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ABSTRACT

Many potential target problems for genetic programming are
modal in the sense that qualitatively different modes of re-
sponse are required for inputs from different regions of the
problem’s domain. This paper presents a new approach to
solving modal problems with genetic programming, using
a simple and novel parent selection method called lexicase
selection. It then shows how the differential performance
of genetic programming with and without lexicase selection
can be used to provide a measure of problem modality, and
it argues that defining such a measure in this way is not
as methodologically problematic as it may initially appear.
The modality measure is illustrated through the analysis
of genetic programming runs on a simple modal symbolic
regression problem. This is a preliminary report that is in-
tended in part to stimulate discussion on the significance
of modal problems, methods for solving them, and methods
for measuring the modality of problems. Although the core
concepts in this paper are presented in the context of genetic
programming, they are also relevant to applications of other
forms of evolutionary computation to modal problems.
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1. INTRODUCTION

Part of the appeal of genetic programming (GP) [5] is its
potentially broad applicability. Indeed the claim has often
been made that GP can be applied to almost any problem
for which the solution is a computer program. John Koza,
in his 1992 book, refers to the problem of “discovering a
computer program that produces some desired output when
presented with particular inputs” as “the problem of program
induction.” He claims that this problem is pervasive across
many fields, and he claims that GP is a general method for
solving the problem of program induction [5, Chapter 2].

The class of problems for which the solution is a computer
program is indeed very broad, and many problems that do
not initially appear to meet this requirement can be recast
in straightforward ways so that they do. But while one can
readily see how GP can be applied to all such problems in
principle, the problems to which it has been successfully ap-
plied have been more limited. More specifically, while suc-
cessful applications of GP span many disciplines of science
and engineering, and even reach into several areas in the arts
and humanities, they are generally limited to problems for
which solution programs can perform similar actions for all
possible inputs. That is, there is a weaker track record on
problems that require qualitatively different actions for dif-
ferent inputs; we will call such problems “modal” and use the
term “modes” (or “modes of response”) for the qualitatively
different actions that a successful program must perform.?

Of course GP has long been applied to problems that allow
for conditional execution, and in some cases one might con-
sider the evolved programs to perform qualitatively differ-
ent actions depending on inputs. For example, the standard
11-multiplexer problem [5, pp. 170-187] allows evolved pro-
grams to include an IF function and a solution can use this
to “do something different” for some inputs than it does for
others. An evolved solution might, for example, begin with
an IF that tests address input bit A2 and executes code for
“selecting a low-order data bit” for one value or code for “se-
lecting a high-order data bit” for the other. One could con-
sider this problem to require two modes, a low-order mode
and a high-order mode, and one could consider the evolved
solution to be using a conditional operator to choose the
appropriate mode of response.

This example does not, however, exemplify the kind of

'Note that “modal” as used here is quite different from “mul-
timodal” as used elsewhere in the literature; we discuss this
issue further in Section 2.



modal problem that is the goal of the present paper to ad-
dress. It is not a trivial matter to say exactly why—and we
discuss this difficulty in greater detail below—but perhaps
an example of a more clearly modal problem will help the
reader to see what is at issue.

Consider instead the problem of evolving a program that
calculates a range of geometric formulae, including perime-
ters, areas, surface areas and volumes of a variety of two-
dimensional and three-dimensional geometric shapes. One
input would specify which formula the user wishes to cal-
culate, while other inputs would specify numbers required
for the specified calculation (for example lengths of edges).
Some formulae may share components with one another—
for example, formulae for circles and cones and spheres will
share factors of m—but for the most part a solution program
will have to do something qualitatively different depending
on the formula input.

In many problems it will not be obvious what modes of
response a problem requires, or how to tell when one or an-
other is appropriate. For example, we can imagine a problem
like the geometric formula problem in which there is no for-
mula input, and in which the proper formula must be derived
in some way from the values of other inputs. The concept
of a “mode” implies that each situation (input combination)
will require the system to respond in one mode or another (or
in some combination of overlapping modes), but a particular
mode of response will probably be correct for many differ-
ent inputs. We may have no way of knowing, in advance,
how many qualitatively different modes of response will be
necessary or how to tell which particular situation calls for
which particular actions from the system’s repertoire. To
make matters worse, modes may overlap in various ways.
For example, consider a geometric formula problem that in-
cludes a hexadecimal mode that can be used in conjunction
with the modes that we have already discussed.

