
-Abstract--This paper describes CHAT, educational
software intended for use in introductory college-level
syntax or general linguistics courses. The software is
motivated by two persistent pedagogical problems
frequently encountered in scientific teaching: student
motivation and the abstract, non-procedural character
of formal theories. After describing the system's agent-
based architecture and interface, we argue that inquiry-
based, collaborative software best supports the teaching
of linguistic theory, and consider some broader
implications for general science teaching in an e-
learning environment.

Index terms: collaborative learning, educational
software, inquiry-based learning, science education

I. TEACHING LINGUISTICS AS A SCIENCE

Although the extent to which Chomskyan linguistics
is a science (on a par with natural sciences, like
physics, for example) has been debated on
philosophical grounds [3], it is clear that the teaching
of linguistics enjoys many of the same challenges as
do its more traditional sister disciplines. For one
thing, learning introductory linguistic theory means
learning grammars–formal systems of rules and
principles that determine in an algorithmic fashion
the patterns of the languages of investigation. This is
painstaking work both at the theoretical level (at
which putative universal generalizations must be
tested) and at the descriptive level (at which often-
complicated sets of data must be analyzed). As a

Submitted to Scuola Superiore G. Reiss Romoli (SSGRR)
30.May.2001. The authors are faculty and staff of Hampshire
College, Amherst Massachusetts. All correspondence should be
directed to Steven Weisler, School of Cognitive Science,
Hampshire College, Amherst Massachusetts 01002 (email:
sweisler@hampshire.edu). This work was funded in part by NSF
grant 8-0-0-33901. This effort was sponsored by the Defense
Advanced Research Projects Agency (DARPA) and Air Force
Research Laboratory, Air Force Materiel Command, USAF, under
agreement number F30502-00-2-0611. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the author and
should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the
Defense Advanced Research Projects Agency (DARPA), the Air
Force Research Laboratory, or the U.S. Government.

second challenge, students are often surprised to
discover what the work of theoretical linguists is
actually like. Seduced by questions about ape
language and the thought-influencing lens of
linguistic determinism, students are, to say the least,
not eager to accommodate to a regime of data
collection, hypothesis testing, and systematic
analysis. Moreover, grammars are formal systems
that depend on abstract notation and require analytic
precision. From many students' point of view,
learning grammars feels more like learning math and
science than like the excursion into the humanities
they were expecting.

In essence, the successful teaching of introductory
linguistic theory requires solving many of the
standard pedagogical problems confronting general
science teaching, complicated by the student's
pervasive sense that the field turns out not to be
"what I thought it was." This paper describes the
conception and development of CHAT, educational
software that combines an inquiry-driven pedagogical
framework with elements of proceduralized design in
a collaborative digital learning environment. The goal
of this project is to develop and assess new
technologically supported teaching paradigms for
inquiry-based education in the sciences.

II. STUDENT MOTIVATION

The introductory syntax course is central to the
undergraduate linguistics curriculum but it is a
difficult course for many students. The problems
stem in part from the course's heavy (and probably
unexpected) use of formal mathematical notation and
reasoning. Some degree of mastery of formal syntax
is necessary for students to appreciate the many
spectacular results of modern linguistics, and because
few entering students have such mastery, they
typically begin with little motivation to shoulder the
mathematical burdens of the course. The maintenance
of student motivation is therefore an important
challenge for syntax instructors. To approach this
challenge, CHAT develops three leading ideas: it
provides technical scaffolding for student inquiry, it
promotes a collaborative learning environment, and it

An Inquiry-based Approach to E-learning: The
CHAT Digital Learning Environment

Steven Weisler, Roger Bellin, Lee Spector, and Neil Stillings

develops an intuitive, procedurally implemented
approach for teaching linguistic theory.

