
H A M P S H I R E C O L L E G E
S c h o o l o f C o g n i t i v e S c i e n c e

Cognitive Science Technical Report Series

DATE

Amherst , Massachuset t s 01002

cogsc i .hampshire .edu

TECHNICAL REPORT NO.

L e e S p e c t o r , C h r i s Pe r r y , J o n K l e i n , a n d M a a r t e n K e i j z e r

Push 3.0 Programming Language Descripton

HC-CSTR-2004-02

09.10.04

Push 3.0 Programming Language Description

Lee Spector, Chris Perry, Jon Klein, and Maarten Keijzer
School of Cognitive Science
Hampshire College

November, 2003 - September, 2004 (See the document version history at the end of this document. This
document is a successor to the Push 2.0 Programming Language Description, from which it borrows large
chunks of text.)

Contents

Overview
Push Concepts
Simple Examples
Configuration
Random Code Generation
Implementation Notes
Push3 vs. Push2
Push2 vs. Push1
Under Discussion
Type/Instruction Catalog
Acknowledgments
Document Version History

Overview

Push is a programming language intended primarily for use in evolutionary computation systems (such as
genetic programming systems), as the language in which evolving programs are expressed. Push has an
unusually simple syntax, which facilitates the development (or evolution) of mutation and recombination
operators that generate and manipulate programs. Despite this simple syntax, Push provides more expressive
power than most other program representations that are used for program evolution. Push programs can
process multiple data types (without the syntax restrictions that usually accompany this capability), and they
can express and make use of arbitrary control structures (e.g. recursive subroutines and macros) through the
explicit manipulation of their own code (via a "CODE" data type). This allows Push to support the
automatic evolution of modular program architectures in a particularly simple way, even when it Push is
employed in an otherwise ordinary genetic programming system (such as PushGP, which is a "generic" GP
system except that it evolves Push programs rather than Lisp-style program trees). Push can also support
entirely new evolutionary computation paradigms such as "autoconstructive evolution," in which genetic
operators and other components of the evolutionary system themselves evolve (as in the Pushpop and
SwarmEvolve2 systems).

This document describes version 3.0 of the Push programming language (a.k.a "Push3"), which shares
general features with the first and second versions of Push (a.k.a "Push1" and "Push2") although several
details have changed with each new version. Although it is based on Push1, a good introduction to the basic
principles of Push and its use for evolutionary computation is:

Spector, L., and A. Robinson. 2002. Genetic Programming and Autoconstructive Evolution with

the Push Programming Language. In Genetic Programming and Evolvable Machines, Vol. 3,
No. 1, pp. 7-40. (http://hampshire.edu/lspector/pubs/push-gpem-final.pdf, pdf 216KB)

A more recent discussion, based on Push2, is in:

Spector, L. 2004. Automatic Quantum Computer Programming: A Genetic Programming
Approach. Boston, MA: Kluwer Academic Publishers. (Note that the chapters on Push can be
read independently of the chapters on quantum computing. More information on the book is
available from http://hampshire.edu/lspector/aqcp/.)

The present document is a self-contained specification for Push3 that also briefly describes differences
between Push1, Push2, and Push3. That is, one should be able to use Push3 or even to re-implement Push3
using this document alone. But it does not address the motivations behind the design -- it does not discuss
why one might want to use Push in the first place. For such discussions please consult the references cited
above, and/or the additional publications listed at http://hampshire.edu/lspector/push.html.

Freely available Push implementations are listed at http://hampshire.edu/lspector/push.html. A mailing list
for Push-related discussions can be accessed via http://lists.hampshire.edu/mailman/listinfo/push.

Push Concepts

Push achieves its combination of syntactic simplicity and semantic power through the use of a stack-based
execution architecture that includes a stack for each data type. A CODE data type, with its own stack and an
associated set of code-manipulation instructions, provides many of the more interesting features of the
language. Push instructions, like instructions in all stack-based languages, take any arguments that they
require and leave any results that they produce on data stacks. To provide for "stack safe" execution of
arbitrary code Push adopts the convention, used widely in stack-based genetic programming, that
instructions requiring arguments that are not available (because the relevant stacks are empty) become
NOOPs; that is, they do nothing. Because Push's stacks are typed, instructions will always receive
arguments and produce results of the appropriate types (if they do anything at all), regardless of the contexts
in which they occur.

The syntax of Push is simply this:

program ::= instruction | literal | (program*)

In other words:

an instruction is a Push program
a literal is a Push program
a parenthesized sequence of zero or more Push programs is a Push program

Some implementations may require spaces around parentheses. Parenthesized sequences are also referred to
as "lists," and Push programs can in fact be treated as list data structures. Literals are constants such as "3"
(an integer constant) and "3.14" (a floating point number constant) and "TRUE" (a Boolean constant).
Instruction names are not case sensitive and they can include the "." character. Instruction names generally
start with the name of the type that they primarily manipulate, followed by a "."; for example, INTEGER.+
is the instruction for adding two integers, and BOOLEAN.DUP is the instruction for duplicating the value

on the top of the Boolean stack. In some cases, when an instruction interacts with data of multiple types, it
is not obvious to which type the instruction "belongs"; in these cases the instruction prefix is usually taken
from the type of the primary result of the instruction (if any).

Execution of a Push program involves the recursive application of the following procedure:

 To execute program P:
 If P is a single instruction then execute it.
 Else if P is a literal then push it onto the appropriate stack.
 Else (P must be a list) sequentially execute each of the
 Push programs in P.

The recursive executions implied in the final line of this procedure can be implemented in at least two ways.
The simplest technique, which was used in versions of Push prior to Push3, is to rely on the support for
recursion in the language within which Push is implemented; that is, one simply writes the procedure as
specified, with a sequence of recursive calls on the final line. One of the primary innovations in Push3 is to
manage the recursion in Push itself, using a new EXEC (execution) stack (this idea was developed by
Maarten Keijzer). In Push3 the procedure above is recast as follows:

 To execute program P:
 Push P onto the EXEC stack
 LOOP until the EXEC stack is empty:
 If the first item on the EXEC stack is a single instruction
 then pop it and execute it.
 Else if the first item on the EXEC stack is a literal
 then pop it and push it onto the appropriate stack.
 Else (the first item must be a list) pop it and push all of the
 items that it contains back onto the EXEC stack individually,
 in reverse order (so that the item that was first in the list
 ends up on top).

In a sense this is merely an alternative implementation, with no semantic significance; it produces the same
results as the simpler recursive implementation UNLESS we do new things to take advantage of the EXEC
stack. One new capability provided by the EXEC stack results from the fact that the complete state of the
Push interpreter now resides in the stack contents and the values of a few global variables (which store
interpreter parameter and name bindings -- see below). This means that it becomes trivial to make a Push
interpreter "reentrant" in the sense that it can be suspended and re-started at any time during a computation.
This can be useful, for example, when a Push interpreter is embedded in an environment in which other
processes (perhaps including other Push interpreters) must also be given CPU time. Such a capability could
also be provided in other ways -- for example by dedicating a separate operating system process to each
Push interpreter -- but the EXEC stack mechanism makes this easier and more efficient.

Other new capabilities provided by the EXEC stack result from explicit manipulation of the code that it
contains. This allows for particularly efficient implementation of certain control structures including
combinators. A simple example of this new functionality is given in the Simple Examples section below.

A top-level call to the Push interpreter may be provided with a second program, called the "configuration
code," that can be used to preload values onto stacks and to set interpreter parameter values. In addition, the
main program passed to the top-level call will itself normally be pushed onto the CODE stack before
execution; this convention simplifies the expression of some recursive programs (see below for an
example). If this behavior is not desired then one can turn it off by setting the TOP-LEVEL-PUSH-CODE
parameter to FALSE.

