
Unwitting Distributed Genetic Programming via
Asynchronous JavaScript and XML

Jon Klein
Cognitive Science

Hampshire College, Amherst, MA, USA, and
Physical Resource Theory

Chalmers U. & Goteborg U., Goteborg, Sweden
jk@artificial.com

Lee Spector
Cognitive Science
Hampshire College
Amherst, MA, USA

lspector@hampshire.edu

ABSTRACT
The success of a genetic programming system in solving a
problem is often a function of the available computational
resources. For many problems, the larger the population
size and the longer the genetic programming run the more
likely the system is to find a solution. In order to increase
the probability of success on difficult problems, designers
and users of genetic programming systems often desire ac-
cess to distributed computation, either locally or across the
internet, to evaluate fitness cases more quickly. Most sys-
tems for internet-scale distributed computation require a
user’s explicit participation and the installation of client
side software. We present a proof-of-concept system for
distributed computation of genetic programming via asyn-
chronous javascript and XML (AJAX) techniques which re-
quires no explicit user interaction and no installation of
client side software. Clients automatically and possibly even
unknowingly participate in a distributed genetic program-
ming system simply by visiting a webpage, thereby allowing
for the solution of genetic programming problems without
running a single local fitness evaluation. The system can be
easily introduced into existing webpages to exploit unused
client-side computation for the solution of genetic program-
ming and other problems.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis; C.2.4 [Computer-Communication Net-
works]: Distributed Systems—Distributed applications

General Terms
Performance

Keywords
JavaScript, XML, AJAX, Push, PushGP, stack-based ge-
netic programming, networking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

1. INTRODUCTION
Genetic programming is a computation-hungry technique.

Provided that a genetic programming system has been prop-
erly equipped (through system configuration and program
representation) to solve a particular problem, the probabil-
ity of success often increases with population size and the
number of generations run. The limiting factor in applying
genetic programming to a problem is thus frequently the
amount of computation available to the process.

Fortunately, traditional genetic programming techniques
can be described as “embarrassingly parallel,” meaning that
parallelization is a relatively trivial process. Individual fit-
ness tests are typically independent of one another and can
be run on different machines with little concern for synchro-
nization between them. Even in situations of low network
bandwidth in which distributing individual fitness tests is
impractical, simulations may be parallelized though the si-
multaneous evolution of independent subpopulations (infor-
mal versions of demes) with occasional migration of small
numbers of individuals between subpopulations. An overview
of the many ways in which evolutionary algorithms can be
parallelized can be found in [12].

The challenge in exploiting additional computation for ge-
netic programming problems is thus not in finding a way
to parallelize the underlying process, but rather in procur-
ing access to additional computation to be exploited. In
recent years, a number of projects (mostly unrelated to evo-
lutionary computation) have begun to exploit unused com-
putation across the internet. Among the most popular are
SETI@home, a search for signs of extra-terrestrial intelli-
gence1; Folding@Home, simulations of protein-folding and
other molecular dynamics simulations2; and distributed.net,
which is equipped to solve a number of different problems,
mostly related to cryptography.3

In spite of the success many of these projects have had
in reaping idle computation, few would argue that there
is not still an enormous untapped potential for distributed
computation. Participation in existing distributed computa-
tion projects requires awareness of the projects, willingness
to participate, computer savvy, and a time investment to
download and install client-side computational software. It
is possible that a large number of users would consent to
a small donation of computational resources, but that it is
only a relatively small portion of these users who have the

1http://setiathome.berkeley.edu/
2http://folding.stanford.edu/
3http://distributed.net/

interest, knowledge, time, and motivation to seek out and
install one of the systems described above. So although the
requirements for participation are modest we suspect that
they substantially limit the pool of available computation
nonetheless.

In this paper we present a technique, well suited to evolu-
tionary computation, for exploiting unused client-side com-
putation without requiring client-side software or special
user action and even without a user’s awareness of the pro-
cess (although we do advocate disclosure—see the section on
Ethics and Security below). The computational resources
can be automatically harvested when a user visits a web-
site, with no user consent required. Simply by opening a
webpage, a user’s machine can be used to evaluate fitness
tests and aid in the solution of genetic programming prob-
lems. Using this technique, we have been able to solve sim-
ple genetic programming problems without providing any of
our own computational resources to the evaluation of fitness
tests and without the awareness or consent of the owners of
participating client machines.