Problems with this kind of modality may be particularly
difficult for standard GP systems to solve because perfor-
mance in one mode or combination of modes may be un-
correlated with performance in others. When one uses the
most standard GP techniques (see below for exceptions) in-
dividuals are selected for reproduction and variation based
on a simple aggregation of performance measures across all
inputs. This may cause populations to become dominated
by individuals that do well in some circumstances but poorly
in others. If, as we are supposing, successful programs must
“do something qualitatively different” in different circum-
stances, then standard GP techniques will not guide such
populations toward complete solutions.

The class of problems with the kind of modality described
here is vast, and arguably both much larger and much more
significant than the class of problems on which GP has tradi-
tionally succeeded. One type of problem in which modality
is ubiquitous, for example, is the programming of end-user
software applications. Such applications usually perform
multiple functions on a range of inputs of multiple types, and
while the functions that they perform may share computa-
tional requirements they are also likely to be somewhat inde-
pendent. Consider a web browser: it must display web pages
but also create bookmarks, display browsing histories, ne-
gotiate secure connections, launch helper applications, and
complete many other kinds of tasks. Many of these func-
tions share the need to display HTML text, to manage user
clicks, and to perform other common sub-tasks, but perfor-

mance on the page display function is probably largely inde-
pendent of performance on the bookmark creation function.
Software engineers developing a browser are likely to use
programming processes that are driven at least in part by
suites of tests that measure performance function by func-
tion, and such tests are a reasonable starting point for the
development of a fitness function that would allow GP to
compete with human programmers in this area.? The satis-
faction of such tests, however, is a highly modal problem in
the sense discussed above; it is likely that the program will
have to do qualitatively different things to satisfy different
subsets of the tests. If we expect GP to perform well in such
cases then it is essential that we first tackle the problem of
evolving programs for modal problems.

In this paper we present a simple new approach for ap-
plying GP to modal problems. The approach involves a
new parent selection method, called “lexicase selection,” that
is based on consideration of the performance of potential
parents on individual fitness cases (input/output pairs). In
short, we select a parent by filtering the population on the
basis of performance on one fitness case at a time, with the
fitness cases considered in random order (see below for de-
tails). We argue that GP with lexicase selection may be
better able to solve modal problems than more traditional
methods, and also that the improvement in problem solv-
ing performance that lexicase selection provides might be
used as a measure of a problem’s modality. The more gen-
eral case that we want to make is that we need to continue
to work on enabling GP systems to solve modal problems,
and that quantitative measures of problem modality will be
important tools in moving this work forward.

In the next section we give a few pointers into the large
body of related work. This is followed by a section in which
we describe lexicase selection in detail, and then a section
in which we discuss ways in which lexicase selection perfor-
mance can be used to provide a measure of modality. We
then describe an illustrative example problem and present
results with and without lexicase selection to show how this
indicates the level of problem modality. This is followed by
a discussion of whether it really makes sense to define a met-
ric in terms of the success of a method that is intended to
solve problems that score high on the metric. This will strike
many readers as peculiar (or worse), but we will argue that
it makes sense in the present context. We then conclude
with a discussion of suggested future work.

2. RELATED WORK

Much of the prior related work has been conducted in
the context of multi-objective evolution, and some of the
techniques developed in this context may be applicable to
modal problems if one considers performance in each mode
to be a separate objective. However, in multi-objective prob-
lems one generally knows what the objectives are in advance,
which may or may not be true for modal problems. In addi-
tion, we consider “modes” to be connected to circumstances
(inputs) in a way that objectives need not be in general.
For example, one might use multi-objective GP techniques
to find a program that controls a truck backing up to a load-
ing dock, simultaneously maximizing the objectives of speed,

2Presumably one would use only tests of top-level functions
in a fitness test, since one would like the GP system, not a
human software engineer, to perform the factoring that must
precede specification of unit-tests for internal sub-functions.



safety, and fuel efficiency, but in this case all objectives apply
to every test to which the program will be subjected.®

Nonetheless, many techniques developed for use on multi-
objective problems may also be useful for modal problems.
There is an enormous literature on solving multi-objective
problems with evolutionary methods more generally, but a
good summary of the state of the art in GP, as of 2008, can
be found in [10, Chapter 9]. Most (but not all) of these
techniques are focused, as is the proposal presented here, on
modification of the parent selection algorithms used in the
GP system. Some combine performance on all objectives
into a single scalar metric, but this must often be done in a
domain-specific way. Many others (e.g. [4]) involve consid-
eration of the “Pareto front” of a population, which is the
subset of individuals not “dominated” by any other individu-
als relative to the given objectives. An individual dominates
another individual if it is at least as good as the other in all
objectives and better than the other in at least one. Some
prior work has combined selection based on membership in
(or distance to) the Pareto front with other selection criteria
(for example [6, 9]).