The use of technology to enhance student motivation
has a long history and a rich literature. One current
trend is to provide technological supports for students
engaged in self-motivated, inquiry-oriented learning
experiences. This approach is reflected, for example,
in a recent special section in the Communications of
the ACM in which the authors write that "Learner-
centered, problem-driven approaches to education...
are most effective in engagement, motivation, and,
through their problem-driven format, in providing a
solid conceptual understanding" [8]. This practice is
also consonant with the general pedagogical
environment of Hampshire College, where CHAT
was developed; Hampshire College has a long-
standing and explicitly articulated commitment to
inquiry-oriented undergraduate education [7]. We
therefore took it as our goal to develop a tool that
enhances the motivation and learning of beginning
syntax students by providing technical support for
student inquiry.

A second insight developed in CHAT is that
motivation for formal problem solving can often be
strengthened when groups of differentially talented
students work in a collaborative learning
environment. To this end, CHAT employs a chat
room-like design in which students use the grammars
they develop to "chat." This not only allows for a
channel of communication, but also permits students
to examine the work of others and to test their own
hypotheses in a cooperative manner. To a large
degree, this works against the essentially logico-
mathematical character of linguistic theories,
anchoring the pursuit of this knowledge in richer
social transactions.

Finally, grammars are normally thought of as theories
of a speaker's abstract grasp of a language–specimens
of linguistic knowledge that underlie the common
ability to produce or understand a word or sentence.
It is frequently difficult for students to comprehend
the precise ontological status of these so-called
"competence theories" [3], which are easily confused
with the parsing systems and systems of natural
language understanding to which they are related, but
typologically distinct. In CHAT, students learn to
construct grammars by building a sentence generator.
This has the joint effect of proceduralizing the task of
grammar construction from the outset while also
rendering the implementation relationship between
the generator and the grammar more transparent. Put
more simply, students can directly grasp the task of
making a system that can "chat," which in turn

promotes an intuitive sense of the role of grammars
in sentence production that is nearly impossible to
achieve by theoretical description alone.

Several previous projects have provided students
with general technological supports for the "inquiry
cycle," for example by providing "lab book"
environments integrated with statistical packages and
graphing tools. The goal in the present project was to
provide more direct and domain-specific support for
linguistic inquiry by allowing students to explicitly
construct and test linguistic theories in the form of
grammars and lexicons. The "linguistic theories" in
CHAT are active computational systems that produce
behavior and data that students can observe to
validate or falsify their hypotheses about the nature
of language. This use of computational "system
construction" (or "simulation construction," "model
construction," etc.) as an active form of theory
construction for inquiry-oriented education also has a
history in the literature (see, for example, [10]), but
to our knowledge CHAT is the first application of
this idea to the field of linguistics. The linguistics
domain is a particularly interesting application area
for this approach since by using CHAT, students can
typically understand a theory's strengths and
shortcomings simply by examining the sentences it
generates, using native ability as an English speaker
to detect ungrammaticality.

III. THE CONSTRUCTION OF GRAMMARS

A grammar consists of a lexicon (or dictionary) plus
a set of context-free rewriting system augmented by a
complex matrix of subcategory features that allow
certain linguistic dependencies to be naturally
captured. The lexicon contains a list of words along
with information about syntactic distribution, part of
speech, and other morphological properties (like
singular/plural, masculine/feminine, mass/count,
etc.), each of which must be properly established on
pain of over- or under-generating a corpus of the
target language. For example, the lexical entry for the
"cat" would indicate that it is a third-person singular
noun that requires a determiner (e.g., "the") as its
"specifier"–that which introduces a common noun.

The phrase structure grammar takes the form of a set
of rewriting rules:

 S NP VP
NP Det N
VP V Adv

In this simplified example, assuming a proper
lexicon, the rule set suffices to generate the following
syntactic analysis tree:

Fig. 1. A Syntactic Analysis Tree.

Reading the "→" as "consists of," the first rule
sanctions sentences (S) that consist of a N(oun)
P(hrase) followed by a V(erb) P(hrase). The
categories "Det," "N," "V," and "Adv" stand for
Determiner, Noun, Verb, and Adverb, respectively.

