
Uniform Linear Transformation with Repair
and Alternation in Genetic Programming

Lee Spector and Thomas Helmuth

Abstract Several genetic programming researchers have argued for the utility of ge-
netic operators that act uniformly. By “act uniformly” we mean two specific things:
that the probability of an inherited program component being modified during in-
heritance is independent of the size and shape of the parent programs beyond the
component in question; and that pairs of parents are combined in ways that allow
arbitrary combinations of components from each parent to appear in the child. Uni-
form operators described in previous work have had limited utility, however, be-
cause of a mismatch between the relevant notions of uniformity and the hierarchical
structure and variable sizes of many genetic programming representations. In this
chapter we describe a new genetic operator, ULTRA, which incorporates aspects
of both mutation and crossover and acts approximately uniformly across programs
of variable sizes and structures. ULTRA treats hierarchical programs as linear se-
quences and includes a repair step to ensure that syntax constraints are satisfied after
variation. We show that on the drug bioavailability and Pagie-1 benchmark problems
ULTRA produces significant improvements both in problem-solving power and in
program size relative to standard operators. Experiments with factorial regression
and with the boolean 6-multiplexer problem demonstrate that ULTRA can manipu-
late programs that make use of hierarchical structure, but also that it is not always
beneficial. The demonstrations evolve programs in the Push programming language,
which makes repair particularly simple, but versions of the technique should be ap-
plicable in other genetic programming systems as well.
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1 Introduction

One of the essential components of any genetic programming system, and of any
evolutionary algorithm more generally, is the set of genetic operators used to pro-
duce genomes of children from genomes of parents. The operators that are used
most commonly in genetic programming stem from Koza’s work and involve the re-
placement of single subprograms either with newly generated random subprograms
(for mutation) or with subprograms taken either from other programs in the popula-
tion (for crossover) (Koza, 1992). Numerous alternatives have since been proposed,
on the basis of a wide variety of motivations, including operators designed specif-
ically to control program size (e.g. (Langdon, 2000; Crawford-Marks and Spec-
tor, 2002)), operators specialized for specific program element types (e.g. (Schoe-
nauer et al, 1996)), operators that respect or enforce homology between parents (e.g.
(D’haeseleer, 1994; Langdon and Poli, 2002)), and operators that combine the se-
mantics of parents in tailored ways (e.g. (Moraglio et al, 2012)). A brief summary
of several alternative operators is available in (Poli et al, 2008).

In the present chapter we are primarily concerned with operators that act uni-
formly across programs. By “act uniformly” we mean two different things, both
of which have been designated as “uniform” by others as well. In the first place
we mean that the probability of an inherited program component being modified
during inheritance is independent of the size and shape of the parent programs be-
yond the component in question. This property does not hold for standard subtree
crossover or mutation because components deeper in trees are more likely to be
replaced or modified when those operators are used. Furthermore, two equal com-
ponents at the same depth of different trees will have different probabilities of being
replaced depending on the rest of the tree; the larger the rest of the tree, the less
likely the component is to be changed. This property does hold to some extent,
however, for versions of “uniform subtree mutation” that have been described in the
genetic programming literature (Van Belle and Ackley, 2002). In the second place
we are interested in operators that combine pairs of parents in ways that allow ar-
bitrary combinations of components from each parent to appear in the child. Again,
this property does not hold for standard subtree crossover, which replaces a single
subtree of one parent with a single subtree of another parent. This property does hold
to some extent, however, for previously-presented versions of “uniform crossover”
(Page et al, 1998). Both properties hold in some traditional genetic algorithms with
linear, fixed-length genomes.

As noted in the work cited above, there are several reasons to think that unifor-
mity of both kinds may be helpful, including possible beneficial effects on program
size control and search space coverage. For example, if genetic operators are uni-
form then program growth through the accumulation of non-functional code will
not confer “protection from crossover” on a program’s functional code, so “pro-
gram bloat” (and consequent decreases in program search efficacy) due to this cause
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should be eliminated (Luke and Panait, 2006).1 However, the operators described in
previous research have been limited in their potential applications, largely because
of a mismatch between notions of uniform action and the hierarchical structure and
variable sizes of genetic programming representations.