Some prior work on multi-objective GP altered the selec-
tion methods to consider objectives sequentially, or “lexi-
cographically,” with those considered earlier having priority
and those considered later serving only to break ties; for ex-
ample Luke and Panait did this with the objectives of cor-
rectness and program size, prioritizing correctness [8]. The
lexicase technique described below incorporates the lexico-
graphic concept but applies it to fitness cases and in ran-
domized order.

The term “multimodal” has occasionally been used to mean
something similar to what is meant here by “modal,” and
work has been conducted on evolving solutions to problems
that are multimodal in this sense. None of this work, how-
ever, has provided an approach that is as general or compat-
ible with standard GP techniques as the approach offered
here. For example, the technique described in [1] applies
only in the context of a novel architecture for evolving finite
state automata. Much more commonly, the term “multi-
modal” has been used to describe problems with multiple
global optima (e.g. [15]); this feature of problems is inde-
pendent of “modality” as the term is used here.

To some extent the modes of response required by a prob-
lem can be considered to be separate subproblems. “En-
semble” methods [7, 2, 11, 13] can be used to solve prob-
lems through the aggregation of independent solutions to
subproblems, but the present paper is concerned with the
search for a single program that solves an entire modal prob-
lem. Note that in many applications, such as the geome-
try formula problem and the end-user applications discussed
above, the sub-problems will share computational demands
and therefore a solution consisting of a single modular pro-
gram will often make more sense than an ensemble of pro-
grams for individual modes.

The mathematical notion of a “piecewise” definition is also
related to modality insofar as modal problems will call for
solutions that are in some sense defined in a piecewise fash-
ion. But the mathematical literature does not provide us
with a sufficiently general way to know when a piecewise
solution is required, and it does not provide us with general
methods for deriving piecewise solutions.

3 A simpler version of this problem is described in [5].

3. LEXICASE SELECTION

The goal in developing lexicase selection was to provide
a way to solve modal problems that is simple, tractable,
problem-independent, and representation-independent while
interfering as little as possible with other components of a
GP system. The guiding assumption is that a problem’s
modality is likely to be factorable to some degree by its fit-
ness cases—the input/output pairs that are used in assess-
ing fitness—each of which presumably represents a “circum-
stance” with which a correct program must deal. Different
(possibly unknown) subsets of the fitness cases may call for
different modes of response; that is, they may require the
system to respond in qualitatively different ways. This as-
sumption holds for a variety of interesting modal problems,
including the evolution of user-level applications based on
tests of top-level functions which was discussed above.

Because we assume that a problem’s modality is at least
partly factorable by fitness case, we want to ensure that good
performance with respect to any fitness case can be rewarded
by the evolutionary process—presumably by allowing the
high-performing individual to contribute to the following
generation—regardless of performance on other cases. At
the same time, however, it is important to reward progress
on larger groups of cases and eventually on all of the cases;
we seek a program that solves the entire modal problem,
not independent programs for each of many problem com-
ponents.

Lexicase selection meets these goals by substituting an
alternative method for selecting parents into an otherwise
standard (or arbitrarily non-standard) GP system. All other
components of the system remain unchanged.

The core idea of lexicase selection is that a parent is se-
lected by starting with a pool of potential parents and then
filtering the pool on the basis of performance on individ-
ual fitness cases, considered one at a time. This sequential
consideration of cases is reminiscent of the “lexicographic
ordering” of character strings, in which the first character
has the largest effect, the second matters only for ordering
within the set of strings that are equal in their first charac-
ters, and so on. This similarity with lexicographic ordering,
applied to the consideration of fitness cases, inspired the
name “lexicase.”

Different versions of lexicase selection can be obtained by
varying the way in which the initial pool of potential par-
ents is constituted, the way in which the sequence of cases
is determined, and the way in which performance on a case
is used to filter the pool. One of the simplest versions of
lexicase selection, which might be more fully described as
“global pool, uniform random sequence, elitist lexicase se-
lection,” is descibed in pseudocode in Figure 1.