2. DISTRIBUTED GENETIC
PROGRAMMING SOFTWARE
PACKAGES

A number of general distributed genetic programming sys-
tems have been developed. Compared to the technique we
present in this paper, most of these systems offer a more full-
featured genetic programming environment but also require
greater client-side overhead to deploy.

One of the systems that is actively being developed is
the Distributed Genetic Programming Framework, or DGPF
[11]. DGPF is an open-source Java environment for dis-
tributing genetic programming runs over large networks.
DGPF supports several different types of distributed com-
putational models including peer-to-peer and client/server
techniques. The DGPF framework can also be used to dis-
tribute other types of search algorithms aside from genetic
programming, including simulated annealing or genetic al-
gorithms more generally. Deploying the DGPF for problem
solving requires the download and installation of a large soft-
ware package on each client machine.

The system we present in this paper, which we call “un-
witting distributed genetic programming,” is not intended
to supersede existing distributed GP frameworks. The main
innovation of our system is a lightweight distributed fitness
testing framework which differs from existing systems in a
number of important ways:

• Client participation, including client-side software set-
up, occurs automatically and lasts only for the dura-
tion of a pageview — as little as a fraction of a second
— during which time useful computation can be per-
formed.

• Fitness testing can be performed without a user taking
any special action, and even without the user’s knowl-
edge.

• No client-side software is required aside from a stan-
dard web browser.

• The fitness tests (and thus the problems to be solved)
are served dynamically by the web server and may be
changed at any time as needed.

The unwitting distributed genetic programming system
we present could in fact be used to augment existing dis-
tributed GP systems by providing additional computational
resources for performing fitness tests.

3. PREVIOUS USES OF JAVASCRIPT FOR
EVOLUTIONARY COMPUTATION

As insightfully noted by user “foobar5892” in a JavaScript
discussion on the website digg.com, “JavaScript is the Rod-
ney Dangerfield of programming languages,” in that it don’t
get no respect.4 In spite of its ubiquity in web pages, Java-
Script is rarely considered for serious programming projects.
The authors of the present paper admit that they too gave
JavaScript no respect before embarking on this project. They
would also like to report that they now do have more respect
for JavaScript, although they are still unlikely to consider it
for large-scale projects, except when the ability to execute
code in a web-browser is critical.

JavaScript has been used previously in evolutionary com-
putation applications in situations where the ability to run
interactively in a web-broswer was central to the design of
the process [1, 3]. In these systems, JavaScript is used to
enable interactive browser-based evolution by presenting an
evolved images of snowflakes [3] or recordings of a synthe-
sized voice [1] to a user who serves as a fitness evaluator the
evolved media.

4. METHODS

4.1 Asynchronous JavaScript and XML
(AJAX)

Once consisting of mostly static content, web pages have
taken on new levels of interactivity thanks to a number of
disparate but intertwined technologies and concepts such
as JavaScript, Cascading Style Sheets (CSS), the Document
Object Model (DOM) and the Extensible Markup Language
(XML). Recently, the aggregate of these technologies, col-
lectively known as Asynchronous JavaScript and XML, or
AJAX, has gained particular traction in creating dynamic
web applications. Although the component technologies of
AJAX have been available for many years, AJAX techniques
have recently gained popularity as a driving force behind
so-called “Web 2.0” applications, in which sophisticated, in-
teractive applications can be run inside of a web browser.
Google’s interactive mapping application, Google Maps, and
in-browser word processor, Writely, both use AJAX to at-
tain unprecedented interactivity for web pages.

The popularity of JavaScript and the dependance of many
popular sites upon JavaScript presents a unique opportu-
nity for individuals wishing to make use of low development
overhead distributed computation without requiring client
computers to install any software. If a user opts to allow
JavaScript (in general this is more accurately stated, “if the
user does not opt to disable JavaScript”), then JavaScript
code can be executed automatically when a user loads a
page, thus performing arbitrary (but secure — see the sec-
tion on Ethics and Security below) computation on the client
machine.

In addition to AJAX, a number of other browser-based
technologies, such as Java and Flash, can also be used to
4http://digg.com/programming/
Should Javascript Get More Respect 2

varying degrees to perform automatic client based compu-
tation. We chose JavaScript because it is a light-weight open
standard, is fast-loading, and has no visual impact on the re-
sulting web-page. Though the execution speed of JavaScript
is a concern, we felt that it was the most appropriate choice
for a prototype implementation of unwitting computation.
Aside from JavaScript and other browser-based technolo-
gies we know of no other widely available, legal and consen-
sual technique for performing client computations without
requiring the client user to explicitly download and install
client software.