The central descriptive task is to expand the lexicon
and the re-writing system to account for all and only
the grammatical sentences of English (or any other
language of description), a problem of great scientific
magnitude. Ultimately, we confront aspects of syntax
that require additional descriptive devices for
example, the case system (e.g., the difference
between "I" and "me"), the pronoun system, non-
declarative sentence types, embedded sentences, and
the helping verb system, to name just a few advanced
topics in English syntax. CHAT, or indeed, any other
learning environment for grammar construction, must
scale up to permit the description of these more
complicated data, as well the simpler phrase-structure
dependencies exemplified by the grammar above.

More challenging still is the task of writing grammars
that are independently motivated. Each proposed
grammatical analysis makes a claim about the
structural representations that a speaker assigns to a
sentence. Therefore, many grammatical analyses that

succeed in generating analysis trees for a range of
target sentences nevertheless assign implausible
structures that lose generalizations and ultimately fail
to extend to provide a general account of the
syntactic structure for the target language. Such
tempting but incorrect alternative hypotheses must be
rejected, often on the basis of further data. One of the
most important heuristics that researchers must
develop is a sense of where to look for independent
support for a promising analysis. Often, the absence
of such intuitions causes great difficulty for the non-
vitiate linguist.

IV. OVERVIEW: THE CHAT CONCEPT

CHAT provides a networked "chat room"
environment to which students and faculty can post
sentences. The sentences, however, cannot be directly
composed. Instead they are generated by clicking on
a "generate" button that produces a parse tree for a
particular sentence form, along with an interface that
allows for selection of particular words for all of the
tree's leaves. Only words that satisfy the constraints
on the leaf and its position, as specified in the
grammar and the lexicon, are made available for
selection. When words for all of the leaves have been
selected the sentence, along with its parse tree, is sent
to the public chat room. The sentence generator is
driven by a grammar, a lexicon, and several other
parameters, all of which can be edited by the student
using the graphical user interface described below.

Students typically begin with empty or primitive
grammars and lexicons. Their goal is to make the
system capable of generating sophisticated
grammatical sentences (in some cases specific types
of sentences suggested by the instructor), without
allowing the system to generate ungrammatical
sentences. In some cases a student with a problematic
grammar may be able to disguise this fact by
avoiding the selection of problematic words for
particular tree leaves, but this trick can be easily
exposed; sentences with randomly selected (but
constraint-satisfying) words are also made available
to others who wish to probe the grammatical analysis
behind a particular sentence.

It is also possible to provide students with more
complex initial grammars and lexicons, and to
challenge the students to change/expand the system
to account for new linguistic phenomena. CHAT's
lexicon and grammatical rule-building tool kits are
based on current Chomskyan minimalist syntactic
theory [4]. The system allows for the investigation of
a wide range of linguistic phenomena and in some
cases allows for different theoretical approaches to

particular problems. As such, it is an open-ended
environment for inquiry into the nature of human
language. In this way CHAT's structured space for
experimentation can provide a naturally incremental
approach to theory-building. The student need not
understanding all of syntax from the start, but can be
asked to account for one syntactic phenomenon in the
theory and then move on to another, progressively.

The network features of the system allow for
collaboration among the students and faculty, and a
community of software agents, described below,
provides additional collaborative support and advice.
The social nature of the chat room interactions, and
of chat rooms in general, also facilitates student
motivation and engagement. The software is intended
for use in class or lab sessions, with 5-20 students
(one or two students per computer) and with an
instructor or TA present; but it could be used for
individual experimentation or even homework
assignments without networking. The chat room is
based on TCP/IP networking, so it can be shared over
the Internet among users around the world. CHAT is
implemented in Java to facilitate distribution across
all popular computer platforms.

V. OVERVIEW: THE AGENT ARCHITECTURE

One challenge in the design of any software for
inquiry-oriented education is how to provide useful
feedback (help, advice, directions, etc.) without
destroying the student-initiated character of the
inquiry. This is difficult because the software cannot
possibly predict all student actions or intentions when
the inquiry is truly open-ended. To meet this
challenge we followed another recent trend in the
literature, that of using "intelligent agents" ([2], [1])
that function as learning companions ([5], [6]). These
agents have more autonomy and intelligence than
typical "online help" functions, but they do not
attempt to fill the role of a teacher or tutor; each acts
more like a "guide on the side" than a "sage on the
stage" ([9]), providing advice only when consulted,
signaling discreetly when new information is
available.