The version of lexicase selection shown in Figure 1, which
is also the version used in the experiments presented below,
begins the selection of each parent with a pool consisting of
the entire population (as shown in step 1a); this justifies its
description as a “global pool” form of the algorithm. Alter-
natives include beginning with a subset of the population
that is selected randomly or according to some spatial or
“geographic” structure imposed on the population [14]. As
shown in step 1b, this version of the algorithm re-orders the
cases randomly each time it is called, selecting the orderings
from a uniform distribution of all possible orderings; this jus-
tifies the description as using a “uniform random sequence.”
Alternatives might order the cases in a biased way, with



To select a parent for use in a genetic operation:
1. Initialize:

(a) Set candidates to be the entire population.

(b) Set cases to be a list of all of the fitness cases
in random order.

2. Loop:

(a) Set candidates to be the subset of the current
candidates that have exactly the best fitness of
any individual currently in candidates for the
first case in cases.

(b) If candidates or cases contains just a single
element then return the first individual in can-
didates.

(c) Otherwise remove the first case from cases and
go to Loop.

Figure 1: Pseudocode for a simple version of the lex-
icase parent selection algorithm. A more complete
description of this version of the algorithm is “global
pool, uniform random sequence, elitist lexicase par-
ent selection.” Parts of the algorithm that can be
varied to produce different versions of lexicase se-
lection are indicated in italics; see text for details.

cases deemed to be more important or more difficult* being
more likely to occur early in the list and thereby to have a
greater influence on selection. Finally, as shown in step 2b
this version of the algorithm allows only those individuals
with the best fitness in the pool for the current fitness case
to survive for further consideration, justifying the descrip-
tion of this version of the algorithm as “elitist.” Alternatives
here would be to allow individuals with fitnesses for the cur-
rent case that are within some € of the best in the group to
survive, or to allow some pre-specified fraction of the group
to survive.

The version of lexicase selection presented here samples
the subset of the population’s Pareto front that has the best
fitness value in the population with respect to at least one
fitness case. But it does not do so with a uniform distribu-
tion across such “Pareto elite” individuals. For example, if a
large number of Pareto elite individuals have identical fitness
for all cases then they will divide the chances for selection in
selection events for which their elite cases occur first in the
lexicographic ordering. Such sharing of chances for selection
among individuals with identical fitnesses could be accom-
plished more simply by creating a pool of Pareto elite indi-
viduals, grouping individuals with identical fitnesses across
all cases, choosing a group with a uniform distribution, and
then choosing an individual from within the group with a
uniform distribution. But lexicase selection also changes the
selection distribution in other ways, among individuals with
non-identical fitness values, in order to promote good per-
formance on each fitness case and on each combination of
fitness cases.

4The difficulty of cases might be determined dynamically
over the course of a run, using a measure of “historically-
assessed hardness” [3].

Table 1: Fitness components (errors by case, with
smaller being better) and lexicase selection prob-
abilities for a small population on a hypothetical
problem.

Fitness Lexicase
case selection
Individual | @ | b | ¢ | d | probability

#1 212412 0.250
#2 1121413 0.000
#3 2121134 0.333
#4 012|515 0.208
#5 013|512 0.208

Consider a population containing only 5 individuals for a
problem with 4 fitness cases, with the fitness components
(which we will assume to be expressed as errors, for which
lower is better) listed in Table 1.

In this population no two individuals are identical but ev-
ery individual is Pareto elite; that is, no individual is domi-
nated by any other individual and each has at least one fit-
ness component that is the best in the population (although
it may also be shared by others). For example individual #1
has the best fitness in the population for case b (shared with
three other individuals), and it also has the best fitness in
the population for case d. Not only do the lexicase selection
probabilities vary across these individuals, but one individ-
ual (#2) has no chance of being selected at all. Examination
of the probabilities in detail shows that they make a good
deal of sense if we want to promote solutions to each case
individually and also to groups of cases together.

Consider individual #2. It is elite for one case (case b),
but it shares that elite status with three other individuals.
Examining those three individuals we see that all of them
are also elite for other cases, whereas individual #2 is not.
So with all of the others we get elitism for case b combined
with elitism in another case, and this makes all of the others
more valuable than individual #2.°

Each of the other individuals is elite for exactly two cases,
and yet they still vary in lexicase selection probability. To
see why they do, and to see why it makes sense that they
do, we have to look at the specific cases in which they are
elite and of the performance of the rest of the population
on all of the cases. For example, one reason for the high
selection probability of individual #3 is that it is the only
individual that is elite for case c¢. The lexicase selection
algorithm selects individual #3 more often than the others
because whenever case c is reached in a sequence of cases
individual #3 will be the only remaining candidate. And it
makes sense for individual #3 to have a higher probability
of selection because we want to solve each individual case
and individual #3 is the individual performing best on that
case.