For example, the uniform crossover operator developed by Poli, Langdon and
Page swaps nodes only among parts of parent trees that are structurally equivalent
between the two parents, and the uniform mutation operator that they use can only
change nodes to other nodes of equivalent arity (Page et al, 1998; Poli and Langdon,
1998; Poli and Page, 2000). This means that non-matched subtrees of parents can ap-
pear in children only in an all-or-nothing fashion, and that mutations cannot change
tree shapes. In addition, the hierarchical nature of the crossover operator biases the
mixture differently at different tree depths. Furthermore, the amount of mixing per-
mitted would be diminished in the context of strong typing or other enrichments
of the program representation. The approach in this work is to vary programs uni-
formly where it is safe and clear how to do so. Poli et al. have demonstrated, both
theoretically and empirically (with even-n-parity problems) that this approach can
have significant benefits. But even in the context of simple, single-type genetic pro-
gramming it is not clear how to vary programs uniformly everywhere, and even
where it is clear the variations that this method produces are not fully uniform in all
of the senses that might be helpful.

More recently Semenkin and Semenkina have extended the methods of Poli et al.,
specifying random selection of parental components when arities are mismatched.
They also allowed the ratio of parent contributions to be adaptively controlled (Se-
menkin and Semenkina, 2012). While this work increases the amount and variety of
mixing that can be produced, the constraints on the application of the technique and
the deviations from uniformity are largely unchanged from the prior work.

Other researchers have explored an approach to uniform mutation involving iter-
ative applications of subtree replacement, with the number of iterations depending
on the size of the program (Van Belle and Ackley, 2002). This allows mutation to
produce arbitrary changes in tree shape and it helps to decouple the chances of a
node being modified from the size and shape of the remainder of the program, but it
is still subject to significant depth-based biases in modification probabilities. Exper-
iments with this technique have demonstrated improvements in program size control
but less clear results with respect to problem-solving power (Van Belle and Ackley,
2002). In other work, different genetic operators have been applied to programs of
different depths, leading to somewhat more uniform variation than is produced by
standard systems (Kennedy and Giraud-Carrier, 1999).

The approach to uniform variation that we describe in this chapter differs from
that of the past work by prioritizing uniformity (of both kinds): we designed our sin-
gle new genetic operator, which incorporates aspects of both mutation and crossover,
in a way that causes uniformity to take precedence over the effects of program shape

1 We make no claims here about the prevalence of “protection from crossover.” This is just one
example of the effects that operator uniformity can have on program sizes and on genetic program-
ming search efficacy; other effects may interact with other hypothesized causes of program bloat
in other ways.
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and size. We did this, essentially, by ignoring the syntactic structure of programs
during the first phase of the action of the operator. This “syntax blindness” can pro-
duce children that violate syntactic constraints, so we must follow the syntax-blind
variation step with a repair step that ensures or restores syntactic validity. While we
do not claim that our new operator is “perfectly” uniform in the sense that we are
using that term, we do believe that it is more uniform than other operators described
in the literature and that its good performance is a consequence of this fact.

In the following sections we first describe the PushGP genetic programming sys-
tem, within which all of our demonstrations are conducted; Push’s minimal syntactic
constraints make the repair step of our method particularly simple. We then describe
our new operator, which we call ULTRA (for “Uniform Linear Transformation with
Repair and Alternation”). We then demonstrate the utility of ULTRA on several
problems. Our demonstrations include applications to the drug bioavailability and
Pagie-1 benchmark problems, for which ULTRA provides dramatic improvements
both in problem-solving power and in control of program size. We also demonstrate
the utility of ULTRA on a factorial regression problem that involves greater use of
hierarchical program structure, again documenting significant improvements both in
problem-solving power and in control of program size. Finally, we include results
of an application to a Boolean multiplexer problem, for which the results are mixed.
Following these demonstrations we conclude with some comments about directions
for future research.

2 Push and PushGP

Push is a programming language that was designed specifically for use in evolution-
ary computation systems, as the language in which evolving programs are expressed
(Spector, 2001; Spector and Robinson, 2002; Spector et al, 2005). Push is a stack-
based programming language that is similar in some ways to others that have been
used for GP (e.g. (Perkis, 1994)). It is a postfix language in which literals are pushed
onto data stacks and instructions act on stack data and return their results to stacks.

