
Chapter 2

AN ESSAY CONCERNING
HUMAN UNDERSTANDING
OF GENETIC PROGRAMMING

Lee Spector
Cognitive Science
Hampshire College
Amherst, MA 01002 USA
lspector@hampshire.edu

Abstract This chapter presents a personal perspective on the relation between
theory and practice in genetic programming. It posits that genetic pro-
gramming practice (including both applications and technique enhance-
ments) is moving toward biology and that it should continue to do so.
It suggests as a consequence that future-oriented genetic programming
theory (mathematical theory, developed to help analyze, understand,
and predict system behavior) should also borrow, increasingly, from bi-
ology. It presents specific challenges for theory vis-à-vis recent technique
enhancements, and briefly discusses possibilities for new forms of the-
ory that will be relevant to the leading edge of genetic programming
practice.

Keywords: biology, development, representation, diversification, phylogeography,
visualization.

1. Theory and Practice
Researchers in the field of genetic and evolutionary computation bor-

row features of biological systems to produce adaptive problem-solving
technologies. For the earliest such technologies, only the most general,
skeletal features of biological genetics (as then understood) were ap-
propriated. For example, many early systems represented candidate
solutions as linearly structured, positionally encoded genomes, borrow-

i

Preprint version of "An Essay Concerning Human Understanding
of Genetic Programming," by Lee Spector, to appear in Genetic 
Programming Theory and Practice, edited by Rick Riolo and Bill 
Worzel, Kluwer (now Springer), 2003, pages 11-24.



ii

ing loosely from the structure of DNA discovered by Watson and Crick
in 1953. In addition, these systems used algorithms for mutation and re-
combination based loosely on DNA mechanics, and schemes for population-
level adaptation based on an abstraction of Darwinian natural selection.

What has the role of theory been in this endeavor historically? By
“theory” here I mean mathematical theory, developed to help analyze,
understand, and perhaps predict the behavior of genetic and evolution-
ary computation systems in quantitative terms. Under this definition
theory has been essential in the field from its earliest days; for exam-
ple, Holland’s seminal monograph on genetic algorithms, first published
in 1975, was largely theoretical, and introduced the formal notion of
“schemata” which continues to drive much of the theory in the field
today (Holland, 1992). In much of the early work theory and practice
occurred together and directly motivated one another.

Genetic programming, by which I mean the specialization of “genetic
and evolutionary computation” to systems that evolve executable com-
puter programs, arose later, in the late 1980’s and early 1990’s. In the
succeeding years, genetic programming theory and practice (in which I
include both applications-oriented work and development of new tech-
niques) have both undergone steady progress, although not always in a
coordinated ways.

With the basic theory already established, system builders and appli-
cations engineers felt free to experiment with variations (“hack”), with-
out paying much attention to mathematical theory. For the theorists,
on the other hand, there was much work to be done in clarifying and
developing the mathematics, irrespective of the activities of the hackers.
As a result, there has been a divergence. Understandably, theory has
tended to lag behind practice; it is easier to hack systems than it is to
integrate the resulting hacks into a rigorous mathematical framework for
the purposes of analysis and prediction.

For example, recent advances in genetic programming schema the-
ory have broadened its applicability to include variable-length and tree-
structured genomes, along with popular mutation and crossover algo-
rithms (see, for example, Poli, 2001). This was a substantial and suc-
cessful mathematical undertaking, but for all of its successes it captures
a state of the art that is already about 10 years old. During the inter-
vening decade practice has flowered, producing much more complex and
capable systems for which there is not yet a strong theoretical frame-
work.

One example of the gap between theory and practice is automatically
defined functions, a technique extension developed in 1994 that has since
gained widespread acceptance, and is believed by many to be essential



An Essay ConcerningHuman Understandingof Genetic Programming iii

for the application of genetic programming to difficult, large-scale prob-
lems (Koza, 1994). There is not yet a mathematical theory of genetic
programming that provides any real leverage in understanding how and
why automatically defined functions are helpful. Meanwhile, practice
has moved beyond “simple” automatically defined functions, to systems
with architecture-altering operations (Koza, 1995) or other mechanisms
that allow the number of automatically defined functions and other as-
pects of modular architecture to evolve as a system runs (Spector and
Robinson, 2002).

