumption of the
laundry task, and by the end of the trace in Figure 37 a step has been made back toward the
dirty sock. The resumption of the laundry task is fairly simple because the intervention of
the hazard-prevention task caused failures only at the lowest level. None of the components
of the laundry task at other levels of representation were affected.

124

Time

Figure 37. Operator activations during resumption of the laundry task.

125

9.3.2 Doorbells, Fire, and Overflowing Sinks
Section 9.3.1 described a basic set of operators and translators for HomeBot, and

presented examples of HomeBot’s behavior using these operators and translators. In the
present section I describe three extensions to HomeBot that illustrate how the system’s
capabilities can be augmented.

The first example, “Doorbells” (9.3.2.1), shows how a new sense modality can be
accommodated, and how a new low-level “reflex arc” can be added. The second example,
“Fire” (9.3.2.2), shows how new high-level capabilities can build on existing operators and
translators. The third example, “Overflowing Sinks” (9.3.2.3), demonstrates a form of
plan/act integration not exhibited in previous examples— HomeBot actively seeks
situations in which corrective action may be necessary.

9.3.2.1 Doorbells
The purpose of this example is to show the incorporation of a new sense modality and a

new low-level “reflex arc” into the HomeBot system. The HomeBot domain simulator was
enhanced to provide a simple simulation of the apartment’s sonic environment, and a
(sense :audio) command was added to the interface between the perceptual/manual
level and the world simulator.56 The desired behavior is for HomeBot to respond to a
ringing doorbell by suspending any current tasks and opening the door. Ideal door-
answering behavior is more complex, and would require mediation by higher, more
knowledge-rich levels of representation. For example, the door should not be opened if
HomeBot knows that the person at the door is a burglar. These extensions could be made
as well, but they are not related to the issues that this example is intended to address.

The doorbell-reaction behavior can be implemented with the addition of two new
operators at the perceptual/manual level: hear (shown in Figure 38), and door-
answering-reflex (shown in Figure 39). Two additional initial goals, (abolish
'(waiting-at visitor door)) and (achieve '(current audio-awareness)) , are
also added to the system’s initialization code. These goal trigger the instantiation of hear
and door-answering-reflex at the beginning of each run.

126

56The doorbell rings for a long time, ensuring that HomeBot’s time-slicing will not prevent its
detection.

(defoperator hear
 :level :perceptual-manual
 :for (achieving (current audio-awareness))
 :variables (audio-events)
 :steps ((LISTEN (believe '(listening))
 (setq audio-events (sense :audio))
 (finish LISTEN))
 (NOTE-SILENCES
 (mapc #'(lambda (audio-event)
 (reject ̀ (sounding ,audio-event))
 (believe ̀ (sounded ,audio-event)))
 (set-difference
 (mapcar #'cadr
 (mapcar #'sentence
 (get-all-believed-ground ̀ (sounding :?))))
 audio-events))
 (finish NOTE-SILENCES))
 (NOTE-SOUNDS
 (if (null audio-events)
 (fail)
 (progn
 (mapc #'(lambda (audio-event)
 (believe ̀ (sounding ,audio-event)))
 audio-events)
 (succeed)))))
 :initially (LISTEN)
 :transitions ((LISTEN :> NOTE-SILENCES)
 (NOTE-SILENCES :> NOTE-SOUNDS))
 :on-success ((reject '(silence)))
 :on-failure ((believe '(silence)))
 :on-termination ((doubt '(listening))))

Figure 38. The hear operator.

127

(defoperator door-answering-reflex
 :level :perceptual-manual
 :for (abolishing (waiting-at visitor door))
 :steps ((MONITOR-FOR-DOORBELL
 (discover ̀ (sounded doorbell)
 :call-back
 #'(lambda () (finish MONITOR-FOR-DOORBELL))))
 (GO-TO-DOOR
 (achieve ̀ (at 3 3 1) :priority :urgent
 :call-back
 #'(lambda () (finish GO-TO-DOOR))))
 (ANSWER-DOOR (format t "~%Open Sesame!")
 (finish ANSWER-DOOR))
 (FORGET-DOORBELL
 (reject '(heard doorbell))
 (succeed)))
 :initially (MONITOR-FOR-DOORBELL)
 :transitions ((MONITOR-FOR-DOORBELL :> GO-TO-DOOR)
 (GO-TO-DOOR :> ANSWER-DOOR)
 (ANSWER-DOOR :> FORGET-DOORBELL)))

Figure 39. The door-answering-reflex operator.

The following listing shows the trace output from the initial portion of a run; lines 11
and 12 show the instantiation of the two operators under discussion:

 1 BConv Check for matches
 2 Conv Check for matches
 3 Conv EARN-PRAISE INSTANTIATE (PRAISE)
 4 Temp Check for matches
 5 Temp PROJECT INSTANTIATE (PROJECTIONS
 PROJECTED)
 6 Temp MAINTAIN-BODY-AWARENESS INSTANTIATE (BODY-AWARENESS)
 7 Temp TRACK-OBJECT-LOCATIONS INSTANTIATE (OBJECT-LOCATIONS)
 8 Caus Check for matches
 9 BSpat Check for matches
 10 Pr/Mn Check for matches
 11 Pr/Mn DOOR-ANSWERING-REFLEX INSTANTIATE (WAITING-AT
 VISITOR DOOR)
 12 Pr/Mn HEAR INSTANTIATE (CURRENT
 AUDIO-AWARENESS)

The door-answering-reflex operator sets up a demon-based monitor for the
detection of a doorbell sound; when the hear operator asserts the occurrence of such a
sound the demon will fire, leading to an :urgent goal of moving to the door, followed by a
command to open the door. Once the door has been opened the door-answering-reflex
operator succeeds and is disposed of. Note, however, that door-answering-reflex does
not assert the satisfaction of its triggering goal ((abolish '(waiting-at visitor
door))); this will result in the creation of a new instance of door-answering-reflex

128

shortly after the success of the first.

The hear operator executes an audio sensing operation and records the new audio
environment on the blackboard, succeeding when something is heard and failing in case of
silence. The NOTE-SILENCES step changes belief from “sounding ” to “sounded ” for
sounds that were heard previously, but are no longer in the audio environment. The NOTE-
SOUNDS step records beliefs about the currently sounding sounds. The hear operator, like
the door-answering-reflex operator, does not assert the satisfaction of its triggering
goal; it will therefore “loop” indefinitely via re-instantiation. The looping of the hear
operator is unconstrained; unlike the door-answering-reflex it does not post and wait
for any subgoals. Hence the hear operator will loop as quickly as allowed by the system’s
allocation of processor time. This is reasonable, since sounds can occur at any time, and
since audio sensing is, in HomeBot, computationally inexpensive.

The following listing shows trace output immediately after the ringing of the doorbell:

* 74 Pr/Mn HEAR STEP NOTE-SOUNDS
 75 Pr/Mn HEAR SUCCEED
 76 Pr/Mn HEAR DISPOSE
* 89 Pr/Mn HEAR INSTANTIATE (CURRENT
 AUDIO-AWARENESS)
*108 Pr/Mn DOOR-ANSWERING-REFLEX STEP GO-TO-DOOR
*111 Pr/Mn Check for matches
 112 Pr/Mn ROLL INSTANTIATE (AT 3 3 1)

Line 74 shows the step of the hear operator that records the ringing of the doorbell on
the blackboard. This action immediately fires the demon posted by door-answering-
reflex , but no action is taken until door-answering-reflex receives processor time at
line 108. In the meantime, a new instance of the hear operator is created (line 89). Line
112 shows the instantiation of the roll operator that will take HomeBot to the door.

9.3.2.2 Fire
The basic set of operators and translators described in Section 9.3.1 is capable of

detecting only one kind of hazard: a “slip” hazard that is inferred from the existence of a
slippery substance or object on the floor. In the present section I will describe the new
operators and translators required for handling fire hazards as well.

A sentence at the conventional level, asserted during initialization, indicates that fire
also constitutes a hazard: (believe '(hazard fire)) . This allows the existing earn-
praise and find-hazard operators to handle fires in the same way that they handle slip
hazards. The fight-fire operator (Figure 40) encodes the conventional solution for
abolishing fire conditions; this is analogous to the sponge-trick operator for ice cube slip
hazards. Additional operators are required for dialing the telephone and for turning on the
sprinkler system.

The existence of fire is inferred from the existence of smoke at the causal level by the
infer-fire-from-smoke operator, shown in Figure 41. The existence of fire is
communicated from the causal to the conventional level via the fire-detection
translator, shown in Figure 42. The causal level is informed of the existence of smoke via

129

the smoke-detection translator, shown in Figure 43. The smoke-detection translator

utilizes temporal-level knowledge about the materials of objects—this knowledge is
maintained by the basic operators and translators described in Section 9.3.1.

(defoperator fight-fire
 :level :conventional
 :for (abolishing (hazardous-condition fire :?))
 :steps ((CALL-FOR-HELP
 (achieve '(telephone-connect 911)
 :call-back
 #'(lambda ()
 (beep) (format t "~%FIRE!!~%")
 (give-name-and-address)
 (finish CALL-FOR-HELP))))
 (TURN-ON-SPRINKLERS
 (achieve '(activated sprinkler-system)
 :call-back
 #'(lambda () (finish TURN-ON-SPRINKLERS))))
 (WAIT-FOR-SIGNAL
 (discover '(signaled fire-marshal all-clear)
 :call-back
 #'(lambda () (succeed)))))
 :initially (CALL-FOR-HELP TURN-ON-SPRINKLERS)
 :transitions ((CALL-FOR-HELP TURN-ON-SPRINKLERS
 :> WAIT-FOR-SIGNAL))
 :on-success ((reject ̀ (hazardous-condition fire ,?1))))

Figure 40. The fight-fire operator.