One novel feature of Push is that a separate stack is used for each data type. In-
structions take their arguments (if any) from stacks of the appropriate types and they
leave their results (if any) on stacks of the appropriate types. This allows instructions
and literals to be freely intermixed regardless of type while still ensuring execution
safety. By convention, instructions that find insufficient data on the relevant stacks
act as “no-ops”—that is, they do nothing.

Many of Push’s most unusual and powerful features stem from the fact that
code is itself a Push data type, and from the fact that Push programs can easily
(and often do) manipulate their own code as they run. Push programs may be hi-
erarchically structured with parentheses, and this hierarchical structure affects how
code-manipulation instructions work. It also affects the ways that traditional ge-
netic operators operate on programs, just as the analogous structure of tree-based
programs affects the ways that traditional genetic operators operate on them. In the
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most standard configuration PushGP uses mutation and crossover operators that are
almost identical to those used in tree-based genetic programming, with mutation re-
placing a sub-expression (a literal or a parenthesized code fragment) with a newly
generated sub-expression, and with crossover replacing a sub-expression with a sub-
expression randomly chosen from another program in the population.

Push and PushGP implementations have been written in C++, Java, JavaScript,
Python, Common Lisp, Clojure, Scheme, Erlang, Scala and R. Many of these are
available for free download from the Push project page.2

3 The ULTRA Operator

“ULTRA,” which stands for “Uniform Linear Transformation with Repair and Al-
ternation,” is a new genetic operator that takes two parent programs and produces
one child program. ULTRA acts on hierarchically structured programs but treats
them as linear sequences. It uses each element of the parent sequences with uniform
probability and modifyies each element of the resulting child sequence with uni-
form probability. It was motivated by theoretical considerations regarding relations
between program size, function, and mutability, and by analogies to the mechanics
of mutation and crossover in biological (linear) genomes. We will describe ULTRA
here in terms of the elements of Push programs, but the operator could be used on
other program representations with suitable modifications.

ULTRA works by first “linearizing” each parent into a flat, depth-first sequence
that includes a token for each literal, instruction, and delimiter (e.g. Push parenthe-
ses) in the parent program. It then pads the end of the shorter parent program with
null tokens so that both parent programs are the same length. These tokens ensure
that instructions in programs of different lengths have approximately equal proba-
bilities of being included in the child, no matter where those instructions occur. The
null tokens are removed from the child at the end of ULTRA.

ULTRA next traverses the linearized parents, building the child as a linear se-
quence of tokens taken from the parents. Traversal begins with a “read head” on
the first token of the the first parent, and the copying of that token to the child. Af-
ter this and each subsequent step there is a fixed probability of alternating between
parents; that is, of moving the read head to approximately the same location in the
other parent program. The probability of alternating at any given step is specified
as the “alternation rate.” When alternating between parents, the position of the read
head is subjected to Gaussian noise and may change to a higher or lower index;
the standard deviation of the noise is given by the “alignment deviation” parameter.
Note that alignment deviation may cause some elements of parent programs to be
skipped or to be repeated in the child program. After deciding whether to alternate
or not, the next token from the current parent is added to the child, and the read head
is moved forward. The construction of the child terminates when the read head runs

2 http://hampshire.edu/lspector/push.html



6 Lee Spector and Thomas Helmuth

off the end of the current parent or when the child reaches the maximum program
size.

After the child sequence has been created through this traversal, it is subjected
to a uniform mutation during which each token has uniform probability of being
deleted or replaced by a randomly chosen literal, instruction, or delimiter. The prob-
ability of any specific token being mutated is given by the “mutation rate” parameter.

In the absence of mutations or alternations, ULTRA would simply traverse the
first parent and copy all of its tokens to the child; the child would then be a clone
of the first parent. However, alternation and mutation may produce novel programs,
some of which may be syntactically invalid; in these cases, the child program must
be repaired by ULTRA’s repair step.