Should theoreticians therefore turn their attention to extending schema
theory to handle automatically defined functions and architecture-altering
operations? I do not think that is likely to be the most productive move.
Automatically defined functions and architecture-altering operations are
only the tip of the iceberg. Among the other innovations that are playing
an increasingly important role in genetic programming practice are de-
velopmental processes (at genetic, morphological, and behavioral levels),
evolved representations, structured “deme” geography, and coevolution.
The prospect of extending current theory to cover these complications
seems daunting indeed, an of course the innovations in practice continue
to accumulate at a rapid clip.

None of this should be taken to dispute either the utility of early,
“simple” genetic programming systems for certain classes of problems, or
the utility of the newly enhanced theoretical apparatus for understanding
and improving these systems. But practice is moving ahead rapidly, and
this may be an opportune time to take stock of the situation and to
contemplate the possibilities for new forms of theory that will be relevant
to the leading edge of practice.

2. To Life!
Can we characterize the specific directions in which genetic program-

ming practice is moving? This would be a tall order, as genetic program-
ming is a field of rapid and sprawling innovation. The on-line genetic
programming bibliography1 contains 3, 068 entries as of this writing, the
great majority of which refer to publications within the last ten years. A
high percentage of publications in the field describe innovative enhance-
ments to the basic technique; several collections have a roughly tripartite
division into theory, technique enhancements, and applications. Even if
only something like 10% of the publications in the last ten years de-
scribe innovations in genetic programming practice, and I believe this
is a conservative estimate, there have nonetheless been several hundred
extensions to the technique since the field first blossomed in the early



iv

1990’s. Clearly, a systematic survey and analysis of the “direction” in
which all of these innovations are pushing the field would be a major
undertaking (and beyond the scope of this chapter).

Nonetheless, one can make some rough generalizations. Innovations in
technique are usually made by researchers who find that their systems hit
some sort of limit before they can solve the problems put to them. When
this happens the researchers often turn to other fields for inspiration.

If the perceived limit is one of raw computational resources (memory
or computing time) then researchers often turn to other areas of com-
puter science for solutions, for example by optimizing representations or
procedures (as in Keijzer, 1996), modifying the techniques to take bet-
ter advantage of available hardware and software architectures (Spector
and Stoffel, 1996; Nordin, Banzhaf, and Francone, 1999; Poli and Lang-
don, 1999), or adding features derived from software engineering (e.g.
modules, as in Koza, 1994; Spector, 1996).

If, on the other hand, the perceived limit is in the adaptive capacity
of the technology, then researchers often turn to the science that studies
the best known examples of adaptive systems: biology. For example,
recent advances in genetic programming technique use mechanisms de-
rived from DNA dynamics (Koza, 1995; Hansen, 2003), learning mecha-
nisms in neural networks (Teller, 1999; Downing, 2001), immune systems
(Nikolaev, Iba, and Slavov, 1999), regulatory networks (Banzhaf, 2003),
and biological gene expression processes (Keller and Banzhaf, 2001; Fer-
reira, 2001; Wu and Garibay, 2002).

As a result, a significant portion of the leading edge of the field con-
tinues to head toward biology. Even in work that appears quite distant
from biology on the surface, one often finds arguments that aspects
of the proposed techniques were motivated by some hither-to under-
appreciated feature of biological systems. Insofar as the adaptive power
of biological systems still vastly outstrips that of any currently existing
human-engineered computational system this is quite reasonable, and it
is a trend that we should expect to continue.

3. Life Evolving
Biology, however, is a moving target. Conceptions of the fundamental

mechanisms of biological evolution have changed repeatedly and dra-
matically since the 1960s and 1970s, when the core concepts of genetic
and evolutionary computation were established. One often-cited exam-
ple concerns the role of symbiosis and other “mutualisms”; originally
thought to have been curious exceptions to ordinary biological processes,
these phenomena are now widely thought to have played central roles in



An Essay ConcerningHuman Understandingof Genetic Programming v

the development of multicellular life (Maynard Smith and Szathmáry,
1999), with some researchers arguing that they are major sources of
evolutionary novelty on par with natural selection (Margulis, 2000).