The standard NAME data type provides for symbolic names that can be bound to values (thereby acting as

variables and defined instructions) using DEFINE instructions. Any identifiers that do not represent known
Push instructions or literals of other type (e.g. TRUE and FALSE) are recognized as NAMEs. If a name has
not previously been given a value then it is pushed onto the NAME stack when it is encountered. A
subsequent call to a DEFINE instruction (such as INTEGER.DEFINE or CODE.DEFINE) will bind the
name on top of the NAME stack to the top value of the designated stack. From that point forward the name
will act as an instruction which, when executed, will push the bound value onto the EXEC stack. For most
types this will result in the value ending up, after the next execution cycle, back on the stack from which it
originally came (since the execution of a literal just pushes it onto the appropriate stack). If the bound value
is code, however, this will result in the bound value being EXECUTED -- so the name will act as a newly
defined instruction.

A NAME.QUOTE instruction is provided to move names that already have definitions back onto the
NAME stack, presumably for the sake of re-definition. When NAME.QUOTE is executed a flag is set that
causes the next encountered name to be pushed onto the NAME stack, whether or not it has previously been
bound (and the flag is then cleared, whether or not the name was previously bound). The CODE.QUOTE
instruction is similar in some respects; it causes the next encountered piece of code, whatever it is, to be
pushed onto the CODE stack rather than being executed. This is useful for moving code onto the CODE
stack for manipulation and/or execution by other instructions. CODE.QUOTE can be implemented with a
flag, similarly to NAME.QUOTE, but the existence of the EXEC stack permits a simpler implementation:
simply move the top item of the EXEC stack to the CODE stack. Push includes a full suite of list-
manipulation instructions that can be used to modify code in arbitrary ways, along with execution
instructions (such as CODE.DO and CODE.DO*TIMES) that can be used to execute the modified code.

A Push interpreter contains a random code generator that can be used to produce random programs or
program fragments; the algorithm for this is provided in the Random Code Generation section below. The
random code generator can be called from outside the interpreter (e.g. to create or mutate programs in a
genetic programming system) or from a standard CODE.RAND instruction (which is analogous to RAND
instructions available for other types). An "ephemeral random constant" mechanism allows randomly-
generated code to include newly-generated literals of various types.

Execution safety is an essential feature of Push, in the sense that any syntactically correct program should
execute without crashing or signaling an interrupt to the calling program. This is because Push is intended
for use in evolutionary computing systems, which often require that bizarre programs (for example those
that result from random mutations) be interpreted without interrupting the evolutionary process. The "stack
safety" convention described above (that is, the convention that any instruction that finds insufficient
arguments on the stacks acts as a NOOP) is one component of this feature. In addition, all instructions are
written in ways that are internally safe; they have well defined behavior for all predictable inputs, and they
typically NOOP in predictable "exceptional" situations (like division by zero). Additional safety concerns
derive from the availability of explicit code manipulation and recursive execution instructions, which can in
some cases produce exponential code growth or non-terminating programs. In response to these concerns a
Push interpreter must enforce two limits:

EVALPUSH-LIMIT: This is the maximum allowed number of "executions" in a single top-level call
to the interpreter. The execution of a single Push instruction counts as one execution, as does the
processing of a single literal, as does the descent into one layer of parentheses (that is, the processing
of the "(" counts as one execution). When this limit is exceeded the interpreter aborts immediately,
leaving its stacks in the states they were in prior to the abort (so they may still be examined by a
calling program). Whether or not this counts as an "abnormal" termination is up to the calling
program.
MAX-POINTS-IN-PROGRAM: This is the maximum size of an item on the CODE stack, expressed
as a number of points. A point is an instruction, a literal, or a pair of parentheses. Any instruction that

would cause this limit to be exceeded should instead act as a NOOP, leaving all stacks in the states
that they were in before the execution of the instruction.

The convention regarding the order of arguments for instructions that are normally rendered as infix
operators is that the argument on the top of the stack is treated as the right-hand argument and the argument
second-from the top is treated as the left-hand argument. This means that the linear representation of an
expression containing one of these instructions looks like the normal infix expression, except that the
instruction is moved to the end. For example, we divide 3.14 by 1.23 using "(3.14 1.23 FLOAT./)" and we
subtract 2 from 23 using "(23 2 -)".

While Push's stacks are generally treated as genuine stacks---that is, instructions take their arguments from
the tops of the stacks and push their results onto the tops of the stacks---a few instructions (like YANK and
SHOVE) do allow direct access to "deep" stack elements by means of integer indices. To this extent the
stacks can be used as general, random access memory structures. This is one of the features that ensures the
Turing-completeness of Push (another being the arbitrary name/value bindings supported by the NAME
data type and DEFINE methods; see below).

Simple Examples

This section contains just a few simple examples, to give the reader a feel for the language and to
demonstrate some of its unique features.

First, some simple arithmetic and logic:

(2 3 INTEGER.* 4.1 5.2 FLOAT.+ TRUE FALSE BOOLEAN.OR)

Execution of this code leaves the relevant stacks in the following states:

BOOLEAN STACK: (TRUE)
CODE STACK: ((2 3 INTEGER.* 4.1 5.2 FLOAT.+ TRUE FALSE BOOLEAN.OR))
FLOAT STACK: (9.3)
INTEGER STACK: (6)

Next, some more "scrambled-looking" arithmetic:

(5 1.23 INTEGER.+ (4) INTEGER.- 5.67 FLOAT.*)

Execution of this code leaves the relevant stacks in the following states:

CODE STACK: ((5 1.23 INTEGER.+ (4) INTEGER.- 5.67 FLOAT.*))
FLOAT STACK: (6.9741)
INTEGER STACK: (1)

A few points to note about this example:

Operations on integers and on floating point numbers can be interleaved; all instructions take their
arguments from the appropriate stacks and push their results onto the appropriate stacks.
The call to INTEGER.+ does nothing because there are not two integers on the INTEGER stack when
it is executed.

The call to INTEGER.- subtracts 4 (which is on top of the stack) from 5 (which is second on the
stack), not the other way around.
The parentheses in "(4)" have no effect on the results; parentheses serve mainly to group pieces of
code for handling by code-manipulation instructions.

Here is a tiny program that adds an integer pre-loaded onto the stack to itself:

(INTEGER.DUP INTEGER.+)

When run with 5 pre-loaded onto the INTEGER stack, for example, this leaves 10 on top of the stack. The
following does the same thing in a slightly more complicated way, pushing code onto the CODE stack and
then executing it:

(CODE.QUOTE (INTEGER.DUP INTEGER.+) CODE.DO)

This can be converted into a new "DOUBLE" instruction as follows:

(DOUBLE CODE.QUOTE (INTEGER.DUP INTEGER.+) CODE.DEFINE)

or equivalently:

(CODE.QUOTE (INTEGER.DUP INTEGER.+) DOUBLE CODE.DEFINE)

Or even more concisely, using the EXEC stack (more explanation of which is provided below), as:

(DOUBLE EXEC.DEFINE (INTEGER.DUP INTEGER.+))

After executing any of these definitions the name DOUBLE will act as an instruction that doubles the
number on top of the INTEGER stack.