Fortunately, Push programs are particularly easy to repair. Any sequence of valid
instructions, literals, and parentheses is a syntactically valid Push program as long as
its parentheses are balanced and as long as its outermost parentheses enclose the en-
tire program. This means that ULTRA can repair a program by simply adding and/or
deleting parentheses. Our repair algorithm traverses the child until an imbalance is
detected and then fixes the imbalance either by deleting the source of the imbal-
ance or by adding a matching parenthesis in a random location on the appropriate
side of the imbalance. The complete repair algorithm requires two passes through
the program, one in each direction, and minimizes structural bias arising from re-
pair choices (as might occur, for example, if repairs were always accomplished by
adding parentheses to the very beginning or very end of the program). After repair,
the child sequence is transformed back into a hierarchical Push program. Finally, all
null tokens are removed from the child.

As an example of the overall operation of ULTRA, consider a case involving the
two parent programs “(a b (c (d)) e (f g))” and “(1 (2 (3 4) 5) 6)”. After linearization
the first parent has 15 tokens, while the second has only 12, so the second would be
padded with 3 null tokens. Alternation might then produce a sequence of tokens like
“(a b 2 (3 4 d)) 6) null null null”, which has an extra “)”. After repair and removal
of null tokens we might have a valid child program such as “(a (b 2 (3 4 d)) 6)”.

4 Experiments

To test the performance of ULTRA compared to standard genetic operators, we
conducted runs of PushGP on four problems: drug bioavailability, Pagie-1 symbolic
regression, factorial symbolic regression, and 6-multiplexer.

The drug bioavailability problem is a predictive modeling problem in which the
programs must predict the human oral bioavailability of a set of drug compounds
given their molecular structure (Silva and Vanneschi, 2009, 2010). This problem
has been used for genetic programming benchmarking in various studies (Silva and
Vanneschi, 2009; Harper, 2012), and is recommended as a benchmark problem in
a recent article on improving the use of benchmarks in the field (McDermott et al,
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2012)3. Each fitness case for this problem represents a molecule, with 241 float-
ing point inputs, each of which represents a different molecular descriptor of the
molecule, and a single floating point output representing the human oral bioavail-
ability of that molecule. The dataset is available on the online.4

The Pagie-1 symbolic regression problem, proposed in (Pagie and Hogeweg,
1997), is a function on two variables of the form

f (x,y) =
1

(1+ x−4)
+

1
(1+ y−4)

.

Training set inputs are taken from the range [−5,5] in steps of 0.4, resulting in 676
fitness cases. This problem has also been used for benchmarking (Harper, 2012),
and has been recommended as a replacement for “toy” problems such as symbolic
regression of the quartic polynomial (McDermott et al, 2012; White et al, 2013).

The factorial symbolic regression problem is an integer symbolic regression
problem with one input and one output, in which the output should be the facto-
rial of the input. We used 10 test cases, ranging from 1! = 1 to 10! = 3628800.
Because error magnitudes vary significantly across cases we used “lexicase selec-
tion” instead of tournament selection for these runs. Lexicase selection is a parent
selection algorithm that was developed to help solve problems that are “modal” in
the sense that they require solution programs to perform qualitatively differently
actions for inputs that belong to different classes, but it is also useful for problems
in which error magnitudes are likely to vary significantly across cases. In lexicase
selection a parent is selected by starting with a pool of potential parents—normally
the entire population—and then filtering the pool on the basis of performance on
individual fitness cases, considered one at a time (Spector, 2012).

The 6-multiplexer problem (MUX6) is the standard boolean multiplexer problem
used in (Koza, 1992) and in many subsequent studies by many authors.

Table 1 Parameters for experiments.

Problem Bioavailability Pagie-1 Factorial MUX6
Runs Per Condition 200 100 100 100
Population Size 500 1000 1000 500
Max Generations 100 1000 500 200
Max Program Size 500 500 500 200
Max Inital Program Size 500 500 100 200
Max Size for Mutation Code 50 50 20 20
Parent Selection Tournament Size 7 7 Lexicase 7

In our experiments, we used the PushGP parameters listed in Table 1. We made
an effort to use parameters similar to those used in previous work on these prob-

3 Recently, however, concerns have been raised about the use of this problem; see
http://jmmcd.net/2013/12/19/gp-needs-better-baselines.html
4 http://personal.disco.unimib.it/Vanneschi/bioavailability.txt
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Table 2 ULTRA parameters used in our experiments.