Indeed, the very notion of a “gene,” which has suffered dramatic se-
mantic shifts in its 94-year history,2 now appears to be deeply problem-
atic. Evelyn Fox Keller, after describing several recently discovered com-
plications to the traditional picture of gene expression and gene/protein
interaction, writes:

Techniques and data from sequence analysis have led to the identifica-
tion not only of split genes but also of repeated genes, overlapping genes,
cryptic DNA, antisense transcription, nested genes, and multiple promo-
tors (allowing transcription to be initiated at alternative sites according
to variable criteria). All of these variations immeasurably confound the
task of defining the gene as a structural unit. (Keller, 2000, p. 67)

So, if we are to continue to move in biological directions, we might
expect to see the notion of “gene” that is implicit in our genetic represen-
tations to undergo significant alterations. Indeed, we might also expect
the boundaries between the “genetic” representations and the other com-
ponents of our systems to continue to blur. For example, Keller argues
that the biological mechanisms that generate variation are themselves
under genetic control, and that the evolutionary processes are thereby
themselves products of evolution:

The critical dependence of genetic stability on proofreading and repair
enzymes may have come as a great surprise, but more surprising yet was
the discovery of “repair” mechanisms that sacrifice fidelity in order to
ensure the continuation of the replication process itself—and hence the
survival of the cell. Far from reducing error, such mechanisms actively
generate variations in nucleotide sequence; moreover, it appears that
when and where they come into play is itself under genetic control.
(Keller, 2000, p. 32)

That regulation of genetic stability and mutability is a feature of all
living systems in now widely accepted. (Keller, 2000, p. 35)

Recent laboratory studies of bacterial evolution provide further con-
firmation, lending support to the notion that organisms have evolved
mechanisms for their own “evolvability.” (Keller, 2000, p. 37)

Mechanisms related to these ideas have been used in genetic and evo-
lutionary computation for some time (for example, in evolution strate-
gies (Bäck and Schwefel, 1995), and in discussions of the evolution of
evolvability (Altenberg, 1994)). The lesson to draw from Keller’s ob-
servations, and from the expected further “biologicalization” of genetic
programming hypothesized in this chapter, is that these sorts of mecha-
nisms are likely to play an increasingly important role in the field. To be
relevant to future genetic programming practice, therefore, genetic pro-



vi

gramming theory should be applicable to, and informative with respect
to, systems with these sorts of extensions.

4. Challenges
In this section I would like to highlight a few specific challenges for

genetic programming theory based on recent practice. These are not
meant to be exhaustive, and they are drawn mostly from my own work
(for no better reason than the fact that these are the challenges with
which I am most familiar). Nonetheless I believe that they can provide
useful pointers to opportunities for future-oriented theory.

4.1 Evolved Code Structure
As noted above, genetic programming systems now routinely include

mechanisms for the evolution of automatically defined functions (Koza,
1994) or automatically defined macros (Spector, 1996). Other mecha-
nisms for evolved modularity have also been developed (for example,
Kinnear, 1994). Because several studies have shown that these features
can significantly extend the reach of genetic programming, useful theory
ought to provide firm mathematical leverage with respect to questions
about how and when automatic modularization can enhance the adap-
tive powers of genetic programming systems.

The essential difficulty here is that the semantic structure of a mod-
ular program can be related to its syntactic structure in complex ways.
For example a smaller program may execute more primitive operations
than a larger program, even without considering loops, if the smaller
program makes more significant use of modularity. Changes to a pro-
gram will likely have effects of a magnitude that is correlated not only
with the “depth” at which the changes occur, but also with the rela-
tion between the changes and the program’s modular architecture; for
example a change within module will probably have an impact that is
proportional to the number of times that the module is called.