The differences in selection probability among individuals
#1, #4, and #5 can be seen to arise from another factor
that again makes sense relative to our goals of solving each
individual case while also solving all combinations of cases.
Notice that each of these individuals shares elite status with
each of the others, but that individual #1 is better than
either of the others on the one case for which none of them

5Other work in which selection is dependent on the number
of cases for which individuals are elite is described in [12].



are elite. This explains why individual #1 is selected more
frequently by the lexicase selection algorithm and it also ac-
cords with our goal of promoting individuals that are closer
to solving all cases.

Notice also that the fact that the lexicase selection algo-
rithm is sensitive to this difference between individual #1
and individuals #4 and #5 demonstrates that it considers all
fitness component values (as it should), even though it may
initially appear to be driven entirely by elite values. Non-
elite values become important when the individuals having
elite values for one case are eliminated early in a case se-
quence because they have inferior values on other cases.

What about the computational cost of lexicase selection?
It is certainly more expensive than ordinary tournament se-
lection, although its cost is well bounded for any particular
population size and number of fitness cases. On the runs
described below, the additional cost was not prohibitive and
it was clearly outweighed by the benefits to guidance of the
evolutionary search. On the other hand, with population
size 10, 000 the overall cost of producing offspring using lexi-
case selection can exceed that of using ordinary tournaments
by between one and two orders of magnitude. Various op-
timizations are possible, however, some of which might in-
volve caching and some of which might involve performing
roulette wheel selection with precomputed selection proba-
bilities. It should also be noted that less global versions of
lexicase selection will be less computationally expensive.

4. MEASURING MODALITY

The measurement of problem modality is tricky because
it is not obvious how best to articulate or operationalize the
most relevant notion of a “mode.” As discussed above, the
definition of modality should reflect the requirement that
solutions must perform qualitatively different actions in dif-
ferent circumstances; that is, when they are presented with
inputs (fitness cases) falling in different classes.

It would be tempting to consider the clustering of fitness
cases by the similarity of inputs and/or outputs, and to con-
sider the resulting clusters to reflect the required modes of
response. But this may not capture the correct sense of
“mode” because even when there are many such clusters,
and even when they are quite distinct, it may nonetheless
be the case that a single, possibly even unconditional func-
tion will map the inputs to the proper outputs across all
fitness cases. Consider, for example, a symbolic regression
problem in which the solution is a single polynomial but for
which the fitness cases are clustered in several distinct sec-
tions of the input domains. Although clustering may make
the problem appear to be modal, a successful program can
perform similar (actually identical) actions for all possible
inputs.

The kind of modality that we care about here is roughly
the property of a problem that requires a solution to per-
form different actions for different inputs. But can this be
measured directly? Could it perhaps be measured from the
properties of solutions, after the fact? This too is tempt-
ing but notice that we could also produce, for any solvable
problem, some solution that performs different actions for
many sets of inputs or even for each different input. For ex-
ample, we could produce a solution to a polynomial regres-
sion problem that uses different but semantically equivalent
expressions for different input ranges, or even (with a suffi-
ciently rich function set) fit different parts of the data with

semantically distinct expressions. That is, we could produce
a solution that incorporates more (but not less) modality
than the problem demands. The modality of solutions is
therefore an imperfect guide to the modality of problems.

It is not clear how to solve this problem completely, and we
may have to settle for heuristic approximations. Indeed the
suggestion presented here is for a heuristic approximation
that, while imperfect, may provide useful information about
the modality of a problem.

In particular, the suggestion here is based on the observa-
tion that the lexicase selection algorithm can reward good
performance on any fitness case, and on any collection of
fitness cases, regardless of performance on other cases or
other sets of cases. It will not always reward good perfor-
mance on every subset, but good performance on single cases
and on small sets of cases will almost always be rewarded,
and good performance on larger sets will also be rewarded
with a frequency that is inversely related to the size of the
set. Assuming that a problem’s modality can be factored
at least to some degree by fitness case—that is, that cer-
tain (possibly unknown) subsets of the fitness cases reflect
performance in certain modes—this allows for programs to
be rewarded for performing well in independent or partially
independent modes. It also allows for programs to be re-
warded for performing well in multiple modes, which may
occur consecutively near the beginning of the list of cases in
step 1b of the algorithm in Figure 1. In other words, if a
problem is highly modal then lexicase selection should help
a GP system to solve it. If this is true then the performance
of a GP system that uses lexicase selection could be used as
a measure of problem modality.

