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Hierarchy helps it work that way

LEE SPECTOR

ABSTRACT Jerry Fodor argues, in The mind doesn’t work that way (Cambridge, MA: MIT
Press, 2000), that the computational theory of mind is undermined by the pervasive context
sensitivity of human cognition. His objections can be easily met, however, by noting the properties of
appropriately structured representation hierarchies.

In The mind doesn’t work that way (Fodor, 2000) Jerry Fodor argues that the massive
modularity thesis, which asserts that most or all of cognition is implemented by
encapsulated modules, fails due to the pervasive context sensitivity of human
cognition. Without massive modularity, he argues, the computational theory of
mind fails to account for “how the mind works” except for peripheral and relatively
uninteresting corners of the mind like the module for universal grammar. Without
the foundation of the computational theory of mind, he further argues, Darwinian
stories about the evolution of mind are ungrounded fantasies and the recent
enthusiasm for Darwinian “new synthesis” cognitive science is embarrassingly
misplaced.

If it were true that the pervasive context sensitivity of human cognition is in
con!ict with the massive modularity thesis, then Fodor’s argument would indeed be
cause for concern among new synthesis cognitive scientists. But it is not true. The
apparent con!ict is due to the apparent computational intractability of reasoning in
the face of a “ruinous holism” of context sensitivity. So far as it goes, this is intuitive
computational complexity theory, but real computational complexity theory is not
always so intuitive. In fact one can use well-known principles of hierarchical
representation to provide tractable and yet broadly context sensitive inference
services. Appropriately structured representation hierarchies can rescue the massive
modularity thesis and thereby the computational theory of mind. In addition, new
evidence from computational simulations shows that modules of the appropriate sort
can be produced by strictly Darwinian processes. So the mind may indeed work
“that way” after all, and natural selection may have been the agency that brought
this about.

To !esh this out we must "rst clarify terminology. Countless authors in
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computer science, psychology, neurology and philosophy have provided countless
de"nitions of “modularity,” but Fodor’s usage has a long history of which his own
earlier work is an important part (particularly Fodor, 1983). In The mind doesn’t work
that way Fodor supplies a computationally explicit description of kind of modularity
that matters most for the computational theory of mind:

Imagine a computational system with a proprietary (e.g., Chomskian)
database. Imagine that this device operates to map its characteristic inputs
onto its characteristic outputs (in effect, to compute a function from the
one to the other) and that, in the course of doing so, its informational
resources are restricted to what its proprietary database contains. That is,
the system is “encapsulated” with respect to information that is not in the
database. (This might be for either, or both, of the kinds of reasons
considered above: Its operations are de"ned with less than full generality or
its informational exchanges with other processing mechanisms are con-
strained.) That’s what I mean by a module. In my view, it’s informational
encapsulation, however achieved, that’s at the heart of modularity. (p. 63)

The “massive modularity thesis” is then “the idea that most or all of cognition
is modular” (p. 55) in this sense; it is the idea that the mind is composed entirely or
almost entirely of small sub-systems, each of which has access only to its own, local
database.

The importance of the massive modularity thesis derives from computational
complexity considerations, the assumption being that inference can be feasible only
if limits are placed on the amount of information to which a reasoning process has
access:

The totality of one’s epistemic commitments is vastly too large a space to
have to search if all one’s trying to do is "gure out whether, since there are
clouds, it would be wise to carry an umbrella. Indeed, the totality of one’s
epistemic commitments is vastly too large a space to have to search
whatever it is that one is trying to "gure out. (p. 31, emphasis in original)

So the computational mind, if it is to compute anything in real time, must be
modular. All of its search procedures must be limited to small, localized information
sources.