To facilitate the development of robust agents we
designed a general architecture for inquiry-based
learning environments, in which students build and
modify computational models (see Figure 2). The
heavy arrows in the figure represent the normal
interactive cycle of a software simulation
environment: the user initiates actions that influence
the simulation, and the simulation output is provided
as feedback to the user. Our agent-based environment
augments the simulation environment with two

clusters of intelligent agents. One pool of agents
watches the student’s interactions with the system,
along with a blackboard to which all agents can
write, and reports significant patterns and trends to
the blackboard. Some of these monitoring agents may
attempt to model the student’s understanding of the
domain, but simpler agents that, for example, notice
recurring cycles of values for simulation variables,
will by themselves provide considerable utility.
These "observer" agents can also access external
information sources to obtain additional assessments
of the status of the model. The second pool of agents,
the "reporters," watches the blackboard and reports to
the student. The reports may describe noted patterns,
trends, suggestions for further experiments, and
pointers to additional source materials. The reporting
agents may also write to the blackboard so that future
reporting agents can ensure that their reports are
consistent and not redundant.

Fig. 2. Agent architecture for inquiry-based learning
environments.

As a simple example of the general utility of this
agent architecture, consider an inquiry-based tutor for
epidemiology. The tutor might be built around a
simulator that models the spread of diseases and
immunity through a population. The simulator might
include user-settable parameters such as disease
transmissibility and average time from infection to
death (for a fatal disease), along with dependent

variables such as the total number of infections.
While a student is exploring and experimenting with
the simulator, a simple monitoring agent might notice
that, for example, the disease quickly died out in each
of the student’s simulations, and that the setting for
time from infection to death was in each case
unusually low. A reporting agent might then refer the
student to source materials on the epidemiology of
quick-killing diseases such as Ebola, while another
might note other user-settable parameters that could
break the noted pattern, and another might suggest
experiments with specific settings of these
parameters.

In many respects these monitoring and reporting
features are similar in spirit to the monitoring and
reporting features of simulation-based computer
games such as SimCity and SimLife. These features
give the user high-level status reports about the
game/simulation as it progresses. This approach can
be enhanced significantly through the use of good
general representations, logical inference rules, and
an agent architecture. When built around accurate
simulators that are designed for educational rather
than entertainment purposes, we believe that these
features will provide substantial support for inquiry-
based education.

VI. OVERVIEW: CHAT AGENTS

The agents built for CHAT were motivated by
observation of videotaped classroom sessions with an
early (agentless) CHAT prototype. We noted ways in
which students interacted with one another, and ways
in which the instructor would intervene and guide
students, and we attempted to build agents that act in
similar ways. The architecture was designed
specifically to ease the incremental addition of new
agents, and we do not consider the current set of
agents to be final.

The current implementation includes agents that
observe (e.g., the "Link Parser Agent") and report on
(the "Critic," the "Passed Rule Agent," and the
Broken Derivation Reporter") a student's progress.
The Link Parser Agent generates new sentences
sanctioned by a student grammar "behind the scenes,"
and ships them off to the CMU online parser to check
for unnoticed ungrammaticality. The Critic provides
feedback to the students based on an analysis of the
CMU feedback, while the Passed Rule Agent reports
on phrase structure rules that could not be
implemented because of a conflict in the relevant
feature assignments. The Broken Derivation Reporter
is responsible for reporting on circumstances in
which an attempt to augment the grammar

unwittingly results in giving up previously successful
analyses of sentences that were generated by prior
versions of the student's grammar. This reporter is
particularly useful for students who are making large-
scale changes to their grammars, especially in cases
in which there are hidden implications of a change
that are hard to deduce.

VII. CHAT'S USER INTERFACE (SELECTED

FEATURES)

CHAT's user interface breaks the task of formalizing
English syntax into logical parts, including program
navigation, grammar and lexicon creation and
revision, and windows for analysis tree displays,
private, local generation of test sentences, a chat
room, and the CHAT agents. At the beginning of
each session with CHAT, a login dialogue is shown:

Fig. 3. The Login Dialogue.