4.2 Push

4.2.1 The Push3 Language
Push is a programming language intended primarily for

use in evolutionary computation systems (such as genetic
programming systems), as the language in which evolving
programs are expressed [10, 7]. Push has an unusually
simple syntax, which facilitates the development (or evo-
lution) of mutation and recombination operators that gen-
erate and manipulate programs. Despite this simple syntax,
Push provides more expressive power than most other pro-
gram representations that are used for program evolution.
Push programs can process multiple data types (without
the syntax restrictions that usually accompany this capabil-
ity), and they can express and make use of arbitrary control
structures (e.g. recursive subroutines and macros) through
the explicit manipulation of their own code (via “CODE”
and “EXEC” data types). This allows Push to support
the automatic evolution of modular program architectures
in a particularly simple way, even when Push is employed
in an otherwise ordinary genetic programming system (such
as PushGP, which is a “generic” GP system except that
it evolves Push programs rather than Lisp-style program
trees). Push can also support entirely new evolutionary
computation paradigms such as autoconstructive evolution,
in which genetic operators and other components of the evo-
lutionary system themselves evolve (as in the Pushpop and
SwarmEvolve2 systems [4, 8]), although we use it only for
standard genetic programming, and only using a minimal
instruction set, in the work described here.

4.2.2 PushScript
PushScript is a JavaScript implementation of most of the

Push3 specification [9] that was designed to run in web-
broswers.5 The entire implementation is contained in a 30k
JavaScript file and can be dynamically loaded in a web-
broswer with no noticeable difference in page load times.

Unlike most existing implementations of Push3, Push-
Script is not accompanied by a standalone genetic program-
ming system. PushScript does not include functions for ge-
netic operators or population management, and it does not
provide any user interface or API for launching genetic pro-
gramming runs. Instead, PushScript is designed only to run
fitness tests provided by a network server.

PushScript does include support for all of the basic Push
types, including CODE, and it can be extended via callbacks
to other JavaScript functions. In conjunction with a server
that provides programs to be evaluated, PushScript can be

5PushScript is currently missing a few of the less frequently
used Push instructions.

applied to any problem to which a regular Push implemen-
tation can be applied.

An interactive demo of the PushScript system is available
online.6

4.2.3 Why Use Push for Unwitting Computation?
Compared to distributed computation systems that in-

volve the installation of software on client machines, our
web-based distributed computation is more limited in the
choice of native GP program representation. Though any
GP program representation is possible, the fitness tests must
ultimately be evaluated in the system’s native browser lan-
guage, JavaScript in our case. Taking this into account,
some of the requirements for our GP programming language
representation are:

• Should be well-suited to evolutionary computation. For
example, it should support simple mutation and cross-
over genetic operators that are guaranteed to produce
syntactically valid programs. This requirement rules
out most “human” programming languages, which typ-
ically combine infix and prefix notations and a variety
of syntactic special cases for control structures. In par-
ticular, it rules out the use of JavaScript as the evolved
language (which would otherwise be desirable due to
the fact that it is the native language of our browser-
based GP system).

• The programs to be fitness-tested can be efficiently
represented as text. Text is the native format for in-
teractions between the server and the clients in our
framework. As a consequence, representing the pro-
grams as text facilitates both their transfer and their
execution. Using binary data to represent the program
would likely require additional data encoding and de-
coding steps for both the server and the client.

• The programs to be fitness-tested must be easy to
parse and interpret in real-time by the browser. Un-
less the program is represented in a browser native
language like JavaScript, the program will need to be
parsed and executed in real-time.

• The choice of program representation should not place
a high load on the web server. Because the system is
designed to exploit high-traffic web pages, server load
is an important consideration. This makes the idea
of server-side translation from some genetic program-
ming language to browser-runnable native JavaScript
far less attractive.

Push was chosen for this project because its unusual com-
bination of syntactic simplicity, representational power, and
suitability for evolutionary computation better satisfied the
above requirements than the available alternatives.