The challenge is more severe, but also more necessary, for systems in
which the “architecture” of evolving programs is itself subject to vari-
ation and natural selection. By “architecture” I mean the number of
modules and the nature of their interfaces to each other and to the
“main program” (or the “result-producing branch” in Koza’s terminol-
ogy). Koza’s system of architecture-altering operations employs new
genetic operators (in addition to standard crossover and mutation) to
permit the addition and deletion of modules, along with other architec-
tural changes (Koza, 1995). These new genetic operators were explicitly
derived from biological gene duplication processes. In my own PushGP



An Essay ConcerningHuman Understandingof Genetic Programming vii

system, architecture can evolve without such mechanisms; modules are
created and executed by means of code-manipulation instructions that
are always available, and the action of ordinary genetic operators (like
crossover and mutation) can, by changing sequences of such instructions,
change the architecture of the overall program (Spector and Robinson,
2002).

4.2 Evolved Developmental Processes
“Development” occurs at several levels in biology. As mentioned

above, genetic mechanisms (in which we should include not only DNA
but also RNA, enzymes, and proteins involved in gene expression, at
least) themselves undergo complex forms of environmentally-mediated
development in the normal course of cell activity. In addition, complex
developmental processes at a larger (morphological) level of aggregation
mediate the long transition from embryo to adult in multicellular or-
ganisms. Finally, behavioral/psychological developmental processes are
often critical in producing adults capable of completing the life cycle of
complex life forms.

Many of these developmental processes have already been incorpo-
rated, at some level of abstraction, into genetic programming systems.
I have already mentioned several of the systems that use some form of
“gene expression” development. In my own PushGP system programs
are routinely self-manipulating, and the sequence of primitive instruc-
tions that is eventually executed can be very difficult to predict from the
surface structure of the genome (program) prior to “development.”

Morphological development has also appeared in various forms, usu-
ally when the execution of an evolved program builds a secondary struc-
ture which is then responsible for the desired problem-solving behavior.
This is analogous to the construction, by a biological genome, of a body
which is then responsible for behavior in the world (although this is re-
ally a flawed analogy, as indicated by the quotes from Keller above).
Examples include Koza’s work on the evolution of programs that build
electrical circuits (Koza et al., 1999) and my own work on the evolution
of programs that build quantum gate arrays (Barnum, Bernstein, and
Spector, 2000).

Behavioral or psychological development has been incorporated in
many systems that evolve structures that subsequently undergo “learn-
ing” processes as they interact with their problem environments. The
most salient examples of this approach are systems that build neural net-
works that are then trained on problems from their target domains using



viii

standard neural network learning algorithms; note that many of these
systems incorporate both morphological and behavioral development.

4.3 Evolved Diversification
As indicated in the quotes from Keller above, in biology the mecha-

nisms of diversification are themselves under genetic control and it ap-
pears clear that the mechanisms of evolution have thereby themselves
evolved.

Within genetic and evolutionary computation there is a long tradition
of systems in which mutation rates are genetically encoded. Within ge-
netic programming more specifically there have been several explorations
of “Meta-GP,” in which not only the rates but also the algorithms for
diversification are genetically encoded and can therefore evolve (Schmid-
huber, 1987; Edmonds, 2001). In these systems co-evolving populations
of program-manipulation programs are used in lieu of traditional ge-
netic operators to produce the offspring of the individuals in the primary
(problem-solving) population.

In my own recent work on “autoconstructive evolution” with the Push
programming language, programs construct their own offspring using
code-manipulation instructions that are available in the instruction set
along with problem-related primitives. In these system the “genetic
operators” are just the parts of individuals (possibly interleaved with
other parts of individuals) that produce offspring — when a program
is run it may do something that confers fitness (for example, providing
correct answers to symbolic regression fitness cases, or navigating an
agent toward food, etc.) and it may also produce a child. The code for the
child may be produced in any computable way by the parent, possibly
using the code of the parent, the code of other individuals, randomly
generated code, etc. The Pushpop system grafted these concepts onto a
fairly traditional genetic programming algorithm (Spector and Robinson,
2002; Spector, 2002). In more recent work my colleagues and I have built
autoconstructive evolution systems embedded in 3d virtual worlds (in
Jon Klein’s breve system (Klein, 2002), the latest development versions
of which include a Push language interpreter; see (Spector and Klein,
2003)).