(defoperator infer-fire-from-smoke
 :level :causal
 :for (discovering (projected fire-near :?))
 :variables (smoky-thing)
 :steps ((DETECT-SMOKE
 (discover ̀ (smoke :?)
 :call-back
 #'(lambda ()
 (setq smoky-thing
 (nth 1 (sentence (get-believed-ground
 '(smoke :?)))))
 (finish DETECT-SMOKE))))
 (PROJECT (believe ̀ (projected fire-near ,smoky-thing))
 (succeed)))
 :initially (DETECT-SMOKE)
 :transitions ((DETECT-SMOKE :> PROJECT)))

Figure 41. The infer-fire-from-smoke operator.

130

(deftranslator fire-detection
 :xlevel :below-conventional
 :demand (discovering (fire :?)) ; variable is sign of fire
 :commands ((discover ̀ (projected fire-near :?)))
 :supplies ((fire-sign (mapcar #'caddr
 (mapcar #'sentence
 (get-all-believed-ground
 '(projected fire-near :?))))))
 :products ((believe ̀ (fire ,fire-sign))))

Figure 42. The fire-detection translator.

(deftranslator smoke-detection
 :xlevel :below-causal
 :demand (discovering (smoke :?)) ; variable is sign of smoke
 :commands ((discover ̀ (object-materials)))
 :supplies ((smoke-thing
 (mapcar #'cadr
 (mapcar #'sentence
 (get-all-believed-ground
 '(material :? :smoke))))))
 :products ((believe ̀ (smoke ,smoke-thing))))

Figure 43. The smoke-detection translator.

The following listings show trace output from a test run that was initialized with a
smoke cloud. Lines 232–260 show the initialization of the causal level processes for
inferring the existence of fire:

*232 Caus INFER-FIRE-FROM-SMOKE INSTANTIATE (PROJECTED
 FIRE-NEAR ?)
*246 Caus INFER-FIRE-FROM-SMOKE STEP DETECT-SMOKE
*260 Caus INFER-FIRE-FROM-SMOKE STEP (spinning)

The fire-detection translator runs continuously (for example, at lines 286 and 300)
but has nothing to report until the smoke-detection translator communicates the existence
of smoke to the causal level (lines 303–323). The causal level then infers the existence of
fire (lines 329–331), allowing fire-detection to relay the information to the
conventional level (line 377):

*286 BConv FIRE-DETECTION RUN
*300 BConv FIRE-DETECTION RUN
*303 BCaus Check for matches
 304 BCaus SMOKE-DETECTION INSTANTIATE
*323 BCaus SMOKE-DETECTION RUN

131

*329 Caus INFER-FIRE-FROM-SMOKE STEP PROJECT

 330 Caus INFER-FIRE-FROM-SMOKE SUCCEED
 331 Caus INFER-FIRE-FROM-SMOKE DISPOSE
*377 BConv FIRE-DETECTION RUN

This allows for the instantiation and progress of the fight-fire operator, shown in the
following lines:

*437 Conv FIGHT-FIRE INSTANTIATE (HAZARDOUS-CONDITION
 FIRE SMOKE-CLOUD)
*535 Conv FIGHT-FIRE STEP TURN-ON-SPRINKLERS
*552 Conv ACTIVATE-SPRINKLERS INSTANTIATE (ACTIVATED
 SPRINKLER-SYSTEM)
*596 Conv ACTIVATE-SPRINKLERS STEP ACTIVATE
 597 Conv ACTIVATE-SPRINKLERS SUCCEED
 598 Conv ACTIVATE-SPRINKLERS DISPOSE
*613 Conv FIGHT-FIRE STEP CALL-FOR-HELP

9.3.2.3 Overflowing Sinks
One of the “user interventions” built into the HomeBot world simulator allows for the

overflowing of the kitchen sink. This leads to several problems (slip hazards, electrocution
hazards, wasted water, etc.) and poses interesting questions about elements of solution
strategies (turning off the water, getting to the mop without being electrocuted, etc.).
However, none of the interesting issues can be addressed if HomeBot never notices that the
sink overflowed. To ensure that HomeBot notices such things, it is necessary that visits be
made to each room in the apartment “once in a while.” This is a form of sense/act
integration not demonstrated in the previous examples: HomeBot must act (move) in order
to sense (look in various rooms) in order to know if further action (for example, taking care
of an overflowing sink) is necessary. Further, the decisions about which rooms to visit may
depend on prior reasoning.

The notion of “once in a while” belongs at the temporal level, and may depend on the
room in question. Hence, sentences such as (kitchen-survey-frequency :? cycles)
are asserted at the temporal level. These sentences can be modified by operators when, for
example, it is known that someone else is watching a particular room. The track-object-
locations operator (part of the basic set of operators from Section 9.3.1) contains a step
that posts a goal to (debunk (current room-scenes)) . This goal triggers the room-
visit-recency operator shown in Figure 44. The room-visit-recency operator
compares the times since HomeBot has been in each of the rooms to the survey frequencies
posted on the temporal blackboard. The knowledge of the times at which HomeBot is in
each room is maintained by the room and temporal-room translators (Figures 45 and 46
respectively). The room translator transforms perceptual/manual knowledge about
HomeBot’s location (expressed in coordinates) into spatial knowledge about the room that
HomeBot is in. The temporal-room translator transforms the resulting spatial knowledge
into temporal knowledge about when HomeBot is in each room.

132

(defoperator room-visit-recency
 :level :temporal
 :for (debunking (current room-scenes))
 :variables (now check-kitchen check-bathroom
 check-bedroom check-livingroom)
 :steps ((GET-TIME (setq now ; get current time from blackboard
 (cadr (sentence (get-believed-ground
 '(homebot-time :?)))))
 (finish GET-TIME))
 (KITCHEN ; check if kitchen needs to be checked
 (setq check-kitchen
 (> (- now ; compare time since last visit...
 (apply
 #'max
 (mapcar #'caddr
 (mapcar #'sentence
 (get-all-believed-ground
 '(in-room kitchen :?))))))
 (cadr ; to frequency kitchen should be visited
 (sentence
 (get-believed-ground
 '(kitchen-survey-frequency :? cycles))))))
 (finish KITCHEN))
 (BATHROOM <similar code deleted> ...)
 (BEDROOM <similar code deleted> ...)
 (LIVINGROOM <similar code deleted> ...)
 (DONE
 (if (not (or check-kitchen check-bathroom
 check-bedroom check-livingroom))
 (fail)
 (progn (if check-kitchen ; post necessity of visit
 (believe '(old-room-view kitchen)))
 (if check-bathroom
 (believe '(old-room-view bathroom)))
 (if check-bedroom
 (believe '(old-room-view bedroom)))
 (if check-livingroom
 (believe '(old-room-view livingroom)))
 (succeed)))))
 :initially (GET-TIME)
 :transitions ((GET-TIME :> KITCHEN BATHROOM BEDROOM LIVINGROOM)
 (KITCHEN BATHROOM BEDROOM LIVINGROOM :> DONE))
 :on-success ((reject '(current room-scenes))))

133

Figure 44. The room-visit-recency operator (abbreviated).

(deftranslator room
 :xlevel :below-spatial
 :demand (discovering (room))
 :supplies ((x (list
 (cadr (sentence
 (get-believed-ground '(at :? :? :?))))))
 (y (list
 (caddr (sentence
 (get-believed-ground '(at :? :? :?)))))))
 :products ((doubt '(in-room :?))
 (believe ̀ (in-room ,(room-containing x y)))))

Figure 45. The room translator.

(deftranslator temporal-room
 :xlevel :below-temporal
 :demand (discovering (room-when))
 :supplies ((room (list
 (cadr (sentence
 (get-believed-ground '(in-room :?)))))))
 :products ((believe ̀ (in-room ,room
 ,(cadr (sentence
 (get-believed-ground
 '(homebot-time :?))))))
 (believe ̀ (in-room ,room))))

Figure 46. The temporal-room translator.

When room-visit-recency deems that a room should be visited, it posts messages to
the blackboard and succeeds, leading track-object-locations to post a goal that
triggers the visit-rooms operator (Figure 47). The visit-rooms operator posts goals for
visiting each of the appropriate rooms with priority :background ; hence HomeBot will
visit the rooms as soon as it is not otherwise engaged. The goals to visit the rooms
decompose into perceptual/manual movement goals with the aid of the go-room and
temporal-go-room translators (Figures 48 and 49 respectively). These goals trigger roll
operators with priority :background (inherited from visit-rooms).

134

(defoperator visit-rooms
 :level :temporal
 :for (achieving (current room-scenes))
 :variables (rooms-to-visit rooms-visited)
 :steps ((GET-ROOM-LIST (setq rooms-to-visit
 (mapcar #'cadr
 (mapcar #'sentence
 (get-all-believed-ground
 '(old-room-view :?)))))
 (finish GET-ROOM-LIST))
 (POST-GOALS (doubt '(in-room :?))
 (setq rooms-visited nil)
 (mapcar
 #'(lambda (room)
 (achieve ̀ (in-room ,room)
 :priority :background
 :call-back
 #'(lambda ()
 (push room rooms-visited))))
 rooms-to-visit)
 (finish POST-GOALS))
 (WAIT-TILL-DONE
 (if (set-difference rooms-to-visit rooms-visited)
 (finish WAIT-TILL-DONE)
 (succeed))))
 :initially (GET-ROOM-LIST)
 :transitions ((GET-ROOM-LIST :> POST-GOALS)
 (POST-GOALS :> WAIT-TILL-DONE)
 (WAIT-TILL-DONE :> WAIT-TILL-DONE))
 :on-success ((reject '(old-room-view :?))
 (believe '(current room-scenes))))

Figure 47. The visit-rooms operator.

(deftranslator go-room
 :xlevel :below-spatial
 :demand (achieving (in-room :?))
 :commands ((achieve ̀ (at ,@(room-center ?1)))))

Figure 48. The go-room translator.

(deftranslator temporal-go-room
 :xlevel :below-temporal
 :demand (achieving (in-room :?))
 :commands ((achieve ̀ (in-room ,?1))))

Figure 49. The temporal-go-room translator.