The following more complicated example computes the factorial of an integer pre-loaded onto the
INTEGER stack. This example makes use of the fact that top-level calls to the interpreter normally push the
executed code onto the CODE stack before execution:

(CODE.QUOTE (INTEGER.POP 1)
 CODE.QUOTE (CODE.DUP INTEGER.DUP 1 INTEGER.- CODE.DO INTEGER.*)
 INTEGER.DUP 2 INTEGER.< CODE.IF)

This works by first pushing two pieces of code (for the base case and recursive case of the recursive
factorial algorithm, respectively) onto the CODE stack; these are pushed on top of the code for the full
program, which is pre-loaded onto the CODE stack by the top-level call to the interpreter. The subsequent
code compares the provided integer with 2 and, depending on the result of this, executes one of the pushed
pieces of code (and discards the other; see the documentation for CODE.IF in the Type/Instruction Catalog
below for details). In the base case this will produce an answer of 1, while in the recursive case it will
recursively compute the factorial of one less than the provided number, and multiply that result by the
provided number. When called with 5 pre-loaded on the INTEGER stack this leaves the relevant stacks in
the following states:

CODE STACK: ((CODE.QUOTE (INTEGER.POP 1)
 CODE.QUOTE (CODE.DUP INTEGER.DUP 1 INTEGER.- CODE.DO INTEGER.*)
 INTEGER.DUP 2 INTEGER.< CODE.IF))
BOOLEAN STACK: ()
INTEGER STACK: (120)

This example is interesting because it demonstrates the use of the code stack for recursion, but there are
much simpler ways to calculate the factorial function in Push. For example the following code uses an
iteration instruction to compute the factorial of a number pre-loaded onto the INTEGER stack:

(1 INTEGER.MAX CODE.QUOTE INTEGER.* 1 CODE.DO*RANGE)

The initial "1 INTEGER.MAX" is necessary only for the special case of an input of zero. And an even more
parsimonious factorial function can be written using an iteration instruction that operates on the EXEC
stack:

(1 INTEGER.MAX 1 EXEC.DO*RANGE INTEGER.*)

Instructions that manipulate the EXEC stack appear to take their arguments "from the right," rather than
from the left as all other Push instructions. This is because execution procedure pushes all of the items in a
list onto the EXEC stack before executing any of them, and because the items to the right will be further
down in the stack. So given a program like:

(A B C)

C will be on top of the EXEC stack when B is being executed. So if B accesses the EXEC stack it will see
C, even though C is to its right. While this may at first be confusing, it allows EXEC instructions to
manipulate code without quotation, producing particularly concise code. For example, consider the
following program, which is intended to be executed with at least two integers on the INTEGER stack and
at least two floating point numbers on the FLOAT stack:

(INTEGER.= CODE.QUOTE FLOAT.* CODE.QUOTE FLOAT./ CODE.IF)

The CODE.IF instruction takes two items off of the CODE stack and executes one or the other of them
depending on what's on top of the BOOLEAN stack. In this case it will execute FLOAT.*, multiplying the
top two floating point numbers, if the top two integers were equal, and it will execute FLOAT./, dividing the
top two floating point numbers, otherwise. With EXEC.IF, which works analogously but using the EXEC
stack rather than the CODE stack, this can be expressed more concisely as:

(INTEGER.= EXEC.IF FLOAT.* FLOAT./)

The EXEC stack also permits the concise expression of recursive control structures by means of
"combinators." For example, the "Y" combinator, implemented in Push as EXEC.Y, inserts, beneath the top
item of the EXEC stack, a second copy of that top item wrapped in another call to EXEC.Y. The resulting
recursive calling sequence might later be terminated with the EXEC.K combinator or with EXEC.POP or
EXEC.FLUSH. Consider the following implementation of a "while" loop:

(EXEC.Y (<BODY/CONDITION> EXEC.IF () EXEC.POP))

Execution of EXEC.Y inserts a copy of the entire expression (including EXEC.Y) beneath the remainder of
the expression on the EXEC stack. The <BODY/CONDITION> code is then executed. If this leaves TRUE
on top of the BOOLEAN stack then EXEC.IF leaves the following empty list on top of the EXEC stack and
discards the call to EXEC.POP. After the execution of the empty list (which has no effect) the full original
expression will again rise to the top of the EXEC stack, starting the next recursive call. If, on the other hand,
the execution of the <BODY/CONDITION> leaves FALSE on top of the BOOLEAN stack, then EXEC.IF
will discard the following empty list and instead execute the EXEC.POP. The call to EXEC.POP will
remove the recursive call and thereby terminate the recursion. As a concrete example, consider:

(ARG FLOAT.DEFINE Define name ARG to store the top float.

 EXEC.Y
 (ARG FLOAT.*
 1 INTEGER.-
 INTEGER.DUP 0 INTEGER.>
 EXEC.IF () EXEC.POP))

Recursively execute the following expression.
Push ARG and multiply it by previous top float (if any)
Subtract 1 from the top integer (which acts as a counter)
Is the top integer greater than zero?
If so then recurse; otherwise terminate.

When run with an integer I pre-loaded on the INTEGER stack and floating point number F pre-loaded on
the FLOAT stack, this will compute F raised to the I power.

Many other control structures can be implemented with combinators and other EXEC instructions, and the
control structures can be added to the language as instructions using CODE.DEFINE and related
instructions. The user is warned, however, that the use of arbitrary stack-manipulation instructions (such as
ROT, YANK, and SHOVE) on the EXEC stack can create "execution spaghetti" -- that is, execution
sequences that are very difficult to understand, and possibly difficult to edit/mutate without unexpected
consequences. These instructions are provided for the EXEC type, as for all other types, but it might be
prudent to use them sparingly. Manipulation of code on the CODE stack may also produce code that is
difficult to understand, but at least it does so prior to, rather than during, its own execution. Whether
evolution will make good use of EXEC stack manipulations is an open question.

Configuration

A Push interpreter is configured by setting the values of interpreter parameters, including lists of the types
and instructions that can appear in randomly generated code. This information can be specified either in a
configuration file, the format of which is specified below, or in code that is passed to the interpreter as
"configuration code." Configuration files may not be supported by all implementations, as the configuration
code mechanism is functionally equivalent but simpler to implement.

A Push3 configuration file is a plain text file. Any line beginning with "#" is a comment and is ignored.
Actual configuration lines come in three forms:

<parameter name> <value>
type <type name>
instruction <instruction name>

A parameter-setting line lists an implemented parameter (see below) and a value for that parameter. A type
line consists of the word "type" followed by the name of an implemented type, and it has the effect of
making the named type available in the interpreter; one effect of this is that the ephemeral random constant
generator of the given type will be "turned on," allowing for constants of the type to be included in
randomly-generated code. An instruction line consists of the word "instruction" followed by the name of an
instruction; the effect of such a line is to allow the named instruction to appear in randomly-generated code.

Ideally an implementation should warn the user if the configuration "turns on" instructions that access stacks
of "turned off" types, or if there are other apparent inconsistencies in the configuration. But it is not
necessary that implementations do this, and there is no standardized set of inconsistencies that must be
reported.

The following is a fragment of a valid configuration file:

 ## PARAMETER SETTINGS

 MAX-RANDOM-FLOAT 1.0
 MIN-RANDOM-FLOAT -1.0
 MAX-RANDOM-INTEGER 10
 MIN-RANDOM-INTEGER -10
 EVALPUSH-LIMIT 1000
 NEW-ERC-NAME-PROBABILITY 0.001
 MAX-POINTS-IN-RANDOM-EXPRESSIONS 25
 MAX-POINTS-IN-PROGRAM 100

 ## TYPES
 type FLOAT
 type NAME
 type CODE
 type BOOLEAN
 type INTEGER

 ## INSTRUCTIONS
 instruction INTEGER.FROMBOOLEAN
 instruction INTEGER.FROMFLOAT
 instruction INTEGER.>
 instruction INTEGER.<

A Push implementation that supports configuration files should also provide a way to generate a complete
configuration file, containing type and instruction lines for all implemented types and instructions. A
reasonable way to configure such a Push interpreter is to start with such a complete configuration file and to
comment out lines to turn off types and instructions. Note, however, that many instructions may depend on
multiple types; for example, many code-manipulation and stack-manipulation instructions use integer
indices and therefore require the INTEGER type, many comparison instructions require the BOOLEAN type
for depositing their results, and all DEFINE instructions require the NAME type. Ideally, implementations
should provide warnings when such dependencies are not satisfied by a configuration, but they need not do
so; the person specifying the configuration should be sufficiently familiar with the instruction set to ensure
that necessary types are "turned on."