The student may enter a name or nickname in the
first field that will be used to identify the student's
contributions in the chat room. The second field
contains the Internet address of a computer that is
running CHAT's server program. The address may be
entered as an IP address (like "127.0.0.1") or a host
name (like "host.college.edu"). If CHAT is unable to
connect to this server because of an incorrect address
or a network problem, or if the computer you enter is
not running CHAT's server application, then the chat
room will not function. (The student will be notified
of CHAT's failure to connect, and all other parts of
CHAT will continue to work normally.) Students
using CHAT on a computer without network access,
or not wanting to use the chat room to collaborate
with other CHAT users can uncheck the checkbox
labeled "Use chat room." In that case, no server
address is required.

Students who have logged in can use CHAT's
Navigation Palette to bring up the windows of CHAT

in which the various aspects of grammar construction
may be undertaken.

Fig. 4. The Navigation Palette.

In particular, the Lexicon button makes the Lexicon
window visible so that the student can create or edit a
lexical entry, and the Rules button opens the
Grammar window with which the student can create
or edit a phrase structure rule. Here is a rather
sophisticated grammar constructed in CHAT:

Fig. 5. The Grammar window.

Clicking the New button opens the Rule Editor
window allowing the student to create new phrase
structure rules in the grammar:

Fig. 6. The Rule Editor.

Clicking on any of the pull-down menus allows the
student to select (or create) different node labels (e.g.,
S, NP, etc.). Clicking Preferred increases the
probability that a given phrase structure rule will be
used in generation to make it easier to test particular
portions of the grammar.

Similarly, clicking the lexicon button pulls up the
following window containing a list of previously
entered lexical items:

Fig. 7. The Lexicon window.

By clicking New, the Entry Editor window is
displayed, allowing the creation and editing of lexical
items via a complex series of pull-down menus that
permit morphological feature assignment.

Fig. 8. The Entry Editor.

In a similar fashion, the Morphology button opens a
window that allows the student to create and edit
morphological rules (e.g., 'turn a singular noun into a
plural noun by adding "s"'–general (but not
exceptionless) rules that can be used to create new
lexical items from old entries, thereby simplifying the
construction of the lexicon. Finally, the Binding
button plays a role in accounting for certain advanced
properties of the pronoun system.

There are two options for students to test the output
of their grammars. Clicking Generator opens the
following private generation window:

Fig. 9. The Private Generator.

In this mode, only the student (or a group of students
working on a single machine) can see the output of
the grammar. Every time Generate is clicked, a
randomly generated sentence compatible with the
student grammar is displayed in the generation field.
By highlighting a generated sentence and clicking
Display Tree, the analysis tree for that sentence,
based on the rules and lexical entries contained in the
student grammar, is displayed:

Fig. 10. The Tree Display window.

Alternatively, clicking the Chat button opens the
Chat window through which the student can read the
contents of and contribute to the chat room.

Fig. 11. Chat Room.

Clicking "Send a Sentence" generates new entries in
the chat room. Each successive sentence generated
(here, by Jane Doe) is listed sequentially in the Chat
window along with its source, and is visible to all
students running CHAT in a given session. By
highlighting a sentence and clicking "Display Tree,"
an analysis tree for the selected sentence is displayed
(see above), but in this case, the details for the tree
for a given sentence are determined by the grammar
that the sender used to generate it. Students not only
witness the output of other students, but can also
examine the details of the promising approaches of
fellow students. In this way, CHAT promotes a truly
collaborative learning environment.

The Agents button makes the Agents window visible
so that the student can consult CHAT's agents:

Fig. 12. The Agents window.

The window displays a list of agents, each with
indicators and controls below its name. Reporter
agents prepare a helpful report to the student based
on information gathered by the observer agents. The
Status indicator light informs the student of the
agent's status. If the agent is stopped, the indicator
will be red; if the agent is running, the indicator will
blink green. The Message indicator light is yellow if
the agent has a new message to report since the last
click of the Message button. The Details button
creates an Agent Details window showing some
under-the-hood details of the agent's activity, in case
the student is curious or for debugging purposes. The
Message button opens a Message window showing
the message that the agent is reporting to the student.