Problem Bioavailability, Pagie-1, MUX6 Factorial
ULTRA Mutation Rate 0.01 0.05
ULTRA Alternation Rate 0.01 0.05
ULTRA Alignment Deviation 10 10

lems where possible. We used unbiased node selection for all subtree replacement
operators. Table 2 presents the parameters we used for ULTRA

For the bioavailability and Pagie-1 problems, we used the float stack instructions
add,sub,mult, and div as the only non-input instructions. The bioavailability prob-
lem uses 241 input instructions, one for each molecular descriptor. As in (Silva and
Vanneschi, 2009), we made input instructions and arithmetic instructions equally
likely to be chosen by the random code generator. The Pagie-1 problem only re-
quires the input instructions x and y. We also used the constant 1.0, but did not
provide an ephemeral random constant.

For the factorial symbolic regression problem we used a more extensive function
set that allowed for the manipulation of integers, boolean values, and the execu-
tion stack (to permit conditional branches and recursion), but we did not include
Push’s high-level iteration instructions that allow for trivial solutions. Specifically,
we used the constants 0 and 1; an input instruction in; the boolean instructions
and,dup,eq, f rominteger,not,or, pop,rot, and swap; the integer instructions add,
div, dup, eq, f romBoolean, greaterT han (which pushes a boolean), lessT han, mod,
mult, pop, rot, sub, and swap; and the exec instructions dup, eq, i f , noop, pop, rot,
swap, when, and the combinators k, s, and y (Spector et al, 2005).

Our instruction set for the 6-multiplexer problem included the boolean instruc-
tions and, or, and not, the exec stack instruction i f , and the input instructions a0,
a1, d0, d1, d2, and d3.

For some problems we conducted runs in multiple non-ULTRA conditions to
show that the relative performance of ULTRA was not due solely to poor choices of
parameters for the traditional genetic operators; in these cases we describe the runs
with notation such as “81/9/10,” meaning that the run used 81% subtree-replacement
crossover, 9% subtree-replacement mutation, and 10% straight reproduction.

For all runs described here, fitness is defined as a measure of error, with lower
numbers being better. For the bioavailability problem, we use root mean square error
(RMSE) as the fitness measure. On this problem, we separate the fitness cases into
training and test sets by randomly selecting 70% of the fitness cases for training and
30% of them for testing. For this problem, we determine the statistical significance
of whether the RMSE results of two runs come from the same distribution using the
Kruskal-Wallis one-way analysis of variance at p = 0.01.

For the Pagie-1, factorial, and 6-multiplexer problems we used mean error across
fitness cases and no separate test set. We present the number of successes and mean
best fitness (MBF: the mean of the best individual fitnesses attained in each run) for
these problems. The fitnesses given here are mean errors across test cases, not the
sums of those errors. As recommended in (Luke and Panait, 2002; McDermott et al,
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Fig. 1 Results from the
bioavailability problem. We
conducted 200 runs for each
choice of operators. The
RMSE of the best individuals
on the training fitness cases
(left) and on the test fitness
cases (right). In each plot,
subtree replacement 81/9/10
is plotted first, followed by
subtree replacement 45/45/10
and then ULTRA. In each box
plot, the box stretches from
the first quartile to the third
quartile with a line for the
median in the middle. The
whiskers extend to the fur-
thest value within 1.5 times
the inter-quartile range. Points
beyond the whiskers are out-
liers, plotted as points. Note
that in the right plot, 8 outliers
in the 81/9/10 set, 5 outliers
in the 45/45/10 set, and 4
outliers in the ULTRA set fell
outside the of the visible plot.
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2012), we use unpaired t-tests to compare differences in MBF for different condi-
tions. For the factorial and 6-multiplexer runs, we also present the computational
effort, which gives an estimate of the number of fitness evaluations required to have
a good chance of finding a solution (Koza, 1992; Niehaus and Banzhaf, 2003).

5 Results

Figure 1 gives two box plots from our runs of the bioavailability problem, where
each genetic operator setting was used in 200 runs. The left plot shows the root
mean square error (RMSE) of the best program as measured on the training set. The
right plot shows the RMSE of the same individuals on the test set. Both subtree
replacement 81/9/10 and subtree replacement 45/45/10 differ statistically signifi-
cantly from ULTRA on both the training and test sets. ULTRA appears to be able
to find more accurate models of the training data than subtree replacement without
overfitting the training data.