The following parameters should be supported in configuration files:

MIN-RANDOM-INTEGER: The minimum INTEGER that will be produced as an ephemeral random
INTEGER constant or from a call to INTEGER.RAND.
MAX-RANDOM-INTEGER: The maximum INTEGER that will be produced as an ephemeral
random INTEGER constant or from a call to INTEGER.RAND.
MIN-RANDOM-FLOAT: The minimum FLOAT that will be produced as an ephemeral random
FLOAT constant or from a call to FLOAT.RAND.
MAX-RANDOM-FLOAT: The maximum FLOAT that will be produced as an ephemeral random
FLOAT constant or from a call to FLOAT.RAND.
MAX-POINTS-IN-RANDOM-EXPRESSIONS: The maximum number of points in an expression
produced by the CODE.RAND instruction.
MAX-POINTS-IN-PROGRAM: The maximum number of points that can occur in any program on
the CODE stack. Instructions that would violate this limit act as NOOPs (they do nothing).
EVALPUSH-LIMIT: The maximum number of points that will be executed in a single top-level call
to the interpreter.
NEW-ERC-NAME-PROBABILITY: The probability that the selection of the ephemeral
random NAME constant for inclusion in randomly generated code will produce a new name (rather
than a name that was previously generated).
RANDOM-SEED: A seed for the random number generator; 0 <= RANDOM-SEED <= 30081.
TOP-LEVEL-PUSH-CODE: When TRUE (which is the default), code passed to the top level of the

interpreter will be pushed onto the CODE stack prior to execution.
TOP-LEVEL-POP-CODE: When TRUE, the CODE stack will be popped at the end of top level calls
to the interpreter. The default is FALSE.

The alternative mechanism for interpreter configuration is to pass "configuration code" as a second
argument to the top level call to the interpreter. This code is simply Push code which may contain, among
other things, calls to parameter-setting instructions. All of the parameters listed above have corresponding
parameter-setting Push instructions, which are named with an "ENV." prefix. So, for example, the MIN-
RANDOM-INTEGER parameter can be set to 100 using configuration code that includes "100 ENV.MIN-
RANDOM-INTEGER". The "ENV" prefix here stands for "Environment," and it is inspired by a set of
possible extensions, still under discussion, in which there would be a full-fledged environment type and an
environment stack. The inclusion of parameter-setting instructions in randomly generated code is possible
but probably not advisable.

The lists of "turned on" types and instructions are specified in configuration code using the ENV.TYPES
and ENV.INSTRUCTIONS instructions, each of which takes an argument, which should be a list, from the
CODE stack.

The following is an example piece of configuration code:

(150 ENV.EVALPUSH-LIMIT
 100.0 ENV.MAX-RANDOM-FLOAT
 PI 3.141592 FLOAT.DEFINE
 CODE.QUOTE (FLOAT./ FLOAT.* FLOAT.- FLOAT.+) ENV.INSTRUCTIONS
 CODE.QUOTE (FLOAT) ENV.TYPES)

This configuration code sets values for two parameters (EVALPUSH-LIMIT and MAX-RANDOM-
FLOAT), leaving all other parameters at their default values (some of which may be implementation
specific). It then defines an instruction called PI that will push 3.141592. The final two lines specify the
instructions and types that can appear in random code; the specification here is for a minimal floating-point-
only arithmetic configuration.

Random Code Generation

Several algorithms for the generation of random code have been described in the genetic programming
literature. Code generation is less complicated for Push programs than it is for Lisp-style code trees, since in
Push one doesn't have to worry about function "arity" or about function vs. argument positions when
generating code. So it is easier, for example, to generate programs with predictable size and shape
distributions.

The following is the standard Push random code generation algorithm, which is used for the CODE.RAND
instruction. It may also be useful for the initialization of programs in evolutionary computation systems, and
it is used for this purpose in PushGP. It produces a uniform distribution of sizes and what seems to be a
reasonable distribution of shapes, in a reasonable amount of time.

Note that the instruction set referred to in RANDOM-CODE-WITH-SIZE should include any NAMEs that
have been bound with a DEFINE instruction.

Function RANDOM-CODE (input: MAX-POINTS)
 Set ACTUAL-POINTS to a number between 1 and MAX-POINTS,
 chosen randomly with a uniform distribution.
 Return the result of RANDOM-CODE-WITH-SIZE called with input

 ACTUAL-POINTS.
End

Function RANDOM-CODE-WITH-SIZE (input: POINTS)
 If POINTS is 1 then choose a random element of the instruction
 set. If this is an ephemeral random constant then return a
 randomly-chosen value of the appropriate type; otherwise
 return the chosen element.
 Otherwise set SIZES-THIS-LEVEL to the result of DECOMPOSE
 called with both inputs (POINTS - 1). Return a list
 containing the results, in random order, of
 RANDOM-CODE-WITH-SIZE called with all inputs in
 SIZES-THIS-LEVEL.
End

Function DECOMPOSE (inputs: NUMBER, MAX-PARTS)
 If NUMBER is 1 or MAX-PARTS is 1 then return a list
 containing NUMBER
 Otherwise set THIS-PART to be a random number between 1 and
 (NUMBER - 1). Return a list containing THIS-PART and
 all of the items in the result of DECOMPOSE with inputs
 (NUMBER - THIS-PART) and (MAX-PARTS - 1)
End

Implementation Notes

This section describes a few of the features of some current implementations and their interfaces. They can
also be interpreted as suggestions for anyone building their own Push implementations. These are not
features of the language per se, but they may help one to ensure that two implementations are consistent
with one another. Implementation-SPECIFIC installation and usage notes should accompany each
implementation.

Test suite scheme: A more-or-less standardized "test suite" scheme is intended to help ensure that a Push
implementation behaves like other implementations. The scheme is to process three files (a configuration
file, a file containing a list of literals for initializing the stacks, and a file containing a program) and to
produce an output file that contains a list of literals which, if read back in to the interpreter (that is, if
"executed" as a program), would re-create the stacks as they were at the end of the computation. The values
in the output file are listed type by type, following the order in which types are declared in the configuration
file. Each implementation should also provide some mechanism for comparing its output files with those of
other implementations (for example by reading the files and comparing stack states, or by comparing the
files in a way that disregards insignificant white space). For systems that use configuration code, rather than
configuration files, this scheme would have to be altered somewhat.

Templates: It often makes sense to create slightly different versions of the same basic instruction for
multiple types. For example, many of the standard stack-manipulation instructions (e.g. DUP, POP, etc.)
make sense for all types (and depending on the way that the interpreter is written it may be possible to use
identical method implementations for all of them). In Push1 an instruction overloading mechanism, using a
TYPE type in the language itself, allowed one to exploit these commonalities (and also affected the
semantics of the language in complex ways). In Push2 and Push3 the TYPE type was dropped and all
instruction names refer to single methods; instruction names often include type names but this is just a
convention. To recapture the software engineering benefits of the overloading mechanism (e.g. code reuse)
an implementation should provide a template mechanism for type and instruction definitions.

Libraries: The configuration mechanism is intended to simplify the integration of new types/instructions
into an interpreter. Any implementation of the language should provide a clear API for including libraries of
types/instructions and for building/loading configuration files and/or configuration code.

Client-provided instructions with call-backs: Push interpreters are often imbedded within "client"
programs that invoke interpreters on various inputs and do various things with the outputs. The integration
of the interpreter into the client environment should be as tight as possible. Minimally, the client should be
able to process a configuration file and/or configuration code, push/pop onto/from stacks, and invoke the
interpreter on a piece of code. Ideally, the client should also be able to install new instructions that interact
both with the client's environment and the interpreter state. For example, we use our C++ interpreter as a
plug-in to the BREVE simulation environment (http://www.spiderland.org/breve), and we provide a way for
the BREVE user to write instructions in BREVE's scripting language (which may, among other things,
manipulate the interpreter's stacks) and add them to an embedded interpreter.