4.4 Geography
Geography plays a critical role in evolutionary biological theory. Most

theories of speciation rely on notions of geographic isolation, location-
based ecological niches, and clinal variation of species characteristics
across gradients of temperature and other environmental features. In-



An Essay ConcerningHuman Understandingof Genetic Programming ix

deed, the interaction between geography and evolutionary processes has
been an area of exploding interest in the last decade, referred to by some
as “phylogeography” (Avise, 2000).

These concepts had little direct influence on early work in genetic
and evolutionary computation, although the concept of “demes” (local
breeding populations, between which migration occasionally occurs) pro-
vides a coarse-grain analog that has had considerable impact (see e.g.
Fernández et al., 2003). More recently, however, concepts from artificial
life models (in which spatial distribution is often modeled explicitly) have
influenced work in genetic programming. One example is work by Punch
and Rand combining genetic programming with elements from Holland’s
Echo architecture and Brooks’s subsumption architecture (Punch and
Rand, 2000). Another example is my work on evolution within spatially
continuous 3d virtual worlds (Spector and Klein, 2003). In such en-
vironments, many other biological concepts that had previously played
little or no role in genetic and evolutionary computation also come into
play. For example, in many ALife-derived systems different individuals
have different life expectancies, and their reproductive behaviors may
change based on age and environmental circumstances.

One might expect, based on the importance that concepts of spatial
distribution and geography have had in biological theory, that the influ-
ence of these concepts on genetic programming practice will continue to
increase.

5. To Theory!
What kinds of mathematical theory would help us to analyze, under-

stand, and predict the behavior of genetic programming systems that
exhibit the challenges outlined above? There is a sense in which cur-
rent theory already “handles” all of these challenges; for example even
with all of the complications raised above, a genetic programming sys-
tem can still be viewed as a markov chain (Poli, Rowe, and McPhee,
2001) and related theoretical apparatus can still be applied. But this is
an unsatisfactory answer for at least two reasons. First, while it is con-
ceivable that existing theoretical frameworks could be extended to meet
these challenges this would require considerable effort and time (Poli,
personal communication). Second, I suspect that the resulting theories,
if generalized to handle such radical extensions to the basic technique,
will be so general that they will cease to have explanatory power.

Are there alternatives? I believe that there are. The obvious place to
look for mathematical theory that might be applicable to a field heading
toward biology is biology itself. While relations between evolutionary



x

biology and mathematics have not always been harmonious (see for ex-
ample Keller, 2002), there have nonetheless emerged many mathemati-
cal theories of aspects of biological evolution. These have often provided
valuable insights into the nature and dynamics of evolving populations
even when they ignored seemingly important aspects of biological sys-
tems (such as development, which was ignored in early population biol-
ogy) and even when they were based on naive models of the molecular
foundations of genetics (such as the assumption that individual traits
are determined by individual genes).

Biologists have invented mathematical or quasi-mathematical theories
of diversification, development, and the relations between genetics and
geography. The current explosion of work in genomics is producing a
wealth of mathematical theory concerning DNA “code structure” and
gene expression (see for example Karp, 2002). There seems, therefore,
to be a great deal of theory available for transplantation into genetic
programming, suitable for addressing the specific challenges outlined
above.

What differentiates mathematical theory in biology from the exist-
ing mathematical theory in genetic programming? I believe that the
primary difference is that biologists (even mathematical biologists) be-
gin with large scale phenomena (populations of complex organisms) and
work downward to the mechanisms out of which these phenomena are
built, while genetic programming theorists begin with a set of low level
mechanisms and work upward to the large scale phenomena exhibited
by our systems.

In genetic programming we have the luxury of knowing the exact na-
ture of the mechanisms since we construct them, while in biology many
of the mechanisms are still unknown. But this luxury is fleeting and
perhaps illusive as well. As discussed above, the mechanisms used in
genetic programming are now in considerable flux. In addition, while we
may have complete knowledge of the mechanisms at the lowest level of
abstraction this may not be the level at which the most fruitful theories
can be built. For example, if a system incorporates developmental pro-
cesses and adaptive representations then it is possible that mechanisms
at a somewhat higher level, for example “body plans” and “regulator
genes” will be essential to understanding its behavior. It is not obvious
that such mechanisms will emerge from bottom-up theories based on, for
example, a schema analysis of programs containing code-manipulation
instructions.