VIII. ASSESSMENT

Two different earlier versions of CHAT have been
used in the classroom, each with a different purpose
in mind. The first deployment involved an agentless
prototype of CHAT written in Director. Fifteen
students in an advanced cognitive science class used

the software in a section of the course devoted to
linguistic theory. Two special evening sessions were
reserved for this trial, which aimed at understanding
how students would interact with CHAT (and at
debugging the application). The two sessions were
videotaped, and later coded, partly to evaluate the
software and partly to better understand the inquiry
process.

There were four main conclusions drawn from these
sessions: 1) Student motivation for the task of writing
grammars seemed considerably higher than that
which is normally observed in traditional learning
situations; 2) Students prefer to work in small groups
of two or three at each terminal (and solo chatters
seemed to make less progress); 3) It is important to
provide a graded series of problems to guide students'
inquiry; and 4) There were certain common kinds of
feedback that should be provided by the software to
strengthen the inquiry process.

The evidence for the improvement in motivation was,
admittedly, anecdotal. Nevertheless, two separate
evaluators were positively impressed by the degree of
student involvement, the rate of progress through the
assigned work, and the high-spirited atmosphere that
pervaded the sessions. Students evidently enjoyed the
exercise–a conclusion they bore out in post-test
interviews. We were not surprised by students' desire
to work collaboratively. However, whereas the chat
room was explicitly designed to support group
inquiry, we hadn't anticipated the students' tendency
to work together at each terminal while using the
"private" generator. Clearly, students gravitate
towards a collaborative learning environment, and it
is a positive design characteristic of the software that
it promotes this style of learning.

The last two conclusions from the first sessions
pointed to areas in which the software could be
improved. Paradoxically, some very simple-seeming
target sentences turn out to be tremendously
complicated to analyze syntactically. Moreover,
beginning students are not easily able to determine
how difficult a particular construction is likely to be
to generate with the resources of CHAT. Since it is
demoralizing to run into serious descriptive
roadblocks early in the inquiry cycle, we determined
that students should be provided with a graded set of
problems to support their progress in the preliminary
stages of chatting. By carefully selecting the corpus
that the student tries to generate, we can support a
properly incremental learning curve.

Finally, we learned quite a bit about how the
instructor can best interact with students while they

are using the software. Obviously, the role of the
instructor is much different in the guise of CHAT
facilitator than in that of lecturer. Although there is
the occasional spontaneous formal lesson that is
required when large numbers of students bog down,
most of the teacher's time is spent moving from
terminal to terminal, checking progress and offering
suggestions. Since we are stressing the inquiry
method, the instructor must suppress the urge to
proffer solutions, attempting instead to steer the
student down a profitable path. We took note of the
fact that many students repeatedly required the same
advice including help identifying hidden
ungrammaticality and unextendable assumptions
about structure. The desire to incorporate some of
this scaffolding into CHAT lead to the development
of the current agent-based model to monitor and
provide systematic feedback on student work.

The second trial of CHAT employed a java-based
beta version incorporating the aforementioned agent
architecture. Twenty-two students in an introductory
linguistics course used the software for four
consecutive course sessions as their only course
materials for the syntax module of the class. Work on
CHAT was guided by a series of ordered problem
sentences which students were instructed to try to
program their systems to generate. At the beginning
of each session, students could upload a starting
grammar that incorporated the most successful parts
of the previous session's work.

Student progress on required work was excellent.
Most collaborative groups were able to successfully
complete a series of open-ended questions that
required applying lessons learned in CHAT to new
problems. Since we have been using similar problems
over the years in traditional syntax courses with only
mixed results of achievement, we found the present
level of performance encouraging.

Students were formally surveyed after each class to
gauge their progress as well as their interest in using
CHAT. Table 1 summarizes the results on seven
student-response items that were included in the post-
class assessments.

Table 1: Student Response Items
Each row reports the number of students who gave each response
to the item. Total number of responses vary because items were
administered on different days.