Push3 vs. Push2

Push3 differs from Push2 mainly in the following ways:

"Big picture" changes:

EXEC stack: The recursion implicit in the execution procedure is now handled explicitly within
Push, using an EXEC type/stack and the procedure outlined in the Push Concepts section of this
document. This has two significant impacts:

1. It simplifies the construction of a "reentrant" Push interpreter that can be suspended and
resumed at any point in a computation.

2. It supports new control structures that are more concise than those that rely on the CODE stack.
See in particular the definitions of EXEC.IF, EXEC.DO*RANGE, EXEC.DO*TIMES, and
EXEC.DO*COUNT in the Type/Instruction Catalog below. It also supports "combinators" that
simplify the construction of certain recursive control structures (see EXEC.K, EXEC.S, and
EXEC.Y).

New NAME definition scheme: In previous versions of Push symbolic names were always treated as
literals that were pushed onto the NAME stack when they were encountered. Later calls to SET and
GET instructions could then be used to store/retrieve values associated with the names. In Push3
names that already have definitions are treated as instructions rather than as literals -- that is, their
values are placed on the EXEC stack when they are encountered (except in the context of
NAME.QUOTE, which causes the next encountered name to be treated as a literal regardless of
whether or not it has a definition). This eliminates the need for GET instructions entirely (SET is
retained but given the more descriptive name DEFINE), and it also eliminates the need for calling DO
or a similar instruction in order to treat a NAME bound to CODE as a defined instruction. Names
bound with CODE.DEFINE and EXEC.DEFINE now act as true defined instructions or subroutines,
invoked simply by including their names in code. The table below demonstrates the possibilities for a
simple instruction that multiplies an integer by 2. Note that invocation of the instruction is always
more parsimonious in Push3 (requiring one rather than three items), and that instruction definition can
also be more parsimonious, requiring as little as two items in addition to the body of the definition.
There is, however, one case in which it is less parsimonious, when the NAME has a prior binding and
the body is specified on the CODE stack. A side effect of these changes is that NAMEs can no longer
have multiple bindings, one per type, as was the case in Push2. A new instruction called
CODE.DEFINITION allows one to retrieve the definition of a name on the NAME stack, pushing the
definition code onto the CODE stack.

A named "TIMES2" instruction in Push2 vs. Push3.

 Push2 Push3

Definition
TIMES2
CODE.QUOTE (2 INTEGER.*)
CODE.SET

If TIMES2 is known to have no prior binding:

TIMES2
CODE.QUOTE (2 INTEGER.*)
CODE.DEFINE

or

TIMES2
EXEC.DEFINE (2 INTEGER.*)

If TIMES2 may have a prior binding:

NAME.QUOTE TIMES2
CODE.QUOTE (2 INTEGER.*)
CODE.DEFINE

or

NAME.QUOTE TIMES2
EXEC.DEFINE (2 INTEGER.*)

Invocation TIMES2 CODE.GET CODE.DO TIMES2

Configuration code: As described in the Configuration section of this document, one can configure a
Push3 interpreter by passing "configuration code" to a top-level call to the interpreter, rather than by
parsing a configuration file. This simplifies the implementation of an interpreter and may also support
new applications involving computed configurations.

Additional changes:

The "constants" mechanism in Push2, which allowed the creation of constant-pushing instructions in a
configuration file, has been superceded by the new NAME definition scheme, which can do the same
things (and more) more easily. Everything related to the constant mechanism has been removed
(including the SETCONSTANT external call).
A new CODE.DO*RANGE instruction has been added to facilitate the implementation of
CODE.DO*TIMES and CODE.DO*COUNT in the context of the new EXEC stack. These
instructions are now implemented as "macros" that expand into calls to CODE.DO*RANGE. This
preserves the semantics of the original instructions except that calls will now contribute more "points"
to the "evalpush count," and may therefore cause one to reach the EVALPUSH-LIMIT slightly
earlier. An analogous specification has been provided for EXEC.DO* instructions.
Defined instructions (produced with <type>.DEFINE) can now appear in random code, with the same
probability as built-in instructions. This is accomplished by specifying that the "instruction set" in the
random code generation algorithm includes any defined instructions.
Two new parameters have been added: TOP-LEVEL-PUSH-CODE and TOP-LEVEL-POP-CODE.
These determine how top-level calls to the interpreter deal with the code stack before and after
execution.
CODE.RAND's treatment of its argument has been changed. It now uses the minimum of the absolute
value of the top integer and *max-points-in-random-expressions* as the size of the generated code.
Previously it used the MOD of these numbers, which produced strange results.

ROT instructions were added for all types. "<type>.ROT" is equivalent to "2 <type>.YANK". The
name comes from FORTH, which includes a similar instruction.
FLUSH instructions were added for all types. "<type>.FLUSH" empties the stack of the specified
type. Note that EXEC.FLUSH is a "halt" instruction, as it empties the execution stack. The name for
FLUSH was also borrowed from FORTH.

Push2 vs. Push1

Push2 differs from Push1 mainly in the following ways:

Changes to the language per se:

The instruction overloading scheme in Push1 was dropped. It was deemed to be overly complex and
unnecessary.
The "TYPE" data type, which was used primarily to support instruction overloading, was dropped.
Conversions between data types, which were previously handled by a CONVERT instruction in
conjunction with the TYPE type, are now handled by conversion instructions for each appropriate
type/type pair.
Type names are now integrated into instruction identifiers (like "INTEGER.POP") rather than
occurring as type literals.
A few artifacts of the Lisp derivation of Push1 have been dropped; for example the Boolean literals
are now TRUE and FALSE, rather than T and NIL.
A few names have been changed for clarity or consistency (e.g. PULL was replaced with YANK to
better reflect that it is the inverse of the SHOVE, which we didn't want to name PUSH as that might
imply pushing onto the top of the stack).

Refinements to our implementations and their interfaces:

Template-like mechanisms simplify the implementation of instructions for multiple data types (now
that there is no overloading).
A configuration file system was developed to simplify the specification of a particular set of
types/instructions/parameters for a particular run. This system is intended to support libraries of types
and instructions, and to work for all Push2 implementations (including our current Lisp and C++
implementations).
A test file system was also added to help ensure that the various implementations behave in the same
ways.

Under Discussion

Following are a couple of items that are currently under discussion for possible inclusion in future versions
of Push:

Standardized entries in the type/instruction catalog for other types that we commonly use
(point/vector, child, unitaryMatrix, etc.).
Various ideas for dynamic generation of new types from Push code.
EXEC.YIELD: To implement co-routines, a YIELD instruction can be defined which, when
encountered on the execution stack, will immediately break out of the interpreter. Execution could be
resumed at any point in time.(Suggested by Maarten Keijzer.)

Local arguments and binding spaces, possibly implemented by treating environments as first class
objects (with a stack, etc.) (Suggested by Maarten Keijzer.)
Exceptions as first class entities (with their own stack, etc.), allowing for the explicit handling of stack
underflows, divisions by zero, etc. (Suggested by Maarten Keijzer.)
Environments (containing stack states, variable binding states, perhaps more) as first class entities,
along with associated instructions that allow for the execution of code within specified environments.
This might allow for the "safe" execution of arbitrary code fragments (which would be executed in a
fresh environment and would not be able to affect the environment of the remainder of the code).
Ideas for this range from minimal extensions (e.g. "DO&" which executes in a fresh environment,
plus a mechanism to get the results back to the calling environment) to a full-fledged
ENVIRONMENT type with a stack, etc. (Suggested by Maarten Keijzer.)
Perhaps reintroduce the generic REP for all types, which was REPlace second by first -- i.e. delete
second. Then EXEC.K is just EXEC.REP. In FORTH this is called NIP. Another name might be
SUBPOP. Other standard FORTH instructions should also be considered (e.g. OVER).