4.3 Client-Side Code
The client side code consists of the PushScript implemen-

tation described above, along with another JavaScript li-
brary of utility functions, pushfitnesstest.js, which handles
server communication and execution of fitness tests. We
refer to the entire process of running multiple fitness tests,
including server communication of the programs and results,

6http://www.spiderland.org/PushScript

browser loads
webpage

fetch fitness tests
and programs

via AJAX

run push fitness tests

web content and
fitness test

 server

return fitness values
to server via AJAX

PushScript interpreter

pushfitnesstest.js

push.js

Figure 1: Client-side process for genetic programming via unwitting distributed computation.

a Push fitness session. Each Push fitness session executes
fitness tests for multiple programs, typically about 20 de-
pending on server-side configuration. We adjust the num-
ber of fitness tests per session so that there is no noticable
impact on page-load times.

The entire client-side process is described in the following
steps:

1. User visits a website and a page is served from a con-
tent server.

2. Via the JavaScript “onload” handler, the page auto-
matically initiates a Push fitness session upon page
load.

3. The Push fitness session issues a fitness test request to
the content server.

4. The webserver selects fitness cases and multiple pro-
grams for testing, and returns them to the client as
XML.

5. The Push fitness session uses the PushScript inter-
preter to evaluate the fitness of the programs.

6. The Push fitness session returns fitness data, encoded
as CGI parameters, to the content server.

7. The Push fitness session schedules a future session af-
ter a small delay (typically 5 seconds), effectively re-
turning to step 3.

This process is illustrated in Figure 1.
In order to gracefully handle infamous incompatibilities

between different web browsers, we use the open-source Ajax-
Request library as a high-level API to access AJAX func-
tionality on all browsers.7 Our system is cross-platform and
has been tested in popular browsers including Internet Ex-
plorer, Firefox and Safari.
7http://www.ajaxtoolbox.com/request/

4.4 Server-Side Code
Because the PushScript language handles only the dis-

tributed fitness test aspect of the genetic programming sys-
tem, the remainder of the system is implemented using server-
side code on a web server. In our implementation, the
server-side is implemented as a series of PHP scripts that
deal with web client interaction and interface with the C++
Push3 implementation that is integrated into the breve Sim-
ulation Environment [2]8 to handle population management
and reproduction. Client interaction is handled via two PHP
scripts, getprogram.php and reportfitness.php, which run
on the server side to provide Push programs to clients and
record fitness values, respectively. getprogram.php returns
to the client XML data encoding a list of programs to be
fitness-tested, as well as a series of input and desired out-
put values. The number of programs sent for testing can be
configured on the server side and can be adjusted for each
problem to exploit as much client computation as possible
without any perceivable change in page-load times. Fitness
values are returned via an asynchronous HTTP page request
to reportfitness.php, which reports an arbitrary number of
fitness values encoded as CGI parameters.

Once an entire generation of individual programs has been
evaluated and fitness values have been returned to the server,
getprogram.php calls a breve simulation script, GPGenera-
teOffspring.tz, to generate offspring and prepare evaluation
of the next generation.

4.5 Problems
We used symbolic regression problems to test our proof-

of-concept implementation of unwitting distributed genetic
programming via AJAX. We chose symbolic regression prob-
lems because they could be easily implemented in the cur-
rent PushScript implementation and because they do not
require any additional domain-specific Push instructions.

8http://www.spiderland.org/breve

Table 1: Problems and parameters used to demonstrate genetic programming with unwitting distributed
computation.

Problems 1. 8 ∗ x ∗ x ∗ x + 3 ∗ x ∗ x + x
2. x ∗ x ∗ x + x ∗ x + x
3. x ∗ x ∗ x− 2 ∗ x ∗ x− x
4. x ∗ x ∗ x ∗ x + x ∗ x ∗ x + x ∗ x + x− 8
5. x ∗ x ∗ x ∗ x ∗ x ∗ x− 2 ∗ x ∗ x ∗ x ∗ x + x ∗ x− 2

Input (x) values 1-8
Fitness sum of absolute value of errors

Crossover rate 40%
Fair mutation rate 40%

Deletion mutation rate 5%
Duplication rate 15%
Population size 2000

Maximum program size 50
Tournament size 7

Ephemeral random constants integers from -10 to 10
Instruction set FLOAT.+, FLOAT.-, FLOAT.*, FLOAT./, FLOAT.POP, FLOAT.DUP