Biology, for its part, has always had the luxury of truly interesting
large scale phenomena to study, and biologists have built mathematical
frameworks capable of providing useful generalizations of complex adap-



An Essay ConcerningHuman Understandingof Genetic Programming xi

tive systems even in the face of ignorance about the ways in which those
systems are implemented. This is, by itself, a good reason for genetic
programming theorists to look to biological theory for inspiration. An
additional reason is the fact that many of the new features being added
to genetic programming systems originate in biology.

One example of the theoretical move advocated here, already under-
way in the community, is the empirical study of diversity and diversifi-
cation in genetic programming systems. The study of diversity has deep
roots in biology, which ought to provide context for these studies. In
addition, many of the relevant questions can be asked in a way that tran-
scends implementation details. Measures of diversity have been adopted
by several researchers (a nice survey is available in Burke, Gustafson,
and Kendall, 2002). In addition, researchers have begun to explore re-
lations between diversification and adaptation; one of my studies, for
example, showed that adaptive populations of endogenously diversifying
Pushpop programs are reliably diverse (Spector, 2002). But this is only
a start.

6. Prospects
It is possible that biological tools will not actually help us to under-

stand our genetic programming systems. One possibility is that mathe-
matical models that are sufficiently rich to capture the most important
features of complex adaptive evolutionary systems, whether organic or
technological, will be too complex or abstract to help humans under-
stand how and why the systems behave as they do. This is a depressing
thought, but I have little more to say about it one way or the other.

Another possibility is that the “right” theory for genetic programming
(however extended) will bear little or no similarity to current theories in
biology. One reader of a draft of this essay agreed with the critique of
current genetic programming theory but felt that biology had unfortu-
nately little to offer; for example, she found in her own work that most
of the mathematical apparatus of population genetics, while useful in
analyzing simple systems, failed to scale up to the complexity found in
applied genetic programming work. As noted earlier, however, biology is
in the midst of major transitions and there are bound to be substantial
theoretical innovations in the coming years. My contention is simply
that wherever biology goes, genetic programming should follow.

Yet another possibility is that the right theory for genetic program-
ming will bear no resemblance to current or future theories in biology.
After all, the critics will say, genetic programming is a problem solv-
ing technology, while biological evolution is not; the similarities are su-



xii

perficial and should remain so. If so, then so much the worse for ge-
netic programming theory; it will have to borrow its fundamentals from
other fields (perhaps thermodynamics; Adami, 1997) or invent them
from whole cloth.

In any event, it is probably worth noting that if the goal is human
understanding of genetic programming then there may also be alterna-
tives to mathematics. One alternative is understanding via visualization;
often the human visual system can discover high-level, emergent proper-
ties for which we have, as yet, no formal theory. Genetic programming
researchers have always used the traditional forms of scientific visualiza-
tion (fitness graphs, statistical plots, etc.), but if the conjecture of this
chapter is correct, and genetic programming is indeed moving toward
biology, then other forms of visualization suggest themselves. In partic-
ular, insofar as future systems, like biological systems, exist and function
in 3d (virtual) spaces, direct observation of 3d geometry as it evolves
over time — a sort of virtual microscope for virtual ecosystems — may
provide essential insights. This approach has already proven valuable
in the field of artificial life (e.g. Spector and Klein, 2002) and it might
be expected to have more relevance to genetic programming the closer
genetic programming moves to biology.

Acknowledgments
Apologies to John Locke for the title. Riccardo Poli provided inspira-

tional comments, though he bears no responsibility for the uses to which
the inspiration has been put. Bill Langdon, Una-May O’Reilly, and
Anjun Zhou provided thoughtful reviews that raised more good ques-
tions and issues than I could address here. This effort was supported
by the Defense Advanced Research Projects Agency (DARPA) and Air
Force Research Laboratory, Air Force Materiel Command, USAF, under
agreement number F30502-00-2-0611, and by NSF grant EIA-0216344.
Support was also provided by Hampshire College for the Institute for
Computational Intelligence.