Of course, the “performance” of a GP system can itself be
measured in many ways, including the success percentage
(the percentage of runs that find solutions), the “computa-
tional effort” required to have a high probability of finding a
solution [5], and the mean best fitness achieved over a collec-
tion of runs. Furthermore, what we really want to quantify
is the difference between the performance of a system that
uses lexicase selection and the performance of a system that
doesn’t, and there would also be many ways to calculate
such a difference. For the sake of simplicity we will use the
following measure of the modality (M) of a problem (p) rel-
ative to a GP system (\):

S(p,)\a) _S(va) (1)
S(p, Aa) +5(p, A)

where S is the success rate for a given system on a given
problem and A, is the system A modified to use lexicase
selection.

M(p,A) can range from —1 to 1. Values of less than 0
mean that lexicase selection makes the GP system perform
worse than it would otherwise perform on the given problem,
which might then be considered to be “anti-modal.” While
this might at first appear to be a rather strange concept,
one kind of circumstance in which it would be reasonable
to expect anti-modality is when consistency of responses is
more important than the appropriateness of a particular re-
sponse to a particular input; this might occur, for example,
in a problem involving teamwork, in which consistent be-
havior allows teammates to predict and compensate for weak
moves. Problems for which only a single mode of response is
needed, but for which consistency is not more valuable than
average good performance, should have values of M(p, \)

M(p,A) =



Table 2: Successful runs (out of 30 in each condition)
for standard GP and GP with lexicase selection on
problems with three levels of modality. See Section
5 for problem descriptions.

Table 3: Problem modalities computed from differ-
ential performance of lexicase selection, shown in
Table 2, using Equation 1. See Section 5 for prob-
lem descriptions.

Problem A | Problem B | Problem C
Standard 29 22 0
Lexicase 30 29 12

Problem A

Problem B

Problem C

Modality

0.017

0.137

1

near 0. Positive values of M(p,\) indicate problem modal-
ity, with a value of 1 indicating maximum modality. Note
that any problem for which success is possible using lexicase
selection, but impossible without it, will have M (p, A) = 1.
Note also that this measure is comparative, and that it
depends not only on the performance of the system with
lexicase selection but also on the performance of the system
without lexicase selection. In the example presented below,
the non-lexicase system used ordinary tournament selection
with a tournament size of 7. If we were to run the tests
again with a different tournament size then the numbers
produced for M(p, A) would probably be different, but we
would expect to see similar orderings and trends. That is, if
for problems p1 and ps2 such that M(pi,A) > M(p2, A) with
one reasonable A, then we would also expect this to hold
for other reasonable choices of A. If this is true then the
measure would have some utility in spite of its flaws.

5. ILLUSTRATIVE EXAMPLE

Consider an integer symbolic regression problem involving
thirty = (input) values ranging from —15 to 14 and y (target
output) values produced by the equation y = z? + = + 1.
This will be our illustrative nonmodal problem, to which
we will refer as Problem A. Next consider the problem that
is identical to Problem A for its first fifteen x values, but
for which the y values for the remaining fifteen values are
produced by the equation y = 7z. This problem, which
we will call Problem B, appears to require two modes of
response. Finally, consider the problem that uses y = z° +
z + 1 for the first ten values, y = Tx for the next ten, and
y = 3z% — 3 for the final ten. This final problem, which we
will call Problem C, appears to require three different modes
of response.

We used GP to solve these problems with a function set
containing: + (a 2-argument addition function); - (a 2-
argument subtraction function); * (a 2-argument multipli-
cation function); / (a 2-argument protected integer division
function, with which division by zero yields zero); ifz (a 3-
argument conditional function that returns the value of its
second argument if its first argument is zero, or the value
of its third argument otherwise); ifneg (a 3-argument con-
ditional function that returns the value of its second argu-
ment if its first argument is negative, or the value of its third
argument otherwise); and ifpos (a 3-argument conditional
function that returns the value of its second argument if its
first argument is positive, or the value of its third argument
otherwise). The terminal set included the symbol x, which
will always be bound to the current fitness case’s input value,
and an ephemeral random constant that can produce integer
values ranging from —5 to 4.

The baseline GP system used for these experiments is a
very simple tree-based GP system written in under 200 lines

Table 4: Mean final best fitnesses (where fitness is
error, so lower is better) for standard GP and GP
with lexicase selection on problems with three lev-
els of modality (from 30 runs per condition). See
Section 5 for problem descriptions.