But this will not do, according to Fodor, because cognition is often manifestly
global, with seemingly unrelated facts coming jointly to bear in common reasoning
tasks. He writes that “the mental processes thus af!icted with globality apparently
include some of the ones that are most characteristic of human cognition” (p. 5),
and he concludes that the most characteristic processes in human cognition, since
they cannot be modular, cannot be explained by the computational theory of mind.
This is particularly clear for abductive reasoning processes (reasoning to the best
explanation), and in this case Fodor draws the connection to feasibility explicitly:

Reliable abduction may require, in the limit, that the whole background of
epistemic commitments be somehow brought to bear in planning and
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belief "xation. But feasible abduction requires, in practice, that not more
than a small subset of even the relevant background beliefs is actually
consulted. (p. 37)

The implications of the purported failure of the massive modularity thesis for
new synthesis cognitive science are indirect but grave. Psychological Darwinism
follows naturally from massive modularity, Fodor argues, but without massive
modularity there is little to argue for it. He conjectures that the characteristic
processes in human cognition may have arisen not via gradual adaptations shaped by
natural selection, but rather via abrupt discontinuities in evolution (saltations).

If one insists on an absolutely strict notion of encapsulation, then the massive
modularity thesis is indeed certainly wrong but it is also irrelevant; nobody doubts
that various parts of the mind communicate with one another in some ways, and
nobody’s computational theory of mind rests on an assumption of absolute encapsu-
lation. But so long as one allows for any communication between modules Fodor’s
arguments against massive modularity fail. As a result his critique of the computa-
tional theory of mind fails as well, along with the subsidiary objections to Darwinian
explanations of the origins of human minds. Of course massive modularity may fail
for other reasons, particularly if one requires all modules to have all of the other
properties (e.g. mandatoriness) for which Fodor has sometimes argued (Fodor,
1983). But the dependence of the computational theory of mind on massive
modularity in The mind doesn’t work that way hinges only on encapsulation and not
on these other purported properties of modules.

The massive modularity thesis escapes from Fodor’s attack by means of a
concept that has been known and appreciated in its general form since antiquity. It
has been widely promoted within cognitive science in the speci"c form required to
rebut Fodor’s argument at least since Simon’s (1969) The sciences of the arti!cial. It
is the concept of hierarchy, which Simon calls “one of the central structural schemes
that the architect of complexity uses” (p. 87). Simon’s notion of hierarchy is based
on the concept of “near decomposability,” in which:

Intracomponent linkages are generally stronger than intercomponent link-
ages. This fact has the effect of separating the high-frequency dynamics of
a hierarchy—involving the internal structure of the components—from the
low-frequency dynamics—involving interaction among components.
(p. 106)

In a nearly decomposable system any component can be sensitive, in principle,
to the contents of any other component, so long as the requirements for communi-
cation between components are small in comparison to the requirements for com-
munication within components. In a suitably organized hierarchy the low-bandwidth
intercomponent linkages will be designed to carry useful information between
modules in a compact form, and this information may in some cases report
broad-based “context” from the sending module.

This can be illustrated using a version of one of Fodor’s own examples (which
he in turn credits to Prof. Paul Casalegno) [1]. Consider a module consisting of
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some number N of binary bits, and the property ODD that is true of this module just
in case an odd number of the N bits are currently in the ON position. The ODD
property is clearly sensitive to the complete state of the module (the local context),
as any change to any bit in the module can change the value of ODD. Just as clearly,
this ODD property is insensitive to any external (global) context. Therefore compu-
tation of the ODD property will be expensive if N is large, but if we assume that
modules are relatively small, then ODD will be cheap.

Now let us consider a system of M different modules, each containing N 1 2
bits. The "rst N bits of each module are to be strictly local, just as those considered
above. The remaining two bits, which we will call “context bits,” are either to be
determined by the value of a binary property of some other module or left unused
(OFF), with the choice made for each context bit when the system is constructed.
Now let us ask about a global property, called GODD (global ODD), which is true
of the entire system just in case an odd number of the total M 3 N non-context bits
are currently in the ON position. As Fodor points out, the contribution that each
module makes to GODD might be considered context-independent [2], but “the
result of its contributing what it contributes” is surely context sensitive (p. 27). Can this
global, context sensitive property be maintained with reasonable cost (in time and
space) even if M, the number of modules, is very large?