(Dec. 10 problems 1, 2 and 3) FLOAT.SWAP, INPUT

Instruction set INTEGER.+, INTEGER.-, INTEGER.*, INTEGER./, INTEGER.POP,

(Dec. 10 problems 4 and 5, Jan. 15 all) INTEGER.DUP, INTEGER.SWAP, INPUT

Table 2: Solutions to the test problems evolved with unwitting distributed computation.
Problem Generation Solution

1 32 (2 INTEGER.* INTEGER.DUP INTEGER.DUP INTEGER.DUP

INTEGER.* INTEGER.+ INTEGER.DUP INPUT INTEGER.- INTEGER.+

INTEGER.SWAP INTEGER.SWAP INTEGER.SWAP INPUT INTEGER.-

INTEGER.* INPUT INTEGER.+)

2 14 (INPUT INTEGER.DUP INTEGER.* INTEGER.DUP INPUT INTEGER.*

INTEGER.+ INTEGER.+)

3 7 (INPUT INPUT INTEGER.+ INTEGER.- INTEGER.DUP INTEGER.*

INPUT INTEGER.- INPUT INTEGER.- 1 INTEGER.- INPUT INTEGER.*)

4 49 (-8 INPUT INPUT INTEGER.* INTEGER.DUP 9 INTEGER.+

INTEGER.POP INTEGER.DUP INPUT INTEGER.* INPUT INTEGER.DUP

INTEGER.* INTEGER.DUP INTEGER.* INTEGER.+ INTEGER.+

INTEGER.+ INTEGER.+)

5 91 (INPUT INPUT INPUT INTEGER.* INTEGER.* INTEGER.-

INTEGER.DUP INTEGER.* -1 INTEGER.+ -1 INTEGER.+)

We used 5 simple symbolic regression problems which had
been studied previously using another PushGP implementa-
tion [6], and which were therefore known to be readily solved
in a fully functional PushGP system. We chose the 5 prob-
lems in [6] requiring the lowest computational effort. These
problems had success rates of between 58% and 100% in the
previously reported work. The problems and parameters we
chose are described in Table 1.

We ran two sets of experiments on the website for the
breve simulation environment itself, spiderland.org, with
a single run of each symbolic regression problem in each set.
The initial set of runs was conducted during the week of
December 10th, 2006, coinciding with the release of version
2.5.1 of the breve simulation software package (which led to a
large, temporary increase in traffic to the website). During
these initial runs we tried both floating point and integer
based instruction sets. The second set of runs was performed
on spiderland.org during the week of January 15th, 2007
using the same integer instruction set for all problems.

5. RESULTS
The system was able to solve all of the problems listed

in Table 1. In the first set of runs, problems 1 and 2 were
solved on the first attempt, in generations 71 and 27 respec-
tively. The remaining three problems all failed on the first
attempt, but succeeded on the second attempt. The runs
were manually restarted after 946, 196 and 431 generations
respectively. The large variation in generation counts of the
failed runs was due the runs being restarted manually after
overnight (or longer) runs with varying levels of web traffic.

The duration of individual generations varied greatly with
the level of traffic on the website. The shortest generation
observed during actual problem solving was 1 minute and
17 seconds. In test runs during heavy traffic, we observed
even shorter generation times of 30 seconds or lower. Ta-
ble 3 shows the average and best generation times for each
problem.

During the second run, the same integer-based instruction
set was used for all problems. All problems were solved
on the first attempt. Table 2 shows the problem solutions
obtained during the second set of runs, after an automatic
simplification process that removes unused code.9

6. DISCUSSION

6.1 Ethics and Security
The use of AJAX techniques has become so widespread

that, from a practical and technical perspective, the unwit-
ting distributed computation technique outlined here does
not degrade the performance of client computers or disrupt
the normal web-browsing experience in any unusual fash-
ion. In fact, popular websites including Google, Amazon
and Digg may load several hundreds or thousands of lines of
JavaScript with each page load, depending on which pages
the user is viewing. The use of AJAX has become an inte-
gral part of “Web 2.0,” and one can argue that almost all
of this computation is “unwitting” from the user’s perspec-
tive, as most non-technical users are unlikely to be aware

9The syntactic simplicity of Push permits a particularly sim-
ple automatic simplification strategy; we iteratively remove
random pieces of code, re-test for fitness, and retain the
smaller program if it performs as well as the original.

Table 3: Generation times (minutes:seconds) ob-
served during solution of the test problems by ge-
netic programming with unwitting distributed com-
putation.