Rejected alternative names for recent versions of Push:

push-- ("push minus minus", on account of the removal of OOP-like features)
p (streamlined push... "programming with p" sounds pretty funny!)
shove (push with more oomph)
TAP (Type Ascribed Push, "what's on tap?")
Qush (incrementing the first letter)
plush
pints (Push, No Type Stack)
Push 2: With A Vengeance
Push II: The Empire Strikes Back
A few more from Maarten Keijzer:

Push.DUP (two pushes, does not necessarily mean an improvement)
Push.INC (not in the standard function set, and afaik push isn't incorporated)
Push.PUSH (maybe push needs to be pushed a bit more, but one can overdo it)

Pushkin: Push's next of kin (thanks to Christophe Mckeon)

Type/Instruction Catalog

The following are descriptions of "standard" types and instructions, in the sense that any Push3
implementation that provides these types/instructions should implement them in ways that conform to these
descriptions. However, some implementations may not implement all of these types or instructions, and
some implementations may implement more; use your implementation's configuration mechanism
(described briefly above) to configure your implementation appropriately.

Unless otherwise noted all instructions POP all arguments that they consult. For example, the description of
INTEGER.= states that it "Pushes TRUE onto the BOOLEAN stack if the top two INTEGERs are equal, or
FALSE otherwise." In this case two items (the two that are compared) are popped from the INTEGER stack
by the INTEGER.= instruction. In addition, unless otherwise noted all results are pushed after the arguments
are popped. So for example BOOLEAN.= pushes the result of the comparison onto the BOOLEAN stack
after popping the two values to be compared from the BOOLEAN stack. If any needed argument is not
available then the instruction acts as a NOOP; that is, it does nothing, and leaves all stacks in the states that
they were in prior to the call.

Indexing into stacks, e.g. for SHOVE, YANK, and YANKDUP instructions, is zero-based; that is, the top of

the stack has index 0. Negative indices into stacks are interpreted as 0 (the stack top), and indices that
exceed the stack depth are interpreted as the highest meaningful value (e.g. the stack bottom for YANK, or
one beyond the stack bottom for SHOVE).

Type BOOLEAN
Description For use in comparisons, logic, etc. Literals are TRUE and FALSE. Required for use of

various comparison operators (e.g. INTEGER.=) and CODE.IF.
Instructions BOOLEAN.=: Pushes TRUE if the top two BOOLEANs are equal, or FALSE

otherwise.
BOOLEAN.AND: Pushes the logical AND of the top two BOOLEANs.
BOOLEAN.DEFINE: Defines the name on top of the NAME stack as an instruction
that will push the top item of the BOOLEAN stack onto the EXEC stack.
BOOLEAN.DUP: Duplicates the top item on the BOOLEAN stack. Does not pop its
argument (which, if it did, would negate the effect of the duplication!).
BOOLEAN.FLUSH: Empties the BOOLEAN stack.
BOOLEAN.FROMFLOAT: Pushes FALSE if the top FLOAT is 0.0, or TRUE
otherwise.
BOOLEAN.FROMINTEGER: Pushes FALSE if the top INTEGER is 0, or TRUE
otherwise.
BOOLEAN.NOT: Pushes the logical NOT of the top BOOLEAN.
BOOLEAN.OR: Pushes the logical OR of the top two BOOLEANs.
BOOLEAN.POP: Pops the BOOLEAN stack.
BOOLEAN.RAND: Pushes a random BOOLEAN.
BOOLEAN.ROT: Rotates the top three items on the BOOLEAN stack, pulling the
third item out and pushing it on top. This is equivalent to "2 BOOLEAN.YANK".
BOOLEAN.SHOVE: Inserts the top BOOLEAN "deep" in the stack, at the position
indexed by the top INTEGER.
BOOLEAN.STACKDEPTH: Pushes the stack depth onto the INTEGER stack.
BOOLEAN.SWAP: Swaps the top two BOOLEANs.
BOOLEAN.YANK: Removes an indexed item from "deep" in the stack and pushes it
on top of the stack. The index is taken from the INTEGER stack.
BOOLEAN.YANKDUP: Pushes a copy of an indexed item "deep" in the stack onto
the top of the stack, without removing the deep item. The index is taken from the
INTEGER stack.

Type CODE
Description For explicit code manipulation and execution. May also be used as a general list data type.

This type must always be present, as the top level interpreter will push any code to be
executed on the CODE stack prior to execution. However, one may turn off all CODE
instructions if code manipulation is not needed.

Instructions CODE.=: Pushes TRUE if the top two pieces of CODE are equal, or FALSE
otherwise.
CODE.APPEND: Pushes the result of appending the top two pieces of code. If one of
the pieces of code is a single instruction or literal (that is, something not surrounded by
parentheses) then it is surrounded by parentheses first.
CODE.ATOM: Pushes TRUE onto the BOOLEAN stack if the top piece of code is a
single instruction or a literal, and FALSE otherwise (that is, if it is something

surrounded by parentheses).
CODE.CAR: Pushes the first item of the list on top of the CODE stack. For example,
if the top piece of code is "(A B)" then this pushes "A" (after popping the argument).
If the code on top of the stack is not a list then this has no effect. The name derives
from the similar Lisp function; a more generic name would be "FIRST".
CODE.CDR: Pushes a version of the list from the top of the CODE stack without its
first element. For example, if the top piece of code is "(A B)" then this pushes "(B)"
(after popping the argument). If the code on top of the stack is not a list then this
pushes the empty list ("()"). The name derives from the similar Lisp function; a more
generic name would be "REST".
CODE.CONS: Pushes the result of "consing" (in the Lisp sense) the second stack item
onto the first stack item (which is coerced to a list if necessary). For example, if the
top piece of code is "(A B)" and the second piece of code is "X" then this pushes "(
X A B)" (after popping the argument).
CODE.CONTAINER: Pushes the "container" of the second CODE stack item within
the first CODE stack item onto the CODE stack. If second item contains the first
anywhere (i.e. in any nested list) then the container is the smallest sub-list that
contains but is not equal to the first instance. For example, if the top piece of code is "(
B (C (A)) (D (A)))" and the second piece of code is "(A)" then this pushes (C
(A)). Pushes an empty list if there is no such container.
CODE.CONTAINS: Pushes TRUE on the BOOLEAN stack if the second CODE stack
item contains the first CODE stack item anywhere (e.g. in a sub-list).
CODE.DEFINE: Defines the name on top of the NAME stack as an instruction that
will push the top item of the CODE stack onto the EXEC stack.
CODE.DEFINITION: Pushes the definition associated with the top NAME on the
NAME stack (if any) onto the CODE stack. This extracts the definition for
inspection/manipulation, rather than for immediate execution (although it may then be
executed with a call to CODE.DO or a similar instruction).
CODE.DISCREPANCY: Pushes a measure of the discrepancy between the top two
CODE stack items onto the INTEGER stack. This will be zero if the top two items are
equivalent, and will be higher the 'more different' the items are from one another. The
calculation is as follows:
1. Construct a list of all of the unique items in both of the lists (where uniqueness is
determined by equalp). Sub-lists and atoms all count as items.
2. Initialize the result to zero.
3. For each unique item increment the result by the difference between the number of
occurrences of the item in the two pieces of code.
4. Push the result.
CODE.DO: Recursively invokes the interpreter on the program on top of the CODE
stack. After evaluation the CODE stack is popped; normally this pops the program that
was just executed, but if the expression itself manipulates the stack then this final pop
may end up popping something else.
CODE.DO*: Like CODE.DO but pops the stack before, rather than after, the recursive
execution.
CODE.DO*COUNT: An iteration instruction that performs a loop (the body of which
is taken from the CODE stack) the number of times indicated by the INTEGER
argument, pushing an index (which runs from zero to one less than the number of
iterations) onto the INTEGER stack prior to each execution of the loop body. This
should be implemented as a macro that expands into a call to CODE.DO*RANGE.
CODE.DO*COUNT takes a single INTEGER argument (the number of times that the
loop will be executed) and a single CODE argument (the body of the loop). If the

provided INTEGER argument is negative or zero then this becomes a NOOP.
Otherwise it expands into:

(0 <1 - IntegerArg> CODE.QUOTE <CodeArg> CODE.DO*RANGE)

CODE.DO*RANGE: An iteration instruction that executes the top item on the CODE
stack a number of times that depends on the top two integers, while also pushing the
loop counter onto the INTEGER stack for possible access during the execution of the
body of the loop. The top integer is the "destination index" and the second integer is
the "current index." First the code and the integer arguments are saved locally and
popped. Then the integers are compared. If the integers are equal then the current
index is pushed onto the INTEGER stack and the code (which is the "body" of the
loop) is pushed onto the EXEC stack for subsequent execution. If the integers are not
equal then the current index will still be pushed onto the INTEGER stack but two
items will be pushed onto the EXEC stack -- first a recursive call to
CODE.DO*RANGE (with the same code and destination index, but with a current
index that has been either incremented or decremented by 1 to be closer to the
destination index) and then the body code. Note that the range is inclusive of both
endpoints; a call with integer arguments 3 and 5 will cause its body to be executed 3
times, with the loop counter having the values 3, 4, and 5. Note also that one can
specify a loop that "counts down" by providing a destination index that is less than the
specified current index.
CODE.DO*TIMES: Like CODE.DO*COUNT but does not push the loop counter.
This should be implemented as a macro that expands into CODE.DO*RANGE,
similarly to the implementation of CODE.DO*COUNT, except that a call to
INTEGER.POP should be tacked on to the front of the loop body code in the call to
CODE.DO*RANGE. This call to INTEGER.POP will remove the loop counter, which
will have been pushed by CODE.DO*RANGE, prior to the execution of the loop
body.
CODE.DUP: Duplicates the top item on the CODE stack. Does not pop its argument
(which, if it did, would negate the effect of the duplication!).
CODE.EXTRACT: Pushes the sub-expression of the top item of the CODE stack that
is indexed by the top item of the INTEGER stack. The indexing here counts "points,"
where each parenthesized expression and each literal/instruction is considered a point,
and it proceeds in depth first order. The entire piece of code is at index 0; if it is a list
then the first item in the list is at index 1, etc. The integer used as the index is taken
modulo the number of points in the overall expression (and its absolute value is taken
in case it is negative) to ensure that it is within the meaningful range.
CODE.FLUSH: Empties the CODE stack.
CODE.FROMBOOLEAN: Pops the BOOLEAN stack and pushes the popped item
(TRUE or FALSE) onto the CODE stack.
CODE.FROMFLOAT: Pops the FLOAT stack and pushes the popped item onto the
CODE stack.
CODE.FROMINTEGER: Pops the INTEGER stack and pushes the popped integer
onto the CODE stack.
CODE.FROMNAME: Pops the NAME stack and pushes the popped item onto the
CODE stack.
CODE.IF: If the top item of the BOOLEAN stack is TRUE this recursively executes
the second item of the CODE stack; otherwise it recursively executes the first item of
the CODE stack. Either way both elements of the CODE stack (and the BOOLEAN
value upon which the decision was made) are popped.

CODE.INSERT: Pushes the result of inserting the second item of the CODE stack into
the first item, at the position indexed by the top item of the INTEGER stack (and
replacing whatever was there formerly). The indexing is computed as in
CODE.EXTRACT.
CODE.INSTRUCTIONS: Pushes a list of all active instructions in the interpreter's
current configuration.
CODE.LENGTH: Pushes the length of the top item on the CODE stack onto the
INTEGER stack. If the top item is not a list then this pushes a 1. If the top item is a
list then this pushes the number of items in the top level of the list; that is, nested lists
contribute only 1 to this count, no matter what they contain.
CODE.LIST: Pushes a list of the top two items of the CODE stack onto the CODE
stack.
CODE.MEMBER: Pushes TRUE onto the BOOLEAN stack if the second item of the
CODE stack is a member of the first item (which is coerced to a list if necessary).
Pushes FALSE onto the BOOLEAN stack otherwise.
CODE.NOOP: Does nothing.
CODE.NTH: Pushes the nth element of the expression on top of the CODE stack
(which is coerced to a list first if necessary). If the expression is an empty list then the
result is an empty list. N is taken from the INTEGER stack and is taken modulo the
length of the expression into which it is indexing.
CODE.NTHCDR: Pushes the nth "CDR" (in the Lisp sense) of the expression on top
of the CODE stack (which is coerced to a list first if necessary). If the expression is an
empty list then the result is an empty list. N is taken from the INTEGER stack and is
taken modulo the length of the expression into which it is indexing. A "CDR" of a list
is the list without its first element.
CODE.NULL: Pushes TRUE onto the BOOLEAN stack if the top item of the CODE
stack is an empty list, or FALSE otherwise.
CODE.POP: Pops the CODE stack.
CODE.POSITION: Pushes onto the INTEGER stack the position of the second item on
the CODE stack within the first item (which is coerced to a list if necessary). Pushes -1
if no
match is found.
CODE.QUOTE: Specifies that the next expression submitted for execution will instead
be pushed literally onto the CODE stack. This can be implemented by moving the top
item on the EXEC stack onto the CODE stack.
CODE.RAND: Pushes a newly-generated random program onto the CODE stack. The
limit for the size of the expression is taken from the INTEGER stack; to ensure that it
is in the appropriate range this is taken modulo the value of the MAX-POINTS-IN-
RANDOM-EXPRESSIONS parameter and the absolute value of the result is used.
CODE.ROT: Rotates the top three items on the CODE stack, pulling the third item out
and pushing it on top. This is equivalent to "2 CODE.YANK".
CODE.SHOVE: Inserts the top piece of CODE "deep" in the stack, at the position
indexed by the top INTEGER.
CODE.SIZE: Pushes the number of "points" in the top piece of CODE onto the
INTEGER stack. Each instruction, literal, and pair of parentheses counts as a point.
CODE.STACKDEPTH: Pushes the stack depth onto the INTEGER stack.
CODE.SUBST: Pushes the result of substituting the third item on the code stack for
the second item in the first item. As of this writing this is implemented only in the
Lisp implementation, within which it relies on the Lisp "subst" function. As such, there
are several problematic possibilities; for example "dotted-lists" can result in certain
cases with empty-list arguments. If any of these problematic possibilities occurs the

stack is left unchanged.
CODE.SWAP: Swaps the top two pieces of CODE.
CODE.YANK: Removes an indexed item from "deep" in the stack and pushes it on
top of the stack. The index is taken from the INTEGER stack.
CODE.YANKDUP: Pushes a copy of an indexed item "deep" in the stack onto the top
of the stack, without removing the deep item. The index is taken from the INTEGER
stack.

Type EXEC
Description Code queued for execution. The EXEC stack maintains the execution state of the Push

interpreter. Instructions that specifically manipulate the EXEC stack can be used to
implement various kinds of control structures. The CODE stack can also be used in this way,
but manipulations to the EXEC stack are "live" in the sense that they are manipulating the
actual execution state of the interpreter, not just code that might later be executed.