135

The following queries were executed during a task in the living room:

1 > (at-level :temporal
 (get-all-achieving '(in-room :?)))
(<Blackboard Entry:(IN-ROOM KITCHEN) (E:?)(TE:?)(T:+)>
 <Blackboard Entry:(IN-ROOM BATHROOM) (E:?)(TE:?)(T:+)>
 <Blackboard Entry:(IN-ROOM BEDROOM) (E:?)(TE:?)(T:+)>)

1 > (at-level :spatial
 (get-all-achieving '(in-room :?)))
(<Blackboard Entry:(IN-ROOM BATHROOM) (E:?)(TE:?)(T:+)>
 <Blackboard Entry:(IN-ROOM KITCHEN) (E:?)(TE:?)(T:+)>
 <Blackboard Entry:(IN-ROOM BEDROOM) (E:?)(TE:?)(T:+)>)

1 > (at-level :perceptual-manual
 (get-all-achieving '(at :? :? :?)))
(<Blackboard Entry:(AT 8 23 1) (E:-)(TE:?)(T:+)> ;; BEDROOM
 <Blackboard Entry:(AT 12 5 1) (E:-)(TE:?)(T:+)> ;; KITCHEN
 <Blackboard Entry:(AT 5 17 ?) (E:-)(TE:?)(T:+)> ;; (current task)
 <Blackboard Entry:(AT 15 22 1) (E:-)(TE:?)(T:+)>) ;; BATHROOM

Goals exist for visiting the other rooms, but all of their corresponding roll operators
have been suspended pending the completion of the current task (which has priority
:normal). When the current task is finished, the resource arbitrator will resume one of the
suspended roll operators.

9.4 Performance
The performance of the HomeBot system depends on the particular set of operators and

translators that are in use, the task environment in the simulated world, the allocations
specified for the feap control structures described in Section 8.8, and characteristics of the
hardware and software environment. This section describes the system’s performance in
test runs using the “basic” set of operators described in Section 9.3.1, on a problem similar
to that described in Section 9.3.1.2. Figure 50 shows the feap allocations used in the test
runs. The tests were performed on an Apple Macintosh IIcx computer, which uses a
Motorola 68030 processor and a Motorola 68882 floating-point coprocessor, running with
a clock frequency of 15.6672 MHz. The tests were run in Macintosh Common Lisp version
2.0b1p3, in a RAM partition of 17 Megabytes, under Macintosh System Software 7.0.

136

HomeBot-feap

Levels-feap Translation-Levels-feap

Perceptual/Manual-feap

Spatial-feap

Temporal-feap

Causal-feap

Conventional-feap
Below-Conventional-feap

Below-Spatial-feap
Below-Temporal-feap

Below-Causal-feap

2 1

3

1
1

1

1

2
1

1
1

Trigger-Operators Op-1 . . Op-2

1 1 1

Trigger-TranslatorsTr-1 . . Tr-2

3 1 1

*

*

*

*

*:

†

†

†

†

†:

Figure 50. Allocations of functions within APE’s feap structures.

As shown in Figure 50, processor time is divided fairly evenly across the system, but
extra time is allotted to the lowest levels. In a system that performs significant high-level
reasoning one might expect optimal results to be obtained by allocating greater amounts of
time to the higher levels (see [Hendler 1990]). But the higher levels defined by the basic
operators are quite simple, and HomeBot’s sensory and motor commands are slowed by the
sluggishness of the world simulator. For example, a visual sensing operation currently
requires approximately 1.2 seconds.57 This is due to the complexity of computing the set of
objects in HomeBot’s view while accounting for occlusions. The particular allocation
numbers were derived from observation and experimentation during system development.

Figure 51 shows a graph of the speed with which APE cycles through its central loop
(described in Section 8.8), as a function of the length of the test run. Each iteration of the
loop is one call to a single function in the system’s top-level feap. A single iteration
generally results in a single step of a single operator instance, a single run of a single

137

57This number varies with the position of the robot, the number of objects in view, etc. Run times as
low as 0.9 seconds and as high as 3.6 seconds have been observed.

translator instance, or a call to an operator or translator triggering function. Note, however,

that many of these calls may be “fruitless”; an operator instance may “spin,” a translator
instance may produce no results, and a triggering function may find nothing to trigger. The
feap mechanisms themselves also use processor time, and each cycle through the central
loop involves calls at all three levels of the feap hierarchy. Additional maintenance
procedures (for example, checking for user interrupts) are performed once every 20
iterations.

200 400 600 800 1000 1200 1400 1600 18000
0

2

4

6

8

10

12

14

Number of Cycles in Run

A
ve

ra
ge

 C
yc

le
s

pe
r

S
ec

on
d

Figure 51. HomeBot cycle speed vs. length of run.

The average cycle speed across all of the test runs was about 8.8 cycles per second. The
variation in speed is related to the amount of data accumulated on the system’s
blackboards. APE makes heavy use of the blackboard access procedures; blackboard
access accounts for between one third and one half of the system’s total run time. Once an
item is put in the blackboard it is never removed; changes in its belief and/or goal status are
recorded in the item’s tags (see Section 8.4), but the item remains on the blackboard even
when all tag values are “?”. After 100 main-loop iterations in a test run, a total of 290
sentences had accumulated; after 1700 iterations there were 792 sentences, the growth
being approximately linear with the length of the run. Figure 52 illustrates the degradation
in the efficiency of the blackboard maintenance procedures in the course of a single run.
The graph shows the average run times of a key internal blackboard access function. The
brief initial improvement (between 100 and 300 cycles) is consistent with the initial
improvement in cycle time shown in Figure 51, although the variability in Figure 52
renders such comparisons speculative.

As mentioned in Section 8.4, the blackboards in APE are implemented as
discrimination nets that use the sequence atoms in blackboard sentences as discrimination
keys. A reasonable explanation for the performance curves in Figures 51 and 52 is that the

138

initial improvement is due to the “filling out” of an initially “flat” discrimination net

structure. The nets reach an optimal structure after a few hundred cycles, after which the
lower branches of the discrimination net begin to “flatten” as well, and performance
degrades.

In the test runs, HomeBot took approximately 15 seconds between “roll” movements in
the world. Within 65 seconds of the first such movement, HomeBot had taken the three
necessary steps, turned, and performed the arm and hand movements necessary for
grasping the object. A “hand pain” reaction, like that described in Section 9.3.1.2, required
15 seconds between the grasping of the hot object and the success of the hand-pain-reflex
operator.

200 400 600 800 1000 1200 1400 1600 18000
0

2

4

6

8

10

12

14

Number of Cycles

M
ill

is
ec

on
ds

 p
er

 C
al

l t
o

T
ra

ve
rs

e-
N

od
es 16

18

20

Figure 52. Run time of a key blackboard procedure across a single run of the system.

HomeBot’s current performance is not adequate for “real-time” behavior. A reasonable
response-time for a “pain” reaction, for example, might be an order of magnitude smaller
than currently achievable. In considering HomeBot’s performance, however, it is important
to bear in mind that APE is a simulation of a parallel architecture on a single processor of
modest speed. APE divides its time between a large number of processes that should be
running in parallel, and incurs additional overhead in maintaining the related timing
structures. Further, the performance statistics for HomeBot include the overhead of
maintaining the world simulation; in actual robotic applications such simulation is

139

unnecessary. Nonetheless, there is room for improvement, even in a serial computing

environments; some directions for improvement are suggested in Chapter 10.

140

141

Part IV

142

Conclusions

143

Chapter 10

Summary and Future Directions

This dissertation surveyed a range of concepts of abstraction, levels, and hierarchy in
relation to AI systems that must function in complex, dynamic environments. The concept
of supervenience was examined, formalized, and compared to forms of abstraction used in
AI planning systems. An implemented dynamic-world planning system, based on the
concept of supervenience, was presented and shown to solve difficult behavioral problems.
The discussion spanned disciplines from psychology to theoretical AI, and further work
may be called for in many of these areas.

The field of AI planning systems has evolved from its early focus on small problems in
static domains to a concern with the problems that arise in more realistic, complex, and
dynamic environments. Dynamic-world planners must be capable of reacting to changes in
the world while handling problems of the type solved by early planning systems. They
must be capable of integrating deliberation and action in a variety of ways, as illustrated by
the discussions of the Open Window and Ice Cube problems in Section 2.3.

A variety of forms of abstraction have been used in AI planning and control systems.
Planning systems such as ABSTRIPS use simplification abstraction to reduce the size of
problem-solving search-spaces. Control systems designed for dynamic environments often
use control hierarchies, in which independent modules handle problems at each level of
abstraction. These forms of abstraction have a common core: they both allow for higher
levels to abstract away from the world and to reason with respect to an idealized version of
reality. The isolation of this core concept of abstraction as “distance from the world”
allows for a principled unification of the forms of abstraction most helpful in generating
intelligent behavior in complex, dynamic environments.

The concept of supervenience originated in the philosophical literature, and was first
applied to problems of ethics and philosophy of mind. Ethical facts are said, on some
accounts, to supervene on physical facts; this means that they depend on physical facts, but
that they may nonetheless be more than just sets of physical facts. Similar theories have
been proffered for the supervenience of the mental on the physical, for the supervenience
of the aesthetic on the physical, and for supervenience in a host of other domains, some of
which allow for multiple levels of supervenience. Formal-logical accounts of
supervenience have been provided, but researchers disagree on the details. The core
concept is one of an asymmetric dependency relation between domains of discourse in
which the “higher” domains depend on the “lower” domains. The lower domains can be
thought of as epistemologically “closer to the world.”

The dissertation formalized the conception of supervenience as distance from the world

144

in the context of nonmonotonic reasoning systems. Supervenience was modeled in a

multilevel argument system by limiting the power of higher levels to defeat facts at lower
levels; the basic pattern of communication can be described as “assertions up, assumptions
down.” The resulting system captures an essential feature of the form of abstraction used in
ABSTRIPS-style systems, while allowing for flexibilities found in hierarchical control
architectures.