Problem A | Problem B | Problem C
Standard 0.033 3.833 49.776
Lexicase 0.0 0.049 11.511

of Clojure code.® Random program trees (for population ini-
tialization and for new subtrees in mutants) are generated
recursively by choosing to add, at each step for which the
depth limit has not yet been reached, a function or a termi-
nal each with the probability 0.5; only terminals are selected
when the depth limit has been reached. The population size
is 1,000 and the program trees in the initial population are
generated with a depth limit of 5. Parents are selected (in
the non-lexicase condition) using tournaments of size 7. Off-
spring are produced by: subtree mutation, in which a ran-
domly selected subtree is replaced with a newly generated
subtree of maximum depth 3; crossover, in which a randomly
selected subtree is replaced with a subtree that is randomly
selected from another parent; or straight reproduction. The
selection of subtrees for mutation and crossover is uniform,
with all subtrees having equal probability of being selected.
No size limits are imposed on the products of mutation or
crossover, so it is possible for trees to grow without bound.
A child is generated by mutation with probability 0.49, by
crossover with probability 0.49, and by straight reproduction
with probability 0.02. Each run is permitted to continue for
101 generations or until a solution is found, whichever comes
first.

We conducted 30 runs of this system for each of the three
problems (A, B, and C) in the “standard” configuration,
using ordinary tournament selection to select parents, and
another 30 runs for each problem using lexicase selection
(specifically “global pool, uniform random sequence, elitist
lexicase parent selection” as described above).

The results, in terms of the number of runs that success-
fully produced solutions, are shown in Table 2. Table 3
shows the resulting modalities for the three problems, cal-
culated according to Equation 1. Table 4 shows the mean
final best fitnesses; that is, the averages, across all runs in a
condition, of the best (lowest) fitness in the final generation
of the run.

While these problems are small and artificial the results
nonetheless serve to demonstrate several interesting phe-
nomena. First, it is striking that the performance of the
standard system degrades so rapidly and so completely as
more modality is introduced, with no runs solving Prob-
lem C. Second, lexicase selection does perform much better,
with a widening performance gap as problem modality is

5Clojure is a dialect of Lisp; see http://clojure.org.



increased. Finally, the modality measures computed from
the success data appear to be quite reasonable, with Prob-
lem A having a value near zero, Problem B showing modest
modality, and Problem C appearing to be maximally modal.

Of course, a more sophisticated baseline GP system could
certainly do better here, as could lexicase selection in con-
junction with a more sophisticated baseline system. Our
hypothesis, however, and our expectation, is that the pat-
tern of improvement obtained by using lexicase selection will
be similar, as will the computed measures of modality.

6. A CIRCULAR DEFINITION?

A critic might characterize the methodological move made
in this paper with an imagined dialog such as the following:

Critic: You’ve developed a new problem-solving technique?
Author: Yes.

Critic: What’s it good for?

Author: Modal problems.

Critic: How do you tell if a problem is modal?

Author: If my new technique works on it!

Clearly this appears at least somewhat problematic. How
can it be justified?

For one thing, there does not appear to be any better
definition of modality to which we can appeal at this time.
As discussed in Section 4, several of the other obvious ap-
proaches fail to capture the essential notion of “having to do
something qualitatively different in different circumstances.”

A better justification may stem from an argument that the
lexicase selection technique can actually be derived fairly di-
rectly by the assumptions underlying our notion of modality.
We say that a problem is modal if a solution has to do some-
thing qualitatively different in different circumstances—that
is, on inputs from different classes. But if the solution
must do something qualitatively different in different cir-
cumstances then it would make little sense to compare the
actions of individuals across those circumstances; it would
only be reasonable to compare the actions of two individuals
in exactly the same circumstances. We do not know in ad-
vance how many different kinds of circumstances there may
be, or which fitness cases could be considered to fall together
into the same kind of circumstance (requiring the same ac-
tions). But each individual fitness case counts as some kind
of circumstance (possibly the same kind of circumstance as
several other fitness cases), and individuals can therefore
be meaningfully compared in terms of their performance on
single cases. We also don’t know, however, which cases are
most important. So we conduct each comparison on the
basis of a randomly ordered sequence of cases. Over many
comparisons this allows for every case and every group of
cases to serve as the basis for comparison, ensuring that we
reward good performance in each circumstance, and on each
group of circumstances, without ever requiring us to identify
the circumstances or to rank them relative to each other.