Problem
1 2 3 4 5

Best 1:17 1:53 2:07 2:43 3:35
Average 2:56 7:46 12:26 6:34 7:56

of its execution. Even by looking at the JavaScript code
(which is often intentionally obfuscated in order to avoid
comprehension), one often cannot determine the nature of
the JavaScript computation.

The difference between the uses mentioned above and the
unwitting distributed computation technique outlined here
is that, ostensibly, most sites use AJAX to enhance the
user’s experience on the site and not to perform unrelated
computations. This distinction is not always clear, however,
as JavaScript is often used for purposes of tracking user
activity without any actual enhancement of the user expe-
rience. In the context of the current popular use of AJAX,
unwitting distributed computation does not appear to be
unusually exploitative. But it does raise ethical questions.
We cannot explore such questions fully in this paper, but
pending any definitive answers to these questions we sug-
gest that developers of unwitting distributed computation
systems disclose their use of the technique on their sites.

There are no specific security concerns for clients from the
use of unwitting distributed computation. While the tech-
nique we present here does allow us to “steal” computation
from client computers, there are no security implications to
the technique beyond the normal security issues surround-
ing the general use of JavaScript. While JavaScript allows
for arbitrary computation, it does so in a restricted envi-
ronment, quarantined from the operating system and from
the computer’s resources. In particular, JavaScript does not
allow filesystem access and greatly restricts network access.

On the other hand, our current implementation does have
an obvious security vulnerability on the server side, since a
malicious agent could easily spoof reportfitness.php, report
bogus fitness values, and thereby lead the GP run astray. A
variety of countermeasures might be deployed against such
attacks, including lightweight forms of encryption, periodic
verification, and banning of offending clients.

6.2 Execution Speed
The most significant factor affecting execution speed in

the current proof of concept is the use of the JavaScript lan-
guage, which is interpreted and does not have a strong rep-
utation for speed. In an informal benchmark of arithmatic
operations similar to those required for the execution of the
PushScript language, JavaScript execution was far slower
than C and showed enormous variation betwen browsers.
On a MacBook Pro laptop, the benchmark executed in 0.044
seconds in C; and in JavaScript in 0.91 seconds in Firefox,
3.25 seconds in Camino, and 8.97 seconds in Safari. This is
a slowdown of a factor of between 20.7 and 203.9 between
C and the various JavaScript implementations.

Our tests were run on a relatively low traffic private web-
server. In our implementation, and using our low-traffic web
site, solving a simple symbolic regression problem requires

several hundreds or thousands of page requests, typically
over several hours.

The simple problems we chose can typically be solved in
under 2 minutes (and often less than 30 seconds) each on a
top-of-the-line desktop machine. The execution speed of our
system, at least when deployed on a low-traffic website, is
therefore nothing short of embarrassing as a symbolic regres-
sion problem solver, but it could be quite practical for other
problems or in other circumstances. Some of the circum-
stances under which this approach may be more practical
include:

• On web-sites with high numbers of page requests per
minute. The benefits of the distributed approach in-
crease with the number of pages served per minute.
A popular web-site such as Google could employ un-
witting distributed computation to perform incredible
amounts of computation and solve real problems.

• On problems in which the required computation per
fitness test is relatively large, on the order of at least a
second per fitness test evaluation. For these problems,
farming out fitness tests provides a clear advantage
over local computation, although one must be careful
not to use fitness tests that degrade user page load
times unacceptably. On the highest traffic day, we
recorded 151178 page requests to the reportfitness.php
script, which is called to report results when a batch
of fitness test completes. The local computation ap-
proach can perform the same number of fitness com-
putations per day when the duration of a single fitness
test is less than or equal to .57 seconds (60 ∗ 60 ∗ 24
seconds per day, divided by 151178 completed tests).
Assuming a single fitness test per page request (in
practice, we use a larger number of tests per request,
typically 20), the computation of the distributed ap-
proach at this rate can surpass the local computation
approach when the fitness test exceeds 0.57 seconds
per test. Note that other variables, such as the num-
ber of tests per page request and the time duration
between requests, can be adjusted to attempt to make
the technique practical even with shorter fitness tests.

• On open-ended problems which will benefit from enor-
mous populations and longer runs. The toy problems
we solved in this project were selected specifically be-
cause we knew they could be solved with relatively
small populations and in a relatively small number
of generations. These problems have known answers
and it is typically only a matter of time before they
are found. Real problems which require larger overall
numbers of fitness runs are more likely to benefit from
distributed computation where additional fitness eval-
uations may directly improve the chances of finding a
solution.