The application of supervenience to dynamic-world planning was facilitated by the
development of an architectural model called the supervenience architecture. The
supervenience architecture, a multilevel blackboard architecture, posits a set of planning
levels ordered by distance from the world. The procedures of each level model the world,
solve problems, and initiate actions at their own levels of abstraction. The dependence of
higher upon lower levels is implemented by regimenting inter-level communication:
knowledge about the world is passed up, and goal-related knowledge is passed down. This
“world knowledge up, goals down” style of communication is the implementational analog
to the “assertions up, assumptions down” communications regime developed in the formal
characterization of supervenience. The supervenience architecture is a generic
specification, and many details are left unspecified. It is nonetheless sufficiently elaborated
to allow for comparisons to other architectures, and several points of contrast to Brooks’s
subsumption architecture were noted.

Figure 53 shows the inter-level relations that constitute the principal forms of
abstraction covered in the dissertation.

The supervenience architecture was implemented in a program called the Abstraction-
Partitioned Evaluator (APE), for which a specific set of five levels was chosen. The five
levels—perceptual/manual, spatial, temporal, causal, and conventional—were motivated
by philosophical and psychological considerations about the representation of event and
action knowledge. APE reasons by means of operators that are specified as Petri nets,
allowing for the specification of parallel, asynchronous behaviors. Communication
between levels is effected by translators that allow for syntactic manipulation of
downward-moving goal knowledge and upward-moving world knowledge. APE simulates
parallel, asynchronous execution of many of its components.

APE was applied in a simulation environment called the HomeBot domain, in which a
household robot is responsible for performing a variety of tasks. Several detailed examples
of the HomeBot system were provided, including behavioral problems that cannot be
handled by other planning systems. The performance of the HomeBot system is not yet
sufficient for “real-time” reactivity, but its performance may be improved by optimization,
and by re-implementation in a true parallel environment.

With respect to psychology and neuroscience, several comparative questions may be of
interest. The thesis that the mind is organized into levels of supervenience is a cognitive
modularity thesis which, if true, would predict certain level-based effects in observed
human cognitive function. Parallels to modularity theses of brain structure would also be of
interest; one might ask, for example, about the deficits that might be observed in lesioned
instances of the supervenience architecture, and about their relation to deficits observed in
brain-damaged human subjects. Further comparisons might also be made to levels of
development, levels of processing, and integrative levels discussed in the psychological
literature (e.g., in [Cermak and Craik 1979], [Greenberg and Tobach 1987]). These topics

145

received some attention in Sections 3.1 and 8.2.1, but more research, coupled with

psychological experimentation, may confirm the importance of supervenience in cognitive
modeling.

Real-time Messagages

Fast System

Slow System

Detailed System

Simplified System

Backtrack Requests Skeletal Plans

Supervenience

Physical

Moral

Supervenience

Physical

Mental

Supervenience

Physical

Aesthetic

Nonmon System 1

Nonmon System 2

Assertions Assumptions

Planning System 1

Planning System 2

World Knowledge Goals

a b

c

d e

Figure 53. Forms of abstraction: a, simplification abstraction; b, partitioned control
abstraction; c, supervenience in philosophy; d, the nonmonotonic formalization of

146

supervenience; e, supervenience in the supervenience architecture.

Further comparisons with the philosophical literature would also be of interest. The
history of philosophy is replete with theories of levels, from the taxonomies of Aristotle to
Hegel’s dialectical hierarchy of Being. Even the anti-systematic, existential philosophy of
Kierkegaard propounds a theory of levels—the individual ascends through concentric
aesthetic, ethical, and religious “spheres” of existence. Twentieth Century philosophy
provides more fertile sources of comparison, as many level-based theories are expressed in
formal logical language. For example, the level-generation relation between events,
mentioned in Chapter 4, has already been formalized in the context of AI systems, and
bears at least prima facie similarity to the supervenience relation. Philosophical modularity
theories, many inspired by Fodor’s The Modularity of Mind [Fodor 1983] and closely
allied to work in psychology and linguistics, have recently received renewed interest (see,
e.g., [Garfield 1987]).

The formal characterization of supervenience has many relatives in recent work on
nonmonotonic reasoning systems, and the connections between the various systems have
yet to be drawn. In addition to the theories mentioned in Chapter 5, work on preferred
subtheories may provide fruitful comparisons; for example, [Brewka 1991] has provided a
formal theory of “levels of reliability.” Rathmann has recently completed a dissertation
entitled Nonmonotonic Semantics for Partitioned Knowledge Bases [Rathmann 1991], in
which he investigates several issues that arise in combining independent nonmonotonic
reasoning systems. Considerable work has also been conducted on stratified databases, in
which an asymmetric dependency relation is defined over the set of rules in a logic
program, helping to define the nonmonotonic semantics of the program (see several papers
in [Minker 1988]). Comparative research in this area is hindered by the multiplicity of
formalisms in which the theories are expressed; for example, Brewka’s theory is expressed
as an extension of default logic, Rathmann’s work is expressed in the framework of
circumscription, research on stratified databases is expressed in the context of logic
programming, and the formal characterization of supervenience is expressed in an extended
argument system. Nonetheless, it appears that these theories have important affinities that
should be explored.

The formal characterization of supervenience can also be compared to previous
formalizations of supervenience from the philosophical literature, most of which discuss
supervenience in terms of equality or indiscernability relations that hold between entities at
different levels.58 An analog in the AI literature may be found in Hobbs’s discussions of
levels of granularity, in which “abstraction,” “simplification,” and “idealization” are
defined in terms of logical indistinguishability relations [Hobbs 1990]. Hobbs also
describes the relation between granularity and ABSTRIPS-style abstraction; his
discussions may provide a convenient bridge between the equality-based and
nonmonotonic formulations of supervenience.

Philosophical formal theories of supervenience are often expressed in modal logic; this
suggests additional avenues for comparative research. A promising route may be to recast
nonmonotonic supervenience in default logic. This would allow for comparison to pervious
theories via the relations between modal, multi-valued, and default logics that have been

147

58See, for example, [Hellman 1992] and the references cited therein.

studied by others (e.g., [Ginsberg 1986], [Horty 1992], [Konolige 1987]).

Less formal comparisons to the philosophical literature also suggest themselves. Teller
summarized several theories of supervenience with the following “Generalized
Supervenience-Determination” thesis:

Truths of kind S supervene on/are determined by truths of kind P if and only if any two
cases which agree as to truths of kind P also agree as to truths of kind S. [Teller 1984,
145]

Comparison with the account of supervenience developed in this dissertation hinges on
the interpretation of “cases” and “agree.” On some interpretations there is considerable
divergence; two supervenient planning hierarchies with identical bottom levels could differ
at higher levels due to variations in high-level goals or initial knowledge. Formulations
such as the following, however, hold in general for supervenient planning hierarchies:

If truths at level n supervene on/are determined by truths at level m then any two cases
that agree about truths at level m also agree about those truths at level n that are
obtained from level m.

The significance of this and of related formulations, and of their application to areas of
philosophy in which supervenience has played a role, are subjects for further study.

The implementation presented in Part III may be extended in a number of ways.
Modest improvements to the APE program might improve the performance and utility of
the system. A relatively minor revision would allow any set of levels, and any partial order
of communication, to be defined for a particular system built using APE. The simulation of
parallelism could be enhanced to allow for automatic, dynamic load-balancing amongst
virtual processors. While simple mechanisms for “spin control” are part of the current
system (see Section 8.8), a more principled approach to the simulation of parallelism might
improve performance considerably. Improvements to the knowledge representation
systems are also called for, given their impact on current performance (see Section 9.4).

The knowledge representation system could be extended in several ways, allowing for
the application of advanced knowledge representation concepts to reasoning in APE.
Extensions that could be made with little difficulty include support for nested structures on
the blackboard (for example, (in cat (house dog))), support for named variables (for
example, (loves :?x :?x) for something that loves itself), and support for simple forms
of property inheritance. More exotic improvements may be indicated for improving
efficiency; for example, mechanisms for “forgetting” sentences that are no longer relevant,
or for “focusing” on small subsets of the blackboard. Such mechanisms would also invite
further comparisons to psychological theory. The current system’s semantics are specified
procedurally; a formal specification might be more appropriate as the system becomes
more complex.

A more challenging extension is the implementation of APE on true parallel hardware.
The simulation of parallelism in APE is not complete; certain aspects of true parallel
environments (for example, asynchrony) are simulated, while others (for example,
read/write conflicts on the blackboard) are not. Hence it is possible that the implementation
of APE on true parallel hardware will lead to unexpected interactions, and to revisions of

148

the architectural model.

The use of true parallelism eliminates only one of the system’s simulations; HomeBot
also runs in a simulated world. An important follow-up to this research is the use of the
supervenience architecture for controlling real robots. Again, the HomeBot world simulator
simulates some, but not all aspects of actual robotic domains. For example, the possibility
of arbitrary change in the world is simulated, but “ambiguous” sensor readings are not.