Item Agree
Agree

Somewhat
Dis-

agree
1.The software

allowed me to
begin to actively
explore how
English syntax
works.

16 6 0

2.I am learning
more about
syntax by using
the software in
class than I
would listening
to a good lecture
in which the
teacher also
responded to
student
questions.

8 10 1

3.I could use the
software to
explore syntax
outside of class,
guided by
appropriate
assignments.

15 2 2

4.During the
syntax classes so
far, I have found
it useful to work
with (or consult
with) a partner or
neighbor while
using the
software.

11 2 1

5.My learning of
syntax and
enjoyment of the
software has
been aided by the
CHAT feature.

12 2 0

6.Overall, using
the CHAT
software to learn
syntax was a
successful
learning
experience for
me.

18 0 2

7.I find syntax
more interesting
than I thought I
would.

14 4 1

Items 1 & 2 confirm the positive response of students
to the active learning environment. In item 2 students
appear to judge the learning outcomes in the CHAT
environment and in a good lecture environment to be
more similar than the instructor and evaluator believe
they are. The difference may reflect students'
overconfidence about what they learn from lectures.
Item 3 suggests that CHAT should be evaluated as an
out-of-class as well as in-class learning environment,
although, again, students may be overconfident about
how much progress they could make without an
instructor present. Items 4 and 5 confirm students'
beliefs that it is useful to collaborate, both directly
with a classroom partner and via the CHAT feature.
Items 6 and 7 suggest that CHAT is an effective and
enjoyable learning environment overall. Item 7 was
included because students typically report that syntax
is the least enjoyable section of a linguistics course.

Two items were included in the assessments to check
whether students' strong performance within the
CHAT environment would show immediate transfer.
The first item was: Draw a phrase-structure tree for
the following sentence: Healthy people exercise
frequently. This item required students to draw by
hand the tree structures that are automatically
generated by the software and to remember the basic
structural generalizations they had learned in the first
two classes without referring back to the grammars
they had saved on the computer. Thirteen of nineteen
students drew correct trees, and the remaining six
students drew trees that were largely correct but
contained one or two errors. In the instructor's and
evaluator's past experience students have been unable
to perform at this level in lecture-based courses. The
second item was: Describe briefly something that you
learned about syntax today. Sixteen of 22 students
wrote answers that incorporated concepts that figured
in their work during the class (e.g. I learned the same
group of words can mean two different things based
on how constituency is divided.) The remaining
students commented on their learning process (e.g., I
learned that syntax is hard) or wrote answers that did
not mention specific concepts (e.g. I learned how to
add additional words to sentences).

There was some evidence that working within CHAT
led students to focus mainly on specific technical
issues raised by the assignments. This possibility was
suggested by responses to two items that invited them
to reflect on their learning: (1) At this point what do
you least understand or find most confusing about
syntax?; (2) What aspect of syntax or issue about it
would you most like to work on or have discussed in

the final syntax classes? Nearly all answers focused
on narrow issues that had come up in the day's work
rather than on larger questions in linguistic theory.
Lectures, readings, or more reflective assignments
are needed to place the work within CHAT in a larger
context.

Students were also given the opportunity to comment
on things they liked best and least about the course.
Many cited the textbook as a weak link and CHAT as
the best part of the course (the fact that both were
developed in part by this paper's senior author,
notwithstanding!). Unfortunately, due to time
constraints, neither the advanced grammatical
features nor the agent architecture of CHAT were
tested or evaluated in this test session. Finally,
although this second evaluation is still partial (and a
more systematic assessment must be forthcoming),
we find that there is mounting evidence that CHAT
can raise the levels of student motivation and
accomplishment by successfully promoting an
inquiry-based collaborative digital learning
environment.