Although these conditions clearly do not apply to the
proof-of-concept problems we described in this paper, we be-
lieve that these conditions actually do apply to many “real-
world” genetic programming problems. One example of a
problem which would benefit from this approach is our re-
cent work on the evolution of programs for quantum com-
puters [5]. For these problems, we ran large populations of
individuals for several days on a local cluster of 23 CPUs.

Finding a solution to these problems was not guaranteed:
most of our runs resulted in failure. Work on problems of
this scale and difficulty is more likely to benefit from addi-
tional fitness evaluations that could be provided by unwit-
ting distributed computation.

6.3 Network Latency and Reliability
Provided that there is a legitimate benefit of the dis-

tributed approach to a specific problem as described above,
the effects of network latency are negligible because fitness
tests do not depend on the results of each other. The server
can thus continuously farm out new fitness tests even when
the previous tests have not finished running. In our current
implementation when a client fails to return fitness values
to the server the programs are simply assigned the worst
possible fitness values, which practically speaking results in
the programs being discarded and effectively a small loss
of population size. Alternatively one could re-farm out the
missing tests to additional clients.

6.4 Client-Side Overhead and “Free” Lunch
We feel that the most important benefit of this tech-

nique is the fact that there is no client-side software acqui-
sition or configuration overhead. The required “software”
(a JavaScript file) is automatically downloaded and main-
tained only for the duration of a pageview, after which it
is effectively “uninstalled” automatically. This means that
client users can opt to participate in a distributed process
simply by visiting a website, and can opt-out of the process
by closing the webpage.

The technique we present could be adapted for a larger
audience through the creation of a personalized web portal
(similar to Google or Yahoo personalized pages) where users
could voluntarily participate in meaningful projects. Simply
by clicking on provided links, users could enable or disable
the client side computation, or could opt to switch from one
distributed project to another. Because both the problems
and the fitness test code are defined dynamically by the
webserver, the problems or fitness testing framework may
be changed dynamically on the server side without requiring
any client side changes.

Although the technique presented here offers a relatively
low level of computation compared to a dedicated client ap-
proach, the process is fully automatic with no client-side
software installation or configuration overhead whatsoever.
The low level of computation provided by each individual
client can thus be offset by the simplicity of recruiting ad-
ditional clients (either with or without their awareness of
the process). Although the system here does not promise
a “free lunch,” it does allow for the consumption of small
pieces of other peoples’ “lunches” (whether with or without
their consent) if they’re not going to eat them.

7. FUTURE WORK
We envision three primary avenues for future work on this

project:

• Expansion and generalization of PushScript and ap-
plication to new problems. The most important fu-
ture addition to this system is the addition of new
frameworks for solving real-world problems. One of
the main challenges in expanding the system for use
with other problems is interfacing with domain-specific

software frameworks, which are typically not written in
JavaScript. By expanding the PushScript implemen-
tation and creating additional domain-specific frame-
works in JavaScript, we will allow the system to be
applied to a wider variety of real-world problems.

• Applications beyond genetic programming. The sys-
tem we present here, including the PushScript im-
plementation, provides a simple way to serve arbi-
trary computational tasks to client computers with-
out the need to install client-side software, and (op-
tionally) without the approval of the client user. Al-
though the short-lived nature of the computational re-
lationship makes this technique especially well suited
to solving genetic programming problems, we believe
that the computation could be harnessed for a num-
ber of other applications including Folding@home- and
SETI@home-style distributed projects. Although the
amount of computation that can be taken from a sin-
gle host during a page-load is clearly miniscule in com-
parison to a dedicated computational client (such as a
screensaver), a far greater number of hosts — all vis-
itors to a website — can be used with the unwitting
distributed computation approach.

• Further investigation of unwitting computation using
different programming languages. The use of Java
(and potentially other in-browser programming lan-
guages) should allow for far better performance than
can be achieved through JavaScript, potentially rival-
ing the performance of native C code. Potential down-
sides include slower download and startup times for
compiled code. We suspect that JavaScript may prove
more effective for sites with very rapid page reloads,
while Java may be more appropriate when the browser
is left on a single page.

8. ACKNOWLEDGMENTS
This material is based upon work supported by the U.S.

National Science Foundation under Grant No. 0308540.
Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and
do not necessarily reflect the views of the NSF.