The use of real robots raises an interesting issue about the application of the
supervenience architecture in general. Roboticists must usually contend with noisy,
unreliable sensors and effectors, and hence there is a temptation to say that the lower levels
are less certain and less reliable than higher levels, at least at levels close to robotic
hardware. This might be interpreted to mean that the supervenience relation is “upside
down” at the bottom of the control hierarchy—that higher levels “fill in” or correct low
level data. The proper approach in such cases, according to the principles outlined in this
dissertation, is for higher levels to re-interpret or ignore the low level data, but not to
defeat it. For example, an “image region” level might ignore a white pixel in a black field,
but it shouldn’t defeat the knowledge that a white pixel was sensed at the “pixel sensing”
level. Responding to similar claims of “filling in” in human cognition, Dennett writes:

The fundamental flaw in the idea of “filling in” is that it suggests that the brain is
providing something when in fact the brain is ignoring something.” [Dennett 1991,
356]

In applying the supervenience architecture to real robots, the validity of Dennett’s
opinion, and of fundamental assumptions behind the supervenience architecture, will be
tested. If system designers are compelled to allow higher levels to defeat, and not just to
re-interpret, low level knowledge, then the claims of this dissertation will have to be
re-evaluated.59

The supervenience architecture should also be of use for a range of cognitive modeling
tasks quite different from the robotic tasks demonstrated with HomeBot. The idea behind
the supervenience architecture is that dividing a system into levels of “distance from the
world” is useful for integrating complex cognitive processes with the flow of events in a
dynamic environment. Any system that mandates such integration is a candidate for the
application of supervenience.

Consider, for example, the performance of improvised music in an ensemble setting.
Individual performers integrate the actions of the group into complex, conventionalized
models of the musical context, responding to dynamic changes while planning future
activities. Although the types of knowledge and actions in this domain are quite different
from those in HomeBot, initial support for the applicability of the supervenience
architecture can be drawn from a wide range of sources. These sources include Levinson’s
discussions of aesthetic supervenience [Levinson 1984], Arnheim’s discussions of
abstraction in the arts [Arnheim 1969], Lerdahl and Jackendoff’s multilevel model of
music representation [Lerdahl and Jackendoff 1983], and several recent studies of
hierarchy in the cognition of music (e.g., [Serafine 1988]).

As recently as 1991 Tenenberg wrote, “The use of abstraction for problem solving is

149

59Thanks to Kurt Konolige for pointing out this connection to Dennett’s work.

too little understood yet to be doctrinaire about which types of abstraction, in general, will

be best” [Tenenberg 1991, 273]. On the other hand, concepts of “abstraction” are so
prevalent in AI that there is a danger that the word will cease to have any significance.
Several forms of abstraction have been used for planning in general, and for dynamic-
world planning in particular. The concept of supervenience is important because it captures
the essential features of these notions of abstraction insofar as they are important for
systems that must function in complex, dynamic environments.

This dissertation addressed a problem that has been a catalyst for speculation in
cognitive science from Heraclitus to Fodor: the integration of slow, complex, cognitive
processes into the rapid flow of events that constitutes our world. In the nuts-and-bolts
cognitive science of AI the problem is best handled through the use of hierarchy—
different approaches are appropriate at different levels of abstraction. The technical
problem then becomes one of integrating and coordinating the resulting multiplicity of
approaches. The aim of this dissertation was to highlight the importance of such integrative
and coordinative concerns, and to present concrete theoretical and implementational
solutions for some of the related problems.

While intelligent, reactive robots are not yet rolling out of our labs, it is clear that such
robots will have high-level mental representations that supervene on the low-level
perceptual/manual data of current robotic systems. This supervenience can be studied from
philosophical, psychological, neuroscientific, and computational perspectives. The
construction of systems such as APE/HomeBot allows for experimentation with the

150

principles of cognitive architecture that result from such studies.

151

Bibliography

Agre, Phillip E., and David Chapman. 1987. Pengi: An Implementation of a Theory of
Activity. In Proceedings of the International Joint Conference on Artificial
Intelligence, IJCAI-87, 268–272.

Aho, Alfred V., John E. Hopcroft, and Jeffrey D. Ullman. 1983. Data Structures and
Algorithms. Reading, Massachusetts: Addison-Wesley Publishing Company.

Albus, James S. 1991. Outline for a Theory of Intelligence. IEEE Transactions on Systems,
Man, and Cybernetics 21 (May/June): 473–509.

Allen, James F. 1984. Towards a General Theory of Action and Time. Artificial
Intelligence 23: 123-154.

Allen, James, James Hendler, and Austin Tate, eds. 1990. Readings in Planning. San
Mateo, California: Morgan Kaufmann Publishers, Inc.

Arkin, Ronald C. 1989. Towards the Unification of Navigational Planning and Reactive
Control. In AAAI Spring Symposium on Robot Navigation.

Arkin, Ronald C. 1990. Integrating Behavioral, Perceptual, and World Knowledge in
Reactive Navigation. Robotics and Autonomous Systems 6: 105–122.

Arnheim, Rudolf. 1969. Visual Thinking. London: Faber and Faber Limited.
Austin, J. L. 1975. How to Do Things with Words. Cambridge, Massachusetts: Harvard

University Press.
Bacchus, Fahiem, and Qiang Yang. 1991. The Downward Refinement Property. In

Proceedings of the Twelfth International Joint Conference on Artificial Intelligence,
IJCAI-91, 286–292.

Bisiani, Roberto, and A. Forin. 1989. Parallelization of Blackboard Architectures and the
Agora System. In Blackboard Architectures and Applications, edited by V.
Jagannathan, Rajendra Dodhiawala, and Lawrence S. Baum, 137–152. Boston:
Academic Press, Inc., Harcourt Brace Jovanovich, Publishers.

Blackburn, Simon. 1988. Supervenience Revisited. In Essays on Moral Realism, edited by
Geoffrey Sayre-McCord, 59–75. Ithaca and London: Cornell University Press.

Brachman, Ronald J., and Hector J. Levesque, eds. 1985. Readings in Knowledge
Representation. Los Altos, California: Morgan Kaufmann Publishers, Inc.

Bresina, John, and Mark Drummond. 1990. Integrating Planning and Reaction: A
Preliminary Report. In Planning in Uncertain, Unpredictable, or Changing
Environments, edited by James Hendler. SRC TR 90-45, University of Maryland
Systems Research Center.

Brewka, Gerhard. 1991. Nonmonotonic Reasoning: Logical Foundations of
Commonsense. Cambridge: Cambridge University Press.

Brooks, Rodney A. 1990. A Robust Layered Control System for a Mobile Robot. In
Artificial Intelligence at MIT, Volume 2, edited by Patrick Henry Winston, and Sarah
Alexandra Shellard, 2–27. Cambridge, Massachusetts: The MIT Press.

Brooks, Rodney A. 1991. Intelligence without Reason. In Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence, IJCAI-91, San Mateo,
California: Morgan Kaufmann Publishers, Inc., 569–595. (Also available as MIT A.I.

152

Memo No. 1293.)

Bunge, Mario. 1960. Levels: A Semantical Preliminary. The Review of Metaphysics XIII
(March): 396–406.

Bylander, Tom. 1991. Complexity Results for Planning. In Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence, IJCAI-91, 274–279.

Carnap, Rudolph. 1960. Elementary and Abstract Terms. In Philosophy of Science, edited
by Arthur Danto, and Ernest Nagel, 150–158. New York: World Publishing Company.

Cermak, Laird S., and Fergus I. M. Craik, eds. 1979. Levels of Processing in Human
Memory. Hillsdale, New Jersey: Lawrence Erlbaum Associates, Publishers.

Chapman, David. 1987. Planning for Conjunctive Goals. Artificial Intelligence 32:
333–377.

Chapman, David, and Philip Agre. 1986. Abstract Reasoning as Emergent from Concrete
Activity. In The 1986 Workshop on Reasoning About Actions and Plans, edited by M.
Georgeff, and A. Lansky, 411–424. Los Altos, California: Morgan Kaufmann
Publishers, Inc.

Chenoweth, Stephen V. 1991. On the NP-Hardness of Blocks World. In Proceedings of the
Ninth National Conference on Artificial Intelligence, AAAI-91, 623–628.

Chrisman, Lonnie, Rich Caruana, and Wayne Carriker. 1991. Intelligent Agent Design
Issues: Internal Agent State and Incomplete Perception. In Working Notes of the 1991
Fall Symposium on Sensory Aspects of Robotic Intelligence, American Association for
Artificial Intelligence, 18–25.

Christensen, Jens. 1991. Automatic Abstraction in Planning. Report No. STAN-CS-91-
1357, Department of Computer Science, Stanford University.

Churchland, Patricia S., and Terrence J. Sejnowski. 1988. Perspectives on Cognitive
Neuroscience. Science 242 (November): 741–745.

Cohen, Paul R. 1991. A Survey of the Eighth National Conference on Artificial
Intelligence: Pulling Together or Pulling Apart?. AI Magazine 12 (Spring): 16–41.

Cohen, Phillip R., Jerry Morgan, and Martha E. Pollack, eds. 1990. Intentions in
Communication. Cambridge, Massachusetts: The MIT Press.

Corkill, Daniel D. 1989. Design Alternatives for Parallel and Distributed Blackboard
Systems. In Blackboard Architectures and Applications, edited by V. Jagannathan,
Rajendra Dodhiawala, and Lawrence S. Baum, 99–136. Boston: Academic Press, Inc.,
Harcourt Brace Jovanovich, Publishers.

Craig, Iain D. 1989. The Cassandra Acrhitecture: Distributed Control in a Blackboard
System. Chichester, England: Ellis Horwood Limited, Publishers.

Cratty, Briant J. 1973. Movement Behavior and Motor Learning. Philadelphia: Lee &
Febiger.

Currie, Ken, and Austin Tate. 1991. O-plan: the open planning architecture. Artificial
Intelligence 52 (November): 49–86.

Davis, Lawrence. 1979. Theory of Action. Englewood Cliffs, New Jersey: Prentice-Hall,
Inc.

Davis, Philip J., and Reuben Hersh. 1986. Descartes’ Dream. Boston: Houghton Mifflin
Company.

Davis, Randall. 1991. A Tale of Two Knowledge Servers. AI Magazine 12 (Fall):
118–120.

Dean, Thomas. 1985. Temporal Imagery: An Approach to Reasoning about Time for

153

Plannng and Problem Solving. YALEU/CSD/RR #433, Yale University Department of

Computer Science.
Dean, Thomas, and Mark Boddy. 1988. An Analysis of Time-Dependent Planning. In

Proceedings of AAAI-88, 49-54.
Dennett, Daniel C. 1978. Why You Can’t Make a Computer that Feels Pain. In

Brainstorms, by Daniel C. Dennett, 190–229. Montgomery, Vermont: Bradford Books,
Publishers, Inc.