The answer is “yes,” and the algorithm is a trivial application of the concept of
hierarchy. Designate one of the modules (call it the GODD module) to compute
GODD simply by computing ODD (on the basis of all N 1 2 of its bits), and specify
that its two context bits are determined by the ODD property of two other modules.
The context bits of these two other modules should likewise be determined by the
ODD property of other modules, and so on recursively until there are no remaining
modules (at which point all remaining context bits will remain unused 5 OFF). The
resulting pattern of connectivity forms a pyramid-like hierarchy with the GODD
module at the top.

Notice that the ODD property will be true of the GODD module in exactly
those cases in which the GODD property is true of the global system. Notice also
that the amount of communication required to re-compute the GODD property
after a bit-!ip anywhere in the system is proportionate only to log(M), not to M.
This means that we can scale M up exponentially while suffering only a linear
increase in the time to re-compute the global property, making the maintenance of
GODD tractable as long as the local computations of ODD are tractable, even
though it is globally context sensitive [3]. Notice also that other GODD-like
properties can be simultaneously maintained over the same system for the modest
cost of a few extra bits per module, and that the hierarchies for different globally
sensitive properties may run in different directions. It is true that it’s a long distance
from GODD to the properties like centrality and simplicity that most trouble Fodor,
and it’s true that there are many other unsolved problems regarding centrality and
simplicity, but the access to global information required for maintaining all of these
properties can be achieved by means of the same hierarchical techniques.

Nothing in the computational theory of mind is in con!ict with the notion that
globally context sensitive properties are implemented hierarchically, as the GODD
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property above, and indeed most work in arti"cial intelligence assumes hierarchical
organization as a matter of course. Hierarchy can, in principle, ef"ciently support
the global context sensitivity that Fodor worries will undermine the computational
theory of mind. There is much more work to be done in showing how minds are
really organized, and in particular in determining the extent to which they make use
of representation hierarchies. And Fodor is certainly right that most of the interest-
ing questions about how human minds came to be organized in the ways that they
are in fact organized are still wide open. But a simple analysis of the properties of
representation hierarchies shows that global context sensitivity is not incompatible,
after all, with massive modularity.

How can Fodor have missed this? He does brie!y entertain a hierarchy-based
escape from one version of his dilemma but he dismisses it with the argument that
it requires that “each computational mechanism presupposes computational mecha-
nisms less modular than itself” (p. 73), thereby producing a regress. But to the
extent that one can say this of the GODD system above, one would also have to
admit that the “less modular” modules (those higher in the hierarchy) are less
speci"c (containing only summaries of the other modules, not their entire contents);
they may therefore be as compact as the “more modular” modules and the feared
intractability problems need not arise.