The mean program sizes with respect to generation are plotted in Figure 2. The
runs using subtree replacement show steady growth in program sizes, whereas those
using ULTRA quickly fall at the beginning of the run and then remain relatively



10 Lee Spector and Thomas Helmuth

Fig. 2 Mean program sizes
for the bioavailability prob-
lem.
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Table 3 Results on the Pagie-1 problem. We conducted 100 runs for each choice of operators.
MBF is the mean best fitness of the run. Note that the reported fitnesses are the mean errors over
test cases, not the summed errors.

Operators Successes MBF
Subtree Replacement 80/10/10 0 0.304
Subtree Replacement 45/45/10 0 0.333
ULTRA 3 0.172

Table 4 Results on the factorial problem for 100 runs in each condition. CE is computational effort
and MBF is the mean best fitness of the run. Note that the reported fitnesses are the mean errors
over test cases, not the summed errors.

Operators Successes CE MBF
Subtree Replacement 45/45/10 2 77,520,000 121,867
ULTRA 61 2,470,000 28,980

steady. The lower program sizes of ULTRA runs may contribute to the relative lack
of overfitting (that is, better generalization) of the programs produced in these runs.

Table 3 presents the results of our experiments on the Pagie-1 problem. PushGP
using ULTRA found perfect solutions in 15 out of 100 runs, whereas runs with
subtree replacement found none with either parameter setting. The differences in
MBF between subtree replacement 80/10/10 and ULTRA, and between subtree re-
placement 45/45/10 and ULTRA, are statistically significant at the p = 0.01 level
according to an unpaired t-test.

The mean program sizes in our Pagie-1 experiments are shown in Figure 3. Runs
using subtree replacement experienced quick code growth, reaching mean sizes near
the maximum program size of 500 within the first 50 generations. After this point,
it is difficult for the genetic operators to make changes to large programs without
exceeding the program size limit. On the other hand, the mean program sizes of
ULTRA runs quickly drop to around size 50, and then climb to approach 100.
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Fig. 3 Mean program sizes
for the Pagie-1 problem.
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Fig. 4 Mean program sizes
for the factorial problem.
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Table 4 presents the results from our experiments using the factorial problem.
ULTRA produced a better success rate and lower computational effort. The differ-
ence between the MBF subtree replacement 45/45/10 and ULTRA is statistically
significant based on an unpaired t-test at p = 0.01

Mean program sizes for the factorial problem runs are presented in Figure 4. The
runs using ULTRA maintained a relatively constant mean program size, while runs
using subtree replacement 45/45/10 show very fast code growth over the first 100
generations, followed by stable sizes near the maximum program size of 500.

Table 5 presents results from our experiments on the 6-multiplexer problem. In
contrast to the results on other problems presented here, subtree replacement per-
forms better than ULTRA on all measurements of problem-solving performance.
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Table 5 Results on the 6-multiplexer problem, with 100 runs in each condition. CE is computa-
tional effort and MBF is the mean best fitness of the run.

Operators Successes CE MBF
Subtree Replacement 80/10/10 85 135,000 0.009
ULTRA 58 369,000 0.038

Fig. 5 Mean program sizes
for the 6-multiplexer problem.
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The difference between the MBF of subtree replacement 80/10/10 and ULTRA is
statistically significant based on an unpaired t-test at p = 0.01.

Program sizes for the 6-multiplexer problem are shown in Figure 5. As we have
seen before, sizes in subtree replacement runs grow rapidly and stay high, whereas
sizes in ULTRA runs decrease rapidly and stay relatively low.

6 Discussion and Future Work

The results presented here demonstrate that ULTRA, a new genetic operator that
prioritizes uniformity and incorporates features of both traditional mutation and tra-
ditional crossover, can be an effective tool in helping genetic programming to solve
difficult programs and to manage program sizes over the evolutionary process.

The results on the drug bioavailability and Pagie-1 problems demonstrate that
ULTRA can produce dramatic improvements both with respect to problem-solving
power and with respect to managing program sizes. However, it should be noted
that these problems do not rely on the hierarchical structure of Push programs when
ULTRA is being used since they do not involve code manipulation instructions. A
solution to one of these programs would, because of the way that the Push inter-
preter interprets programs, work just as well with its parentheses moved to different
locations or eliminated entirely. Parentheses matter for these problems when tradi-
tional subtree-replacement operators are being used because parentheses delineate
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the units that can be replaced, but when only ULTRA is being used their effects
would be limited to providing sites for insertion of new instructions via mutation,
and for influencing the effects of deviations during alternation in minor ways.