Dennett, Daniel C. 1991. Consciousness Explained. Little, Brown and Company.
Dodhiawala, Rajendra T., N. S. Sridharan, and Cynthia Pickering. 1989. A Real-Time

Blackboard Architecture. In Blackboard Architectures and Applications, edited by V.
Jagannathan, Rajendra Dodhiawala, and Lawrence S. Baum, 219–237. Boston:
Academic Press, Inc., Harcourt Brace Jovanovich, Publishers.

Doyle, R. J., D. J. Atkinson, and R. S. Doshi. 1986. Generating Perception Requests and
Expectations to Verify the Execution of Plans. In Proceedings of AAAI-86, 81–88.

Drummond, Mark E. 1990. Refining and Extending the Procedural Net. In Readings in
Planning, edited by James Allen, James Hendler, and Austin Tate, 667–669. San
Mateo, California: Morgan Kaufmann Publishers, Inc.

Durfee, Edmund H. 1990. A Cooperative Approach to Planning for Real-Time Control. In
Proceedings of the Workshop on Innovative Approaches to Planning, Scheduling and
Control, edited by Katia P. Sycara, 277–283. Defense Advanced Research Projects
Agency (DARPA).

Elkan, Charles. 1990. Incremental, Approximate Planning. In Proceedings of the Eighth
National Conference on Artificial Intelligence, AAAI-90, 145–150.

Erman, Lee D., and Victor R. Lesser. 1975. A Multi-level Organization for Problem
Solving Using Many, Diverse, Cooperating Sources of Knowledge. In Advance Papers
of the Fourth International Joint Conference on Artificial Intelligence, IJCAI-75,
483–490.

Erman, Lee D., Frederick Hayes-Roth, Victor R. Lesser, and Raj D. Reddy. 1980. The
Hearsay-II Speech-Understanding System: Integrating Knowledge to Resolve Uncer-
tainty. Computing Surveys 12 (June): 213–253.

Erol, Kutluhan, Dana S. Nau, and V. S. Subrahmanian. 1991. Complexity, Decidability
and Undecidability Results for Domain-Independent Planning. CS-TR-2797,
Department of Computer Science, University of Maryland.

Fehling, Michael R., Art M. Altman, and B. Michael Wilber. 1989. The Heuristic Control
Virtual Machine: An Implementation of the Schemer Computational Model of
Reflective, Real-Time Problem-Solving. In Blackboard Architectures and Applications,
edited by V. Jagannathan, Rajendra Dodhiawala, and Lawrence S. Baum, 191–218.
Boston: Academic Press, Inc., Harcourt Brace Jovanovich, Publishers.

Fikes, Richard E., and Nils Nilsson. 1971. STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving. Artificial Intelligence 5 (2): 189–208.

Findeisen, W., F. N. Bailey, M. Brdys, K. Malinowski, P. Tatjewski, and A. Wozniak.
1980. Control and Coordination in Hierarchical Systems. Chichester, England: John
Wiley & Sons.

Firby, James R. 1989. Adaptive Execution in Complex Dynamic Worlds. Doctoral
Dissertation, Department of Computer Science, Yale University.

Firby, R. James, and Steve Hanks. 1987. A Simulator for Mobile Robot Planning. In
DARPA Knowledge-Based Planning Workshop (Austin, Texas), Defense Advanced

154

Research Projects Agency (DARPA), 23-1–23-7.

Fodor, Jerry A. 1983. The Modularity of Mind. Cambridge, Massachusetts: The MIT
Press.

Gale, Richard M. 1971. ‘Here’ and ‘Now’. In Basic Issues in the Philosophy of Time,
edited by Eugene Freeman, and Wilfrid Sellars, 72–85. La Salle, Illinois: The Open
Court Publishing Co.

Gardner, Howard. 1983. Frames of Mind. New York: Basic Books, Inc., Publishers.
Garfield, Jay L., ed. 1987. Modularity in Knowledge Representation and Natural-Language

Understanding. Cambridge, Massachusetts: The MIT Press.
Gat, Erann. 1991. Reliable Goal-Directed Reactive Control of Autonomous Mobile

Robots. Doctoral Dissertation (revision 1.1), Virginia Polytechnic Institute and State
University.

Gellatly, Angus, Don Rogers, and John A. Sloboda, eds. 1989. Cognition and Social
Worlds. Oxford: Clarendon Press.

Georgeff, Michael P. 1990. Planning. In Readings in Planning, edited by James Allen,
James Hendler, and Austin Tate, 5–25. San Mateo, California: Morgan Kaufmann
Publishers, Inc.

Georgeff, Michael P., and François Felix Ingrand. 1989. Decision-Making in an Embedded
Reasoning System. In Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence, IJCAI-89, 972–978.

Georgeff, M., and A. Lansky, eds. 1986. The 1986 Workshop on Reasoning About Actions
and Plans. Los Altos, California: Morgan Kaufmann Publishers, Inc.

Georgeff, Michael P., and Amy L. Lansky. 1990. Reactive Reasoning and Planning. In
Readings in Planning, edited by James Allen, James Hendler, and Austin Tate,
729–734. San Mateo, California: Morgan Kaufmann Publishers, Inc.

Gerard, Ralph W. 1969. Hierarchy, Entitation, and Levels. In Hierarchical Structures,
edited by Lancelot Law Whyte, Albert G. Wilson, and Donna Wilson, 215–228. New
York: American Elsevier Publishing Company, Inc.

Gillespie, Norman Chase. 1984. Supervenient Identities and Supervenient Differences. The
Southern Journal of Philosophy, Spindel Conference 1983: Supervenience XXII
(Supplement): 111–116.

Ginsberg, Matthew L. 1986. Multi-valued Logics. In Proceedings of the National
Conference on Artificial Intelligence, AAAI-86, 243–247.

Ginsberg, Matthew L. 1991. The Computational Value of Nonmonotonic Reasoning. In
Princinciples of Knowledge Representation and Reasoning: Proceedings of the Second
International Conference, edited by James Allen, Richard Fikes, and Erik Sandewall,
262–268. San Mateo, California: Morgan Kaufmann Publishers, Inc.

Goldman, Alvin I. 1970. A Theory of Human Action. Princeton, New Jersey: Princeton
University Press.

Grafman, Jordan. 1989. Plans, Actions, and Mental Sets: Managerial Knowledge Units in
the Frontal Lobes. In Integrating Theory and Practice in Clinical Neuropsychology,
Hillsdale, New Jersey: Lawrence Erlbaum Associates, Publishers, 93–138.

Greenberg, Gary, and Ethel Tobach, eds. 1987. Cognition, Language and Consciousness:
Integrative Levels. Hillsdale, New Jersey: Lawrence Erlbaum Associates, Publishers.

Gupta, Naresh, and Dana S. Nau. 1991. Complexity Results for Blocks-World Planning. In
Proceedings of the Twelfth International Joint Conference on Artificial Intelligence,

155

IJCAI-91, 629–633.

Hanks, Steve, and R. James Firby. 1990. Issues and Architectures for Planning and
Execution. In Proceedings of the Workshop on Innovative Approaches to Planning,
Scheduling and Control, edited by Katia P. Sycara, 59–70. Defense Advanced Research
Projects Agency (DARPA).

Hanks, Steve, and Drew McDermott. 1990. Nonmonotonic Logic and Temporal
Projection. In Readings in Planning, edited by James Allen, James Hendler, and Austin
Tate, 624–640. San Mateo, California: Morgan Kaufmann Publishers, Inc.

Hayes, Patrick J. 1985. The Second Naive Physics Manifesto. In Formal Theories of the
Commonsense World, edited by J. R. Hobbs, and R. C. Moore, 1–36. Norwood, New
Jersey: Ablex Publishing Corporation.

Hayes, Philip J. 1975. A Representation for Robot Plans. In Advance Papers of the Fourth
International Joint Conference on Artificial Intelligence, IJCAI-75, 181–188.

Hayes-Roth, Barbara, and Frederick Hayes-Roth. 1979. A Cognitive Model Planning.
Cognitive Science 3 (4): 275–310.

Hayes-Roth, Barbara. 1985. A Blackboard Architecture for Control. Artificial Intelligence
26: 251-321.

Hayes-Roth, Barbara. 1990. Dynamic Control Planning in Intelligent Agents. In Planning
in Uncertain, Unpredictable, or Changing Environments, edited by James Hendler.
SRC TR 90-45, University of Maryland Systems Research Center.

Hellman, Geoffrey. 1992. Supervenience/Determination a Two-Way Street? Yes, but One
of the Ways is the Wrong Way!. The Journal of Philosophy LXXXIX (January): 42–47.

Hendler, James. 1990. Abstraction and Reaction. In Planning in Uncertain, Unpredictable,
or Changing Environments, edited by James Hendler. SRC TR 90-45, University of
Maryland Systems Research Center.

Hendler, J., and J. Sanborn. 1988. Monitoring and Reacting: Planning in Dynamic
Domains. International Journal of AI and Engineering 3 (April).

Hendler, James A., and James Sanborn. 1987. A Model of Reaction for Planning in
Complex Environments. In Proceedings of the Knowledge-Based Planning Workshop,
Defense Advanced Research Projects Agency (DARPA), 24-1–24-10.

Hendler, James, and V.S. Subrahmanian. 1990. A Formal Model of Abstraction for
Planning. UMIACSWW-TR-90-75 and CS-TR-2480, Department of Computer
Science, University of Maryland.

Heuer, H., U. Kleinbeck, and K.-H. Schmidt, eds. 1985. Motor Behavior. Berlin: Springer-
Verlag.