Notes
1. http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html

2. The term “genetics” was introduced by William Bateson in 1906, and the term “gene”
was introduced three years later by Wilhelm Johannsen (Keller, 2000).

References
Adami, C. (1997). An Introduction to Artificial Life. Telos Press.



REFERENCES xiii

Altenberg, L. (1994). “The Evolution of Evolvability in Genetic Pro-
gramming.” In Kinnear, K.E. Jr., ed. Advances in Genetic Program-
ming. The MIT Press. pp. 47–74.

Avise, J.C. (2000). Phylogeography: The History and Formation of Species.
Harvard University Press.

Bäck, T., and Schwefel, H.-P. (1995). “Evolution Strategies I: Variants
and their computational implementation.” In Genetic Algorithms in
Engineering and Computer Science. John Wiley & Sons Ltd.

Banzhaf, W. (2003). Artificial Regulatory Networks and Genetic Pro-
gramming. In Proceedings of the Workshop on Genetic Programming,
Theory and Practice. Kluwer.

Barnum, H., Bernstein, H.J., and Spector, L. (2000). “Quantum circuits
for OR and AND of ORs .” Journal of Physics A: Mathematical and
General, 33(45), pp. 8047–8057.

Burke, E., Gustafson, S., and Kendall, G. (2002). “A Survey And Anal-
ysis Of Diversity Measures In Genetic Programming.” In GECCO
2002: Proceedings of the Genetic and Evolutionary Computation Con-
ference. San Francisco, CA: Morgan Kaufmann. pp. 716–723.

Downing, K.L. (2001). “Reinforced Genetic Programming.” Genetic Pro-
gramming and Evolvable Machines, 2(3), pp. 259–288.

Edmonds, B. (2001). “Meta-Genetic Programming: Co-evolving the Op-
erators of Variation.” Elektrik, the Turkish Journal of Electrical En-
gineering and Computer Sciences, 9(1), pp. 13–29.

Fernández, F., Tomassini, M., and Vanneschi, L. (2003). “An Empirical
Study of Multipopulation Genetic Programming.” Genetic Program-
ming and Evolvable Machines 4(1), pp. 21–51.

Ferreira, C. (2001). “Gene Expression Programming: A New Adaptive
Algorithm for Solving Problems.” Complex Systems, 13(2).

Hansen, J.V. (2003). “Genetic Programming Experiments with Stan-
dard and Homologous Crossover Methods.” Genetic Programming and
Evolvable Machines 4(1), pp. 53–66.

Holland, J.H. (1992). Adaptation in Natural and Artificial Systems. The
MIT Press.

Karp, R.M. (2002). “Mathematical Challenges from Genomics and Molec-
ular Biology.” Notices of the AMS, 49(5), pp. 544–553.

Keijzer, M. (1996). “Efficiently Representing Populations in Genetic Pro-
gramming.” In Angeline, J., and Kinnear, K.E. Jr., eds., Advances in
Genetic Programming 2. The MIT Press. pp. 259–278.

Keller, E.F. (2000). The Century of the Gene. Harvard University Press.
Keller, E.F. (2002). Making Sense of Life: Explaining Biological Devel-

opment with Models, Metaphors, and Machines. Harvard University
Press.



xiv

Keller, R.E., and Banzhaf, W. (2001). “Evolution of Genetic Code on
a Hard Problem.” In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001). Morgan Kaufmann. pp. 50–
56.

Kinnear, K.E. Jr. (1994). “Alternatives in Automatic Function Defini-
tion: A Comparison of Performance.” In Kinnear, K.E. Jr., ed. Ad-
vances in Genetic Programming. The MIT Press. pp. 119–141.

Klein, J. (2002). “breve: a 3D Environment for the Simulation of De-
centralized Systems and Artificial Life.” In Proceedings of Artificial
Life VIII, The 8th International Conference on the Simulation and
Synthesis of Living Systems. The MIT Press. pp. 329–334.

Koza, J.R. (1994). Genetic Programming II: Automatic Discovery of
Reusable Programs. The MIT Press.