The failure to appreciate the computational signi"cance of hierarchy may run
deeper, to an underlying lack of familiarity with basic theoretical computer science.
Several statements in the book reveal what is at best sloppy thinking about com-
plexity and computability theory; even if it would be unfair to lay the blame for this
at Fodor’s feet (because, according to one reviewer, others in the "eld routinely
make the same mistakes), any philosopher making arguments grounded in computa-
tional complexity theory would be well advised to study the theory and to use its
terms carefully. For example, to anyone familiar with the proofs of computational
equivalence of Turing machines and recurrent neural networks Fodor’s discussion
of connectionism will seem rather strange. How could connectionists be in even
worse shape than proponents of symbolic theories with respect to computational power
when their preferred mechanisms have the same computational power (Siegelmann
& Sontag, 1991)? The answer has to do with explanatory (rather than computa-
tional) power, but the distinction is not clear in Fodor’s text and most of his
discussion focuses on apparent computational limits. Similarly, Fodor makes state-
ments like “Turing machines can compute anything that’s syntactic” (p. 30, empha-
sis in the original). This is simply false, as evidenced by the many volumes of
algorithmically unsolvable problems (that is, problems that cannot be solved by
Turing machines) that can be found on the shelves of any technical library. One
might argue that some of these problems (for example, Turing’s halting problem)
involve semantic rather than syntactic properties, but it’s hard to imagine any useful
concept of “syntactic” that doesn’t cover the uncomputable string-rewriting prob-
lems that can be found in many texts on computability theory (see e.g. Floyd &
Beigel, 1994). An example is the problem of determining if a particular string can
be generated by a particular set of unrestricted grammar rules; if this is not a
syntactic property, then what is? Another example is the Post correspondence
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problem: “Given two lists, each containing the same number of strings, is some
non-trivial [non-empty] concatenation of strings from the "rst list equal to the
concatenation of the corresponding strings from the second list?” (Floyd & Beigel,
1994, p. 508). Surely this is a syntactic property and yet one can prove that there is
no Turing machine that can solve it in general. One is left with the impression that
Fodor’s grounding in theoretical computer science is not suf"cient to mount an
attack on the computational theory of mind based on alleged computational
inef"ciencies of particular architectures.

Where does this leave us with respect to psychological Darwinism? The "rst
point to note is that Fodor’s own arguments that psychological Darwinism follows
from massive modularity now come back into play; if indeed the mind is massively
modular (and this is no longer ruled out by context sensitivity), then natural
selection may be the best explanation of the origins of human cognitive processes.
But we can do better than this, again on the basis of purely computational
considerations. Suppose we could show, through the use of computational simula-
tions (if not through pure mathematical analysis), that standard Darwinian mecha-
nisms lead naturally to the evolution of modular architectures? This would reinforce
the new synthesis picture in a new way: if one accepts Darwinism more broadly,
then one would expect, on the basis of such evidence, for minds to evolve with
modular architectures.

Such evidence is already in hand. Darwinian simulations are widespread in
computer science and “genetic and evolutionary computation” is now a large "eld
to which several journals, annual conferences, and book series are devoted. In one
of the larger areas of the "eld, called genetic programming, standard Darwinian
mechanisms of selection and recombination are used to evolve computer programs
for cognitive tasks ranging from artistic production to scienti"c discovery (and
including many engineering problems). In 1994 John Koza published extensive
evidence demonstrating that genetic programming, when provided with the raw
materials for modularity, will automatically exploit modularity to produce better
programs in less evolutionary time (Koza, 1994). For example, a program evolved
to compute the parity (evenness or oddness) of some number of bits, when evolved
in a context in which modules are an option, will often be composed of modules that
themselves compute the parity of smaller numbers of bits; the modular solution is
“better” in several respects (for example, it is more compact) and it emerges from
the genetic programming system more quickly than do non-modular solutions. It
can even be shown that modularity arises naturally in genetic programming systems
that are neutral with respect to architecture—that is, in systems in which the
mechanisms to support modularity must be built from more primitive computa-
tional elements and in which the “decision” to use modularity at all must emerge by
natural selection (Spector, 2001; Spector & Robinson, 2002). The notion of
modularity employed here is slightly different from Fodor’s (it is the notion of a
subroutine or macro in computer science), but encapsulation is among its de"ning
features.

It is worth noting that the power of Darwinian evolution can itself be seen as
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due to the computational properties of hierarchies. In arguing that psychological
Darwinism follows from massive modularity Fodor writes:

To get the feel of the thing, imagine cutting up the Manhattan telephone
directory and then pairing all the numbers with all the names at random.
How often do you suppose the number thus assigned to someone would be
the number that he actually has? (pp. 93–94)

He argues that only some sort of “instructional” mechanism, sensitive to facts
about the world, could produce the large numbers of innate true beliefs that humans
apparently have [4]. But how plausible is it that natural selection could produce the
required large numbers of innate true beliefs in a reasonable span of evolutionary
time? To return to Fodor’s example, how long would it take natural selection to
unscramble the Manhattan telephone directory? Not as long as one might think.