Hewett, Micheal, and Barbara Hayes-Roth. 1989. Real-Time I/O in Knowledge-Based
Systems. In Blackboard Architectures and Applications, edited by V. Jagannathan,
Rajendra Dodhiawala, and Lawrence S. Baum, 269–283. Boston: Academic Press, Inc.,
Harcourt Brace Jovanovich, Publishers.

Hobbs, Jerry R. 1990. Granularity. In Readings in Qualitative Reasoning about Physical
Systems, edited by Daniel S. Weld, and Johan de Kleer, 452–455. San Mateo,
California: Morgan Kaufmann Publishers, Inc.

Holliday, Mark A., and Mary K. Vernon. 1987. A Generalized Timed Petri Net Model for
Performance Analysis. IEEE Transactions on Software Engineering SE-13
(December): 1297–1310.

Horgan, Terence, ed. 1984. Spindel Conference 1983: Supervenience; The Southern
Journal of Philosophy, Volume XXII, Supplement.

156

Horn, Werner, ed. 1990. Causal AI Models. New York: Hemisphere Publishing

Corporation.
Horty, John F. 1992. Moral Dilemmas and Nonmonotonic Logic. Journal of Philosophical

Logic (forthcoming). A preliminary version appeared in Proceedings of the First
International Workshop on Deontic Logic in Computer Science (DEON’91).

Jackendoff, Ray. 1987. Consciousness and the Computational Mind. Cambridge,
Massachusetts: The MIT Press.

Jagannathan, Vasudevan. 1989. Realizing the Concurrent Blackboard Model. In
Blackboard Architectures and Applications, edited by V. Jagannathan, Rajendra
Dodhiawala, and Lawrence S. Baum, 85–97. Boston: Academic Press, Inc., Harcourt
Brace Jovanovich, Publishers.

Jaques, Elliott, R. O. Gibson, and D. J. Isaac, eds. 1978. Levels of Abstraction in Logic
and Human Action. London: Heinemann Educational Books Ltd.

Kambhampati, Subbarao. 1990. Mapping and Retrieval During Plan Reuse: A Validation
Structure Based Approach. In Proceedings of the Eighth National Conference on
Artificial Intelligence, AAAI-90, 170–175.

Kambhampati, S., and J. Hendler. 1992. A Validation Structure Based Theory of Plan
Modification and Reuse. Artificial Intelligence (in press).

Kinney, David N., and Michael P. Georgeff. 1991. Commitment and Effectiveness of
Situated Agents. In Proceedings of the Twelfth International Joint Conference on
Artificial Intelligence, IJCAI-91, 82–88.

Klagge, James C. 1990. Davidson’s Troubles with Supervenience. Synthese 85
(November).

Knoblock, Craig Alan. 1991a. Automatically Generating Abstractions for Problem
Solving. CMU-CS-91-120, School of Computer Science, Carnegie Mellon University.

Knoblock, Craig A. 1991b. Search Reduction in Hierarchical Problem Solving. In
Proceedings of the Ninth National Conference on Artificial Intelligence, AAAI-91,
686–691.

Knoblock, Craig A., Josh D. Tenenberg, and Qiang Yang. 1991. Characterizing
Abstraction Hierarchies for Planning. In Proceedings of the Ninth National Conference
on Artificial Intelligence, AAAI-91, 692–697.

Konolige, Kurt. 1987. On the Relation Between Default and Autoepistemic Logic. In
Readings in Nonmonotonic Reasoning, edited by Matthew L. Ginsberg, 195–226. Los
Altos, California: Morgan Kaufmann Publishers, Inc.

Konolige, Kurt. 1988. Hierarchic Autoepistemic Theories for Nonmonotonic Reasoning:
Preliminary Report. In Non-Monotonic Reasoning: Proceedings of the 2nd
International Workshop, edited by M. Reinfrank, J. de Kleer, M.L. Ginsberg, and E.
Sandewall, 42–59. Berlin: Springer-Verlag.

Korf, Richard E. 1987. Planning as Search: A Quantitative Approach. Artificial
Intelligence 33: 65–88.

Kraus, Sarit, Madhura Nirkhe, and Donald Perlis. 1990. Toward Fully Deadline-Coupled
Planning. In Proceedings of the Workshop on Innovative Approaches to Planning,
Scheduling and Control, edited by Katia P. Sycara, 100–108. Defense Advanced
Research Projects Agency (DARPA).

Kuokka, Daniel R. 1990. The Deliberative Integration of Planning, Execution, and
Learning. CMU-CS-90-135, Carnegie Mellon University School of Computer Science.

Kyburg, Henry E. Jr., Ronald P. Loui, and Greg N. Carlson, eds. 1990. Knowledge

157

Representation and Defeasible Reasoning. Dordrecht, The Netherlands: Kluwer

Academic Publishers.
Leith, Philip. 1990. Formalism in AI and Computer Science. New York and London: Ellis

Horwood Limited.
Lennon, Kathleen. 1990. Explaining Human Action. La Salle, Illinois: Open Court

Publishing Company.
Lerdahl, Fred, and Ray Jackendoff. 1983. A Generative Theory of Tonal Music.

Cambridge, Massachusetts: The MIT Press.
Lesser, Victor R., Robert C. Whitehair, Daniel D. Corkill, and Joseph A. Hernandez. 1989.

Goal Relationships and Their Use in a Blackboard Architecture. In Blackboard
Architectures and Applications, edited by V. Jagannathan, Rajendra Dodhiawala, and
Lawrence S. Baum, 9–26. Boston: Academic Press, Inc., Harcourt Brace Jovanovich,
Publishers.

Lesser, Victor R., Jasmina Pavlin, and Edmund H. Durfee. 1989. Approximate Processing
in Real-Time Problem Solving. In Blackboard Architectures and Applications, edited
by V. Jagannathan, Rajendra Dodhiawala, and Lawrence S. Baum, 239–268. Boston:
Academic Press, Inc., Harcourt Brace Jovanovich, Publishers.

Levin, Iris, and Dan Zakay, eds. 1989. Time and Human Cognition. Amsterdam: Elsevier
Science Publishers B.V. (North-Holland).

Levinson, Jerrold. 1984. A Thousand Entities: Comments on Haugeland’s ‘Ontological
Supervenience’. The Southern Journal of Philosophy, Spindel Conference 1983:
Supervenience XXII (Supplement): 13–17.

Liben, Lynn S., Arthur H. Patterson, and Nora Newcombe, eds. 1981. Spatial
Representation and Behavior Across the Life Span. New York: Academic Press.

Lin, Fangzhen. 1991. A Study of Nonmonotonic Reasoning. Report No. STAN-CS-91-
1385, Department of Computer Science, Stanford University.

Lin, Fangzhen, and Yoav Shoham. 1989. Argument Systems: a uniform basis for
nonmonotonic reasoning. In Proceedings of the First International Conference on
Principles of Knowledge Representation and Reasoning, KR-89, San Mateo,
California: Morgan Kaufmann Publishers, Inc., 245–255.

Maes, Pattie. 1990. Situated Agents Can Have Goals. In Designing Autonomous Agents,
edited by P. Maes, 49–70. Cambridge, Massachusetts: The MIT Press.

Marr, David. 1982. Vision. W. H. New York: Freeman and Company.
McCarthy, John. 1968. Programs with Common Sense. In Semantic Information

Processing, edited by M. Minsky, 403–418. Cambridge and London: The MIT Press.
McDermott, D. 1978. Planning and Acting. Cognitive Science 2 (2): 71-109.
McDermott, Drew. 1990. Planning Reactive Behavior: A Progress Report. In Proceedings

of the Workshop on Innovative Approaches to Planning, Scheduling and Control,
edited by Katia P. Sycara, 450–458. Defense Advanced Research Projects Agency
(DARPA).

Mesarovic, M. D., and D. Macko. 1969. Foundations for a Scientific Theory of
Hierarchical Systems. In Hierarchical Structures, edited by Lancelot Law Whyte,
Albert G. Wilson, and Donna Wilson, 29–50. New York: American Elsevier Publishing
Company, Inc.

Meystel, A. 1987. Theoretical Foundations of Planning and Navigation for Autonomous
Robots. International Journal of Intelligent Systems II: 73–128.

158

Miller, Richard B. 1990. Supervenience is a Two-Way Street. The Journal of Philosophy

LXXXVII (December): 695-701.
Minker, Jack, ed. 1988. Foundations of Deductive Databases and Logic Programming. San

Mateo, California: Morgan Kaufmann Publishers, Inc.
Mitchell, Joseph S. B., David W. Payton, and David M. Keirsey. 1987. Planning and

Reasoning for Autonomous Vehicle Control. International Journal of Intelligent
Systems II: 129–198.

Moore, Robert C. 1987. Semantical Considerations on Nonmonotonic Logic. In Readings
in Nonmonotonic Reasoning, edited by Matthew L. Ginsberg, 127–136. Los Altos,
California: Morgan Kaufmann Publishers, Inc.

Morris, William, ed. 1978. The American Heritage Dictionary of the English Language.
Boston: Houghton Mifflin Company.

Mukerjee, Amitabha, and Gene Joe. 1990. A Qualitative Model for Space. In Proceedings
of the Eighth National Conference on Artificial Intelligence, AAAI-90, 721–727.

Nilsson, Nils J. 1980. Principles of Artificial Intelligence. Los Altos, California: Morgan
Kaufmann Publishers, Inc.

Nilsson, Nils J. 1991. Toward Agent Programs with Circuit Semantics. Artificial
Intelligence.

Payton, David W., J. Kenneth Rosenblatt, and David M. Keirsey. 1990. Plan Guided
Reaction. IEEE Transactions on Systems, Man, and Cybernetics 20
(November/December): 1370–1382.

Peterson, James Lyle. 1981. Petri Net Theory and the Modeling of Systems. Englewood
Cliffs, New Jersey: Prentice-Hall, Inc.

Piaget, Jean, and Bärbel Inhelder. 1967. The Child’s Conception of Space. New York: W.
W. Norton & Company, Inc.