For this reason we sought to demonstrate the use of ULTRA on a problem for
which parentheses play a semantic role in the execution of programs, through the use
of code manipulation instructions. The factorial symbolic regression problem that
we demonstrated includes several instructions that are affected by the placement
of parentheses. For example, the exec i f instruction will execute one of the two
expressions that follows it and skip the other, depending on the value on top of the
boolean stack. Since parentheses delineate the boundaries of these expressions, their
placement is crucial. Several other instructions used in this problem, including the
Y combinator instruction, rely on the placement of parentheses in a similar way.
The fact that ULTRA performed so well on this problem indicates that it is capable
of evolving hierarchically structured program representations even though it treats
these programs as linear structures and uses a repair process to ensure that syntactic
constraints (parentheses matching) is maintained.

In other work, not presented here, we have shown that ULTRA is also useful for
the evolution of multiple-output digital multipliers (Helmuth and Spector, 2013) 5.

The results on the 6-multiplexer problem indicate that ULTRA is not a panacea,
at least not with the parameters that were used here. It may be the case that if we
explored the space of parameters for ULTRA as well as subtree replacement oper-
ators that we would find settings that allow ULTRA to perform better than subtree
replacement. On the other hand, these results may indicate that there aren’t as many
solutions to the 6-multiplexer problem at the smaller mean program sizes that UL-
TRA tends to produce.

The 6-multiplexer results lead to one obvious avenue for future research: How
should ULTRA’s parameters be set? We set them more or less arbitrarily for the runs
presented here; conceivably we could develop guidelines for their values, based on
characteristics of a problem, or mechanisms by which the parameters could be set
adaptively over the course of a run.

Another important avenue for future research concerns more rigorous analysis of
when ULTRA has better performance than traditional subtree-replacement opera-
tors, when ULTRA produces smaller programs than traditional subtree-replacement
operators, and when and how these two things are related to each other. Furthermore,
the extent to which ULTRA is truly uniform should be studied more systematically.
An initial examination of ULTRA on flat programs shows that instructions within
the parent programs have approximately equal probability of being included in the
child program, and that the mean program size of a child produced by ULTRA with
differently sized parents is approximately the mean of the parent program sizes. But
it is possible, for example, that program repair and/or alignment deviations near the
beginnings or ends of parent programs will produce non-uniform effects. It would
be worthwhile to investigate these issues further.

5 Note that this work gives an outdated description of ULTRA that does not pad the shorter program
before alternation.
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Finally, while the application of ULTRA to the evolution of Push programs is
particularly simple—because Push program repair requires only the balancing of
parentheses—we would like to look at the application of ULTRA in several differ-
ent contexts. On the one hand it would be interesting to look at the application of
ULTRA to programs in Push-like languages that do not even require parentheses,
but rather use high-level instructions and/or markers within a linear program to de-
lineate program structure. This would make it unnecessary to repair programs at all,
and might provide both enhanced power and enhanced elegance.

On the other hand it would be interesting to look at the application of ULTRA
to traditional tree-based genetic programming and to other genetic programming
representations. For any such representation a repair mechanism will have to be de-
veloped that can re-establish syntactic constraints that may be violated by mutation
and alternation. For example, in tree-based genetic programming, using traditional
representations, it would be necessary not only to balance parentheses but also to
ensure that only functions appear in function position (first after a “(”), that only
sub-expressions and terminals appear in non-function positions, and that the ari-
ties of functions are respected. Alternative representations, for example representa-
tions that omit parentheses and require structure to be inferred from the positions
of functions and a table of function arities, might allow for simpler repair mech-
anisms. In any event, while repair in some representations will be more difficult
than it is in Push, repair should nonetheless be possible and once a repair mecha-
nism has been implemented one could use ULTRA with any program representa-
tion. Indeed, for some other representations, e.g. grammatical evolution with linear
genomes (O’Neill and Ryan, 2001), the implementation of ULTRA should be par-
ticularly straightforward.
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