Suppose that we have a population of randomly scrambled directories and that
at least one of these directories has at least one correct name/number pair. If that
directory is reproductively successful (which it ought to be, as it is better adapted to
the environment—on rare occasions the call reaches the right person), then the
“allele” for this correct pair will spread through the population. When this happens
the amount of error in the average individual will already have decreased substan-
tially by some measures; the number of possible permutations of a set increases
dramatically (factorially) with the number of elements in the set, so each “repaired”
pair will reduce the remaining number of permutations dramatically. Natural selec-
tion can do even better than this when aided by sexual recombination. Two parents
each having one (different) correct pair will have a fair chance of producing a child
with both correct pairs, thereby producing a substantial improvement in one gener-
ation, and the potential gains increase as the number of correct pairs in the parents
increase. Of course children will also sometimes be worse than their parents, and the
overall progress of the population will depend on several factors including selection
pressure, mutation rates, and the “"tness landscape” of the underlying computa-
tional problem. Nonetheless, the potential for rapid evolution clearly exists.

The connection to hierarchical organization is that the primary mathematical
apparatus that has been developed to analyze the dynamics of genetic algorithms, as
described in the previous paragraph, involves a hierarchy of “schemata” describing
sets of possible individuals. At the top of the hierarchy is a completely open-ended
schema that describes any possible individual. Each step down in the hierarchy
represents a commitment to a particular allele at a particular location. At the bottom
of the hierarchy are the fully speci"ed individuals, of which there are usually vastly
too many to examine exhaustively. As "rst elucidated by Holland (1992; the original
edition was published in 1975) and subsequently elaborated by many others (e.g.
Poli, 2001), the power of the genetic algorithm (and more generally of natural
selection combined with recombination) appears to derive from the way in which the
properties of the schema hierarchy are leveraged to obtain maximal information
about the search space while processing a minimal number of actual individuals.

The message of this digression on schema theory is not that evolution is
particularly good at unscrambling phone directories; a custom-crafted algorithm
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could probably do the job more quickly. The message is rather that (as Fodor
acknowledges) Darwinian processes like those that we know to be operating in
nature can also solve problems like this [5], that (as he may not fully appreciate) they
can do it faster than one might guess, and that (to return to the theme of this article)
their ef"ciency seems to be related to the way that an implicit genetic hierarchy is
navigated by the mechanisms of recombination under the pressure of natural
selection.

None of this will be surprising to students of computer science, all of whom
learn to use hierarchies to simplify computing tasks ranging from number guessing
games ("rst determine which half of the range contains the number, then determine
which half of that half contains the number, etc.) to alphabetizing lists of names (for
which hierarchical solutions have complexity of order n 3 log(n) rather than the
much worse n2 of naive non-hierarchical approaches). But perhaps it will be
surprising to others, and in any event it is important that the properties of hier-
archies be better appreciated in discussions of the computational complexity of
cognition.

In conclusion, hierarchical organization schemes are powerful tools that in some
cases provide surprising computational ef"ciencies. Hierarchical organization solves
the problem that Fodor believes refutes the massive modularity thesis. Because of
this the computational theory of mind emerges from the attack unscathed, as do
Darwinian explanations of the origins of minds. Indeed, recent work involving
computational simulations provides new evidence that the modules required by the
computational theory of mind can and do arise by strictly Darwinian mechanisms,
thus bolstering the case for new synthesis cognitive science.
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Notes

[1] I have cast the example in terms of bits rather than words for computational explicitness.
[2] Certainly the contribution made by modules with unused context bits is context-independent. For

other modules the situation is not so clear.
[3] The context sensitivity really is “global” here; the GODD property depends on every bit in the

entire system.
[4] Natural selection counts as an “instructional” mechanism in this context.
[5] Code that demonstrates this can be found at , http://hampshire.edu/lspector/unscramble.lisp . .
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