Piaget, Jean, and Bärbel Inhelder. 1969. The Psychology of the Child. New York: Basic
Books, Inc.

Pollack, Martha E. 1986. Inferring Domain Plans in Question-Answering. SRI Technical
Note #403, Menlo Park, California: SRI International.

Pollack, Martha E., and Marc Ringuette. 1990. Introducing the Tileworld: Experimentally
Evaluating Agent Architectures. In Proceedings of the Eighth National Conference on
Artificial Intelligence, AAAI-90, 183–189.

Pollock, John L. 1989. How to Build a Person: A Prolegomenon. Cambridge,
Massachusetts: The MIT Press.

Post, John F. 1984. Comment on Teller. The Southern Journal of Philosophy, Spindel
Conference 1983: Supervenience XXII (Supplement): 163–167.

Potegal, Michael, ed. 1982. Spatial Abilities. New York: Academic Press.
Plaisted, David A. 1981. Theorem Proving with Abstraction. Artificial Intelligence 16:

47–108.
Pylyshyn, Zenon W., ed. 1987. The Robot’s Dilemma : The Frame Problem in Artificial

Intelligence. Norwood, New Jersey: Ablex.
Rathmann, Peter. 1991. Nonmonotonic Semantics for Partitioned Knowledge Bases.

Report No. STAN-CS-91-1371, Department of Computer Science, Stanford University.
Raulefs, Peter. 1989. Toward a Blackboard Architecture for Real-Time Interactions with

Dynamic Systems. In Blackboard Architectures and Applications, edited by V.
Jagannathan, Rajendra Dodhiawala, and Lawrence S. Baum, 285–299. Boston:

159

Academic Press, Inc., Harcourt Brace Jovanovich, Publishers.

Reichenbach, Hans. 1958. The Philosophy of Space & Time. Translated by Maria
Reichenbach and John Freund. New York: Dover Publications, Inc.

Rich, Charles. 1985. The Layered Architecture of a System for Reasoning about Programs.
In Proceedings of the Ninth International Joint Conference on Artificial Intelligence,
IJCAI-85, 540–546.

Roitblat, H. L. 1991. Cognitive Action Theory as a Control Architecture. In From Animals
to Animats: Proceedings of the First International Conference on Simulation of
Adaptive Behavior, edited by Jean-Arcady Meyer, and Stewart W. Wilson, 444–450.
Cambridge, Massachusetts: The MIT Press.

Rosenschein, S. J., and L. P. Kaelbling. 1986. The Synthesis of Machines with Provable
Epistemic Properties. In Proceedings of the 1986 Conference on Theoretical Aspects of
Reasoning about Knowledge, edited by J. F. Halpern, 83–98. Los Altos, California:
Morgan Kaufmann Publishers, Inc.

Sacerdoti, Earl D. 1974. Planning in a Hierarchy of Abstraction Spaces. Artificial
Intelligence 5 (2): 115–135.

Sacerdoti, Earl D. 1975. The Nonlinear Nature of Plans. In Advance Papers of the Fourth
International Joint Conference on Artificial Intelligence, IJCAI-75, 206–214.

Sacerdoti, Earl D. 1977. A Structure for Plans and Behavior. New York: Elsevier North-
Holland, Inc.

Sanborn, James C. 1989. Dynamic Reaction: Controlling Behavior in Dynamic Domains.
CS-TR-2184, Department of Computer Science, University of Maryland.

Sayre-McCord, Geoffrey. 1988. Moral Theory and Explanatory Impotence. In Essays on
Moral Realism, edited by Geoffrey Sayre-McCord, 256–281. Ithaca and London:
Cornell University Press.

Schank, Roger C. 1982. Dynamic Memory. Cambridge: Cambridge University Press.
Schoppers, M. J. 1987. Universal Plans for Reactive Robots in Unpredictable

Environments. In Proceedings of the Tenth International Joint Conference on Artificial
Intelligence, IJCAI-87, 1039–1046.

Schoppers, Marcel, and Ted Linden. 1990. The Dimensions of Knowledge Based Control
Systems and the Significance of Metalevels. In Planning in Uncertain, Unpredictable,
or Changing Environments, edited by James Hendler. SRC TR 90-45, University of
Maryland Systems Research Center.

Schoppers, Marcel, and Richard Shu. 1990. An Implementation of Indexical/Functional
Reference for Embedded Execution of Symbolic Plans. In Proceedings of the
Workshop on Innovative Approaches to Planning, Scheduling and Control, San Mateo,
California: Morgan Kaufmann Publishers, Inc., 490–496.

Serafine, Mary Louise. 1988. Music as Cognition. New York: Columbia University Press.
Shallice, Tim. 1991. Précis of From Neuropsychology to Mental Structure. Behavioral and

Brain Sciences 14 (September): 429–469.
Shoham, Yoav. 1988. Reasoning about Change. Cambridge, Massachusetts: The MIT

Press.
Shwayder, D. S. 1965. The Stratification of Behaviour. London: Routledge & Kegan Paul,

New York: The Humanities Press.
Simon, Herbert A. 1969. The Architecture of Complexity. In The Sciences of the

Artificial, by Herbert A. Simon, 84–118. Cambridge Massachusetts: The MIT Press.

160

Spector, Lee, and James Hendler. 1990a. An Abstraction-Partitioned Model for Reactive

Planning. In Proceedings of the Fifth Rocky Mountain Conference on Artificial
Intelligence (RMCAI-90), Las Cruces, New Mexico: New Mexico State University,
155–160.

Spector, Lee, and James Hendler. 1990b. Knowledge Strata: Reactive Planning with a
Multi-level Architecture. UMIACS-TR-90-140, CS-TR-2564, Department of Computer
Science, University of Maryland.

Spector, Lee, and James Hendler. 1991a. The Supervenience Architecture. In The
Proceedings of the IJCAI-91 Workshop on Theoretical and Practical Design of
Rational Agents, Sydney, Australia.

Spector, Lee, and James Hendler. 1991b. The Supervenience Architecture. In Proceedings
of the AAAI Fall Symposium on Sensory Aspects of Robotic Intelligence, Asilomar,
California, 93–100.

Steele, Guy. 1990. Common Lisp. Digital Press, Digital Equipment Corporation.
Stefik, Mark. 1981. Planning with Constraints (MOLGEN: Part 1). Artificial Intelligence

16 (2): 111–140.
Steiner, Mark. 1979. Quine and Mathematical Reduction. In Essays on the Philosophy of

W. V. Quine, edited by Robert W. Shahan, and Chris Swoyer, 133–143. Norman:
University of Oklahoma Press.

Suchman, Lucy A. 1987. Plans and Situated Actions. Cambridge: Cambridge University
Press.

Sycara, Katia P., ed. 1990. Proceedings of the Workshop on Innovative Approaches to
Planning, Scheduling and Control. Defense Advanced Research Projects Agency
(DARPA).

Tate, Austin. 1976. Project Planning Using a Hierarchic Non-Linear Planner. Department
of Artificial Intelligence Research Report No. 25, Edinburgh: University of Edinburgh.

Tate, Austin. 1977. Generating Project Networks. In Proceedings of the International Joint
Conference on Artificial Intelligence, IJCAI-77, 888–893.

Teller, Paul. 1984. A Poor Man’s Guide to Supervenience and Determination. The
Southern Journal of Philosophy, Spindel Conference 1983: Supervenience XXII
(Supplement): 137–162.

Tenenberg, Josh D. 1987. Preserving Consistency across Abstraction Mappings. In
Proceedings of the Tenth International Joint Conference on Artificial Intelligence,
IJCAI-87, 1011–1014.

Tenenberg, Josh D. 1991. Abstraction in Planning. In Reasoning About Plans, by James F.
Allen, Henry A. Kautz, Richard N. Pelavin, and Josh D. Tennenberg, 213–283. San
Mateo, California: Morgan Kaufmann Publishers, Inc.

Thalberg, Irving. 1977. Perception, Emotion & Action. New Haven: Yale University Press.
Vere, Steven, and Timothy Bickmore. 1990. A Basic Agent. Computational Intelligence 6:

41-60.
Washington, Richard, and Barbara Hayes-Roth. 1990. Abstraction Planning in Real-Time.

In Planning in Uncertain, Unpredictable, or Changing Environments, edited by James
Hendler. SRC TR 90-45, University of Maryland Systems Research Center.

Weinberg, Julius. 1973. Abstraction in the Formation of Concepts. In Dictionary of the
History of Ideas, edited by Philip P. Wiener, 2–9. New York: Charles Scribner’s Sons.

Weld, Daniel S., and Johan de Kleer, eds. 1990. Readings in Qualitative Reasoning about

161

Physical Systems. San Mateo, California: Morgan Kaufmann Publishers, Inc.

Whyte, Lancelot Law. 1969. Structural Hierarchies: A Challenging Class of Physical and
Biological Problems. In Hierarchical Structures, edited by Lancelot Law Whyte, Albert
G. Wilson, and Donna Wilson, 3–16. New York: American Elsevier Publishing
Company, Inc.

Whyte, Lancelot Law, Albert G. Wilson, and Donna Wilson, eds. 1969. Hierarchical
Structures. New York: American Elsevier Publishing Company, Inc.

Wilensky, Robert. 1983. Planning and Understanding. Reading, Massachusetts: Addison-
Wesley Publishing Company.

Wilkins, David E. 1988. Practical Planning: Extending the Classical AI Planning
Paradigm. San Mateo, California: Morgan Kaufmann Publishers, Inc.

Williams, Theodore J., ed. 1985. Analysis and Design of Hierarchical Control Systems.
Amsterdam: Elsevier Science Publishers, B.V.

Yang, Qiang, and Josh D. Tenenberg. 1990. ABTWEAK: Abstracting a Nonlinear, Least
Commitment Planner. In Proceedings of the Eighth National Conference on Artificial

162

Intelligence, AAAI-90, 204-209.