9. REFERENCES
[1] J. Carlsson, C. Paiz, K. Wolff, and P. Nordin.

Interactive evolution of speech using voiceXML
speaking to you GP system. In N. Callaos,
A. Pisarchik, and M. Ueda, editors, Proceedings of the
6th World Multiconference on Systemics, Cybernetics
and Informatics, volume VI, pages 58–62. IIIS, 2002.

[2] J. Klein. BREVE: a 3d environment for the simulation
of decentralized systems and artificial life. In R. K.
Standish, M. A. Bedau, and H. A. Abbass, editors,
Proceedings of Artificial Life VIII, the 8th
International Conference on the Simulation and
Synthesis of Living Systems, pages 329–334. The MIT
Press, 2002.
http://www.spiderland.org/breve/

breve-klein-alife2002.pdf.

[3] W. B. Langdon. Global distributed evolution of
L-systems fractals. In M. Keijzer, U.-M. O’Reilly,
S. M. Lucas, E. Costa, and T. Soule, editors, Genetic

Programming, Proceedings of EuroGP’2004, volume
3003 of LNCS, pages 349–358, Coimbra, Portugal, 5-7
Apr. 2004. Springer-Verlag.

[4] L. Spector. Adaptive populations of endogenously
diversifying Pushpop organisms are reliably diverse. In
R. K. Standish, M. A. Bedau, and H. A. Abbass,
editors, Proceedings of Artificial Life VIII, the 8th
International Conference on the Simulation and
Synthesis of Living Systems, pages 142–145,
University of New South Wales, Sydney, NSW,
Australia, 9th-13th Dec. 2002. The MIT Press.

[5] L. Spector. Automatic Quantum Computer
Programming: A Genetic Programming Approach.
Kluwer Academic Publishers, Boston, 2004
(paperback pub. by Springer, 2007).

[6] L. Spector and J. Klein. Trivial geography in genetic
programming. In T. Yu, R. L. Riolo, and B. Worzel,
editors, Genetic Programming Theory and Practice
III, volume 9 of Genetic Programming, chapter 8,
pages 109–123. Springer, Ann Arbor, 12-14 May 2005.

[7] L. Spector, J. Klein, and M. Keijzer. The Push3
execution stack and the evolution of control. In H.-G.
Beyer, U.-M. O’Reilly, D. V. Arnold, W. Banzhaf,
C. Blum, E. W. Bonabeau, E. Cantu-Paz,
D. Dasgupta, K. Deb, J. A. Foster, E. D. de Jong,
H. Lipson, X. Llora, S. Mancoridis, M. Pelikan, G. R.
Raidl, T. Soule, A. M. Tyrrell, J.-P. Watson, and
E. Zitzler, editors, GECCO 2005: Proceedings of the
2005 conference on Genetic and evolutionary
computation, volume 2, pages 1689–1696, Washington
DC, USA, 25-29 June 2005. ACM Press.

[8] L. Spector, J. Klein, C. Perry, and M. Feinstein.
Emergence of collective behavior in evolving
populations of flying agents. Genetic Programming
and Evolvable Machines, 6(1):111–125, Mar. 2005.

[9] L. Spector, C. Perry, J. Klein, and M. Keijzer. Push
3.0 programming language description. Technical
Report HC-CSTR-2004-02, School of Cognitive
Science, Hampshire College, USA, 10 Sept. 2004.

[10] L. Spector and A. Robinson. Genetic programming
and autoconstructive evolution with the push
programming language. Genetic Programming and
Evolvable Machines, 3(1):7–40, Mar. 2002.

[11] K. G. Thomas Weise. DGPF - an adaptable
framework for distributed multi-objective search
algorithms applied to the genetic programming of
sensor networks. In B. Filipič and J. Šilc, editors,
Proceedings of the Second International Conference on
Bioinspired Optimization Methods and their
Application, BIOMA 2006, International Conference
on Bioinspired Optimization Methods and their
Application (BIOMA), pages 157–166. Jožef Stefan
Institute, Ljubljana, Slovenia, Oct 2006.

[12] M. Tomassini. Parallel and distributed evolutionary
algorithms. In K. Miettinen, editor, Evolutionary
Algorithms in Engineering and Computer Science,
pages 113–133. John Wiley & Sons, Inc., New York,
NY, USA, 1999.