If this line of reasoning is correct and the definition of
modality can be seen to lead us directly to the lexicase se-
lection algorithm, then it is indeed tautological that lexicase
selection will help us to solve modal problems. But it is not
necessarily tautological in the sense that we are left with
circular definitions and nothing of value. Rather, it may be
tautological while leaving us both with a good measure of
modality and with a good way to solve modal problems.

7. CONCLUSIONS AND FUTURE WORK

As noted in the paper’s title, this is clearly preliminary
work. We have outlined a set of ideas and illustrated some-
thing of their potential, but the small example presented in
Section 5 does not establish either the utility of lexicase se-
lection or the utility of the measure of modality based on
lexicase selection performance; it serves only to illustrate
these concepts. Many more runs, on many more problems,
would be required to demonstrate utility empirically. In-
deed, such runs might instead undermine the case for the
measure’s utility, if, for example, Equation 1 yields a high
value for some problem that does not appear to be truly
modal. Only further experimentation will tell us whether or
not this will happen, and even if experiments do demonstrate
utility one would want to conduct further experiments to
see how other existing methods, such as the multi-objective
methods mentioned in Section 2, compare to the methods
presented here.

In addition to collecting empirical evidence, one might
also seek to develop mathematical models and analysis that
support predictions of the utility of lexicase selection and
the proposed measure of modality. We have not yet provided
such models or analysis either.

That said, we believe that we can nonetheless draw some
(preliminary) conclusions and also chart some directions for
future work that is likely to bear fruit. We have observed
that modal problems are important and that there are gaps
in our knowledge about how to solve them with GP. We
have seen a new approach to solving modal problems using a
new, simple parent selection algorithm—Ilexicase selection—
and we have seen how a metric for problem modality can be
defined in terms of the performance improvement provided
by lexicase selection.

Although this paper provides only a minimal, illustrative
example, we can report anecdotally that we have also used
lexicase selection on a version of the geometric formula prob-
lem described in Section 1, and that it succeeded while all
other methods that we tried failed. Also anecdotally, we
can report that success on Problem C in Section 5 appears
to be due specifically to lexicase selection and not just to
higher selectivity; runs with larger traditional tournaments
also generally fail. So we have reason to believe that lexicase
selection has real utility, even though this paper provides lit-
tle firm evidence for this belief. We do hope, however, that
this paper has made it clear how such evidence could be
obtained, and that it has provided the motivation for doing
S0.

One area in which work should be done is to further de-
lineate the situations in which lexicase selection is likely to
be useful, along with situations in which it might founder.
An assumption made in the development of the ideas pre-
sented here, and embodied in the examples on which they
have been tried, is that the size of the GP population will
be larger than the number of fitness cases. This makes it
likely that each fitness case will appear in the first position
for at least one and probably many more selection events,
ensuring that good performance on each case is actually re-
warded via contributions to the following generation. But if
there is a very large number of fitness cases—as there might
be, for example, if we are evolving end-user software appli-
cations and deriving our fitness cases from a large suite of
software tests—then adjustments to the algorithm may be
necessary. If so, then we might start by considering alter-



natives to the use of a global pool in step 1la of Figure 1, or
alternatives to uniformly random sequences in step 1b, or
alternatives to elitism in step 2a. Some of these alternatives
may be worthwhile in other situations as well. For example,
with the elitist version of lexicase selection presented here, if
there is one individual that is elite on all cases then it will be
selected in all selection events. This might have disastrous
consequences for population diversity, and so alternatives
should be considered if it appears that this is preventing the
solution of a particular problem. It would also be interesting
to examine the use of lexicase selection on problems that in-
volve noisy data; one might expect this to require relaxation
of the elitism in step 2a, although further study would be
required to support or undermine this intuition.

On the other hand, it is possible that lexicase selection
may provide benefits beyond those that were hypothesized
above. For example, prior work has developed ways to re-
ward individuals that do well on fitness cases that appear to
be particularly hard to solve, where hardness is determined
by looking at how well a case has been solved over the pre-
ceding history of the GP run [3]. That technique was not
developed explicitly for modal problems, but lexicase selec-
tion appears to provide a similar effect automatically, as a
side effect of the way in which it traverses the population
during selection.

Both lexicase selection and the modality measure pro-
posed here may also have utility outside of GP, for example
in other areas of evolutionary computing. It should be rel-
atively straightforward to apply these ideas to any system
that performs selection based on fitness tests that involve
multiple fitness cases.

In any event it is clear that there is a lot to be done, and
we hope that this paper has made the case that the ideas
presented here are worth exploring further.
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