Koza, J.R. (1995). “Gene Duplication to Enable Genetic Programming
to Concurrently Evolve Both the Architecture and Work-Performing
Steps of a Computer Program.” In IJCAI-95 Proceedings of the Four-
teenth International Joint Conference on Artificial Intelligence. San
Francisco, CA: Morgan Kaufmann. pp. 734–740.

Koza, J.R., Andre, D., Bennett, F.H. III, and Keane, M. (1999). Genetic
Programming 3: Darwinian Invention and Problem Solving. Morgan
Kaufman.

Margulis, L. (2000). Symbiotic Planet. Basic Books.
Maynard Smith, J., and and Szathmáry, E. (1999). The origins of life.

Oxford University Press.
Nikolaev, N.I., Iba, H., Slavov, V. (1999). “Inductive Genetic Program-

ming with Immune Network Dynamics.” In Spector, L., et al., eds.
Advances in Genetic Programming 3. The MIT Press. pp. 355–376.

Nordin, P., Banzhaf, W., Francone, F.D. (1999). “Efficient Evolution of
Machine Code for CISC Architectures using Instruction Blocks and
Homologous Crossover.” In Spector, L., et al., eds. Advances in Ge-
netic Programming 3. The MIT Press. pp. 275–299.

Poli, R. (2001). “General Schema Theory for Genetic Programming with
Subtree-Swapping Crossover.” In J.F. Miller et al., eds. Genetic Pro-
gramming, Proceedings of EuroGP’2001. Springer-Verlag. pp. 143–
159.

Poli, R., Rowe, J.E., and McPhee, N.F. (2001). “Markov Chain Mod-
els for GP and Variable-length GAs with Homologous Crossover.” In
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001). San Francisco, CA: Morgan Kaufmann. pp. 112–119.

Poli, R., and Langdon, W.B. (1999). “Sub-machine-code Genetic Pro-
gramming.” In Spector, L., et al., eds. Advances in Genetic Program-
ming 3. The MIT Press. pp. 301–323.



REFERENCES xv

Punch, W.F., and Rand, W.M. (2000). “GP+Echo+Subsumption = Im-
proved Problem Solving,” in Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO-2000). San Francisco, CA:
Morgan Kaufmann. pp. 411–418.

Schmidhuber, J. (1987). “Evolutionary principles in self-referential learn-
ing.” Diploma thesis, Institut für Informatik, Technische Universität
München.

Spector, L. (1996). “Simultaneous Evolution of Programs and their Con-
trol Structures.” In Angeline, P.J., and Kinnear, K.E. Jr., eds., Ad-
vances in Genetic Programming 2. The MIT Press. pp. 137–154.

Spector, L. (2002). “Adaptive populations of endogenously diversifying
Pushpop organisms are reliably diverse.” In Proceedings of Artificial
Life VIII, the 8th International Conference on the Simulation and
Synthesis of Living Systems. The MIT Press. pp. 142-145.

Spector, L., and Robinson, A. (2002). “Genetic Programming and Auto-
constructive Evolution with the Push Programming Language.” Ge-
netic Programming and Evolvable Machines, 3(1), pp. 7–40.

Spector, L., and Klein, J. (2002). “Evolutionary Dynamics Discovered
via Visualization in the breve Simulation Environment.” In Work-
shop Proceedings of the 8th International Conference on the Simula-
tion and Synthesis of Living Systems. Sydney, Australia: University
of New South Wales. pp. 163–170.

Spector, L., and Klein, J. (2003). “Emergence of Collective Behavior
in Evolving Populations of Flying Agents.” To appear in Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO-
2003).

Stoffel, K., and Spector, L. (1996). “High-Performance, Parallel, Stack-
Based Genetic Programming.” In Genetic Programming 1996: Pro-
ceedings of the First Annual Conference The MIT Press. pp. 224–229.

Teller, A. (1999). “The Internal Reinforcement of Evolving Algorithms.”
In Spector, L., et al., eds. Advances in Genetic Programming 3. The
MIT Press. pp. 325–354.

Wu, A.S., and Garibay, I. (2002). “The Proportional Genetic Algorithm:
Gene Expression in a Genetic Algorithm.” Genetic Programming and
Evolvable Machines 3(2), pp. 157–192.