IX. CONCLUSIONS

The teaching of science to undergraduate students
faces many well-known hurdles, among which are
the apparent lack of applicability of scientific theories
to the student's practical concerns, a tendency toward
difficult formal methods and notations, the
considerable abstractness of the problem domain, and
the need for high levels of analytic rigor. Along with
many other teaching scientists, we are committed to
the development of inquiry-driven models of science
instruction as a primary strategy for overcoming
lapses in student motivation and for promulgating the
capacity for scientific method that is most likely to
sustain a life-long interest in the sciences [7]. In this
paper we argue that educational software can play an
important role in inquiry-based science teaching. By
creating a digital learning environment that promotes
collaborative work, CHAT manages to transform the
normally unengaging process of grammar
construction into a highly engaged, socially rooted
learning experience. Perhaps more subtly, CHAT
encourages precision by drawing on the student users'
ability to evaluate their work (individually and
collectively) and grounding that ability in a formal,
computational system. It also monitors and reports
back on the student's emerging work by employing a
series of observer and reporter agents that provide
useful feedback to the user.

More than just a static simulation, CHAT offers
students the means to dynamically build a generative
system that approximates their own native language
ability. Ultimately, we are using a computational
model to get across to students the conclusion that
language is a computational system. We are
confident that the transparency of this approach holds
promise not only as the basis of an approach to
teaching linguistics, but also as a generalized model
for instruction across many scientific disciplines.

X. ACKNOWLEDGMENT

The development of CHAT was supported by grant
8-0-0-33901.from the National Science Foundation
for "Inquiry-Based Learning: Cognitive Measures &
Systems Support."

XI. REFERENCES

G.A. Boy, "Software Agents for Cooperative Learning," in
Software Agents, J. M. Bradshaw, Ed. Cambridge, Mass.: The
AAAI Press/MIT Press, 1997.

J.M. Bradshaw, Software Agents, Cambridge, Mass.: The AAAI
Press/MIT Press, 1997.

N. Chomsky, Aspects of the Theory of Syntax, Cambridge, Mass:
MIT Press, 1965.

N. Chomsky, The Minimalist Program. Cambridge, MA: The MIT
Press, 1995.

B.Goodman, A. Soller, F. Linton, and R. Gaimari, "Encouraging
Student Reflection and Articulation using a Learning Companion,"
The International Journal of Artificial Intelligence in Education,
Vol. 9, pp. 237-255, 1998.

P.Hietala and T. Niemirepo, "The Competence of Learning
Companion Agents," The International Journal of Artificial
Intelligence in Education, Vol. 9, pp. 178-192, 1998

A.P. McNeal and F.S. Weaver, "Interdisciplinary Education at
Hampshire College: Bringing People Together Around Ideas," in
Reinventing Ourselves: Interdisciplinary Education, Collaborative
Learning, and Experimentation in Higher Education,
L.S. Smith and J. McCann Eds. Boston, Mass.: Anker Publishing
Company, 2001.

D.A. Norman and J.C. Spohrer, "Learner-Centered Education,"
Communications of the ACM, Vol. 39, No. 4, pp. 24-27, 1996.

M. Paolucci, D. Suthers, and A. Weiner, "Automated Advice-
giving Strategies for Scientific Inquiry," in Intelligent Tutoring
Systems: Third International Conference ITS'96, C Frasson, G
Gauthier, and A Lesgold, Eds. Montreal, Canada, June 1996
[Lecture Notes in Computer Science, New York: Springer, pp.
372--381, 1996].

A. Repenning, A. Ioannidou, and J. Phillips, "Collaborative Use
and Design of Interactive Simulations. In Computer Support for
Collaborative Learning (CSCL)," C. Hoadley and J. Roschelle,
Eds. UNext.com. Press, 1999.

J.A. Self, "Bypassing the Intractable Problem of Student
Modeling," in Intelligent Tutoring Systems: At the Crossroads of
Artificial Intelligence and Education. Norwood, NJ: Ablex, pp.
107--123, 1990.

Steven Weisler,
Ph.D is Dean of the
School of Cognitive
Science and
Professor of
Linguistics at
Hampshire College
in Amherst,
Massachusetts. He is
also a co-founder
and the Director of
the Innovative
Instruction

Laboratory, an interdisciplinary center for the
conception and development of educational software
that incorporates student-active, inquiry-based
approaches to learning. Dr. Weisler's work in
linguistics concerns the syntax-semantics interface,
with supporting work in philosophy of language and
linguistics pedagogy.