Instructions EXEC.=: Pushes TRUE if the top two items on the EXEC stack are equal, or FALSE
otherwise.
EXEC.DEFINE: Defines the name on top of the NAME stack as an instruction that
will push the top item of the EXEC stack back onto the EXEC stack.
EXEC.DO*COUNT: An iteration instruction that performs a loop (the body of which
is taken from the EXEC stack) the number of times indicated by the INTEGER
argument, pushing an index (which runs from zero to one less than the number of
iterations) onto the INTEGER stack prior to each execution of the loop body. This is
similar to CODE.DO*COUNT except that it takes its code argument from the EXEC
stack. This should be implemented as a macro that expands into a call to
EXEC.DO*RANGE. EXEC.DO*COUNT takes a single INTEGER argument (the
number of times that the loop will be executed) and a single EXEC argument (the
body of the loop). If the provided INTEGER argument is negative or zero then this
becomes a NOOP. Otherwise it expands into:

(0 <1 - IntegerArg> EXEC.DO*RANGE <ExecArg>)

EXEC.DO*RANGE: An iteration instruction that executes the top item on the EXEC
stack a number of times that depends on the top two integers, while also pushing the
loop counter onto the INTEGER stack for possible access during the execution of the
body of the loop. This is similar to CODE.DO*COUNT except that it takes its code
argument from the EXEC stack. The top integer is the "destination index" and the
second integer is the "current index." First the code and the integer arguments are
saved locally and popped. Then the integers are compared. If the integers are equal
then the current index is pushed onto the INTEGER stack and the code (which is the
"body" of the loop) is pushed onto the EXEC stack for subsequent execution. If the
integers are not equal then the current index will still be pushed onto the INTEGER
stack but two items will be pushed onto the EXEC stack -- first a recursive call to
EXEC.DO*RANGE (with the same code and destination index, but with a current
index that has been either incremented or decremented by 1 to be closer to the
destination index) and then the body code. Note that the range is inclusive of both
endpoints; a call with integer arguments 3 and 5 will cause its body to be executed 3
times, with the loop counter having the values 3, 4, and 5. Note also that one can
specify a loop that "counts down" by providing a destination index that is less than the
specified current index.

EXEC.DO*TIMES: Like EXEC.DO*COUNT but does not push the loop counter. This
should be implemented as a macro that expands into EXEC.DO*RANGE, similarly to
the implementation of EXEC.DO*COUNT, except that a call to INTEGER.POP
should be tacked on to the front of the loop body code in the call to
EXEC.DO*RANGE. This call to INTEGER.POP will remove the loop counter, which
will have been pushed by EXEC.DO*RANGE, prior to the execution of the loop body.
EXEC.DUP: Duplicates the top item on the EXEC stack. Does not pop its argument
(which, if it did, would negate the effect of the duplication!). This may be thought of
as a "DO TWICE" instruction.
EXEC.FLUSH: Empties the EXEC stack. This may be thought of as a "HALT"
instruction.
EXEC.IF: If the top item of the BOOLEAN stack is TRUE then this removes the
second item on the EXEC stack, leaving the first item to be executed. If it is false then
it removes the first item, leaving the second to be executed. This is similar to
CODE.IF except that it operates on the EXEC stack. This acts as a NOOP unless there
are at least two items on the EXEC stack and one item on the BOOLEAN stack.
EXEC.K: The Push implementation of the "K combinator". Removes the second item
on the EXEC stack.
EXEC.POP: Pops the EXEC stack. This may be thought of as a "DONT" instruction.
EXEC.ROT: Rotates the top three items on the EXEC stack, pulling the third item out
and pushing it on top. This is equivalent to "2 EXEC.YANK".
EXEC.S: The Push implementation of the "S combinator". Pops 3 items from the
EXEC stack, which we will call A, B, and C (with A being the first one popped). Then
pushes a list containing B and C back onto the EXEC stack, followed by another
instance of C, followed by another instance of A.
EXEC.SHOVE: Inserts the top EXEC item "deep" in the stack, at the position indexed
by the top INTEGER. This may be thought of as a "DO LATER" instruction.
EXEC.STACKDEPTH: Pushes the stack depth onto the INTEGER stack.
EXEC.SWAP: Swaps the top two items on the EXEC stack.
EXEC.Y: The Push implementation of the "Y combinator". Inserts beneath the top
item of the EXEC stack a new item of the form "(EXEC.Y <TopItem>)".
EXEC.YANK: Removes an indexed item from "deep" in the stack and pushes it on top
of the stack. The index is taken from the INTEGER stack. This may be thought of as a
"DO SOONER" instruction.
EXEC.YANKDUP: Pushes a copy of an indexed item "deep" in the stack onto the top
of the stack, without removing the deep item. The index is taken from the INTEGER
stack.

Type FLOAT
Description Floating-point numbers (that is, numbers with decimal points).
Instructions FLOAT.%: Pushes the second stack item modulo the top stack item. If the top item is

zero this acts as a NOOP. The modulus is computed as the remainder of the quotient,
where the quotient has first been truncated toward negative infinity. (This is taken
from the definition for the generic MOD function in Common Lisp, which is described
for example at http://www.lispworks.com/reference/HyperSpec/Body/f_mod_r.htm.)
FLOAT.*: Pushes the product of the top two items.
FLOAT.+: Pushes the sum of the top two items.
FLOAT.-: Pushes the difference of the top two items; that is, the second item minus
the top item.

FLOAT./: Pushes the quotient of the top two items; that is, the second item divided by
the top item. If the top item is zero this acts as a NOOP.
FLOAT.<: Pushes TRUE onto the BOOLEAN stack if the second item is less than the
top item, or FALSE otherwise.
FLOAT.=: Pushes TRUE onto the BOOLEAN stack if the top two items are equal, or
FALSE otherwise.
FLOAT.>: Pushes TRUE onto the BOOLEAN stack if the second item is greater than
the top item, or FALSE otherwise.
FLOAT.COS: Pushes the cosine of the top item.
FLOAT.DEFINE: Defines the name on top of the NAME stack as an instruction that
will push the top item of the FLOAT stack onto the EXEC stack.
FLOAT.DUP: Duplicates the top item on the FLOAT stack. Does not pop its argument
(which, if it did, would negate the effect of the duplication!).
FLOAT.FLUSH: Empties the FLOAT stack.
FLOAT.FROMBOOLEAN: Pushes 1.0 if the top BOOLEAN is TRUE, or 0.0 if the
top BOOLEAN is FALSE.
FLOAT.FROMINTEGER: Pushes a floating point version of the top INTEGER.
FLOAT.MAX: Pushes the maximum of the top two items.
FLOAT.MIN: Pushes the minimum of the top two items.
FLOAT.POP: Pops the FLOAT stack.
FLOAT.RAND: Pushes a newly generated random FLOAT that is greater than or
equal to MIN-RANDOM-FLOAT and less than or equal to MAX-RANDOM-
FLOAT.
FLOAT.ROT: Rotates the top three items on the FLOAT stack, pulling the third item
out and pushing it on top. This is equivalent to "2 FLOAT.YANK".
FLOAT.SHOVE: Inserts the top FLOAT "deep" in the stack, at the position indexed
by the top INTEGER.
FLOAT.SIN: Pushes the sine of the top item.
FLOAT.STACKDEPTH: Pushes the stack depth onto the INTEGER stack.
FLOAT.SWAP: Swaps the top two BOOLEANs.
FLOAT.TAN: Pushes the tangent of the top item.
FLOAT.YANK: Removes an indexed item from "deep" in the stack and pushes it on
top of the stack. The index is taken from the INTEGER stack.
FLOAT.YANKDUP: Pushes a copy of an indexed item "deep" in the stack onto the
top of the stack, without removing the deep item. The index is taken from the
INTEGER stack.

Type INTEGER
Description Integer numbers (that is, numbers without decimal points).
Instructions INTEGER.%: Pushes the second stack item modulo the top stack item. If the top item

is zero this acts as a NOOP. The modulus is computed as the remainder of the
quotient, where the quotient has first been truncated toward negative infinity. (This is
taken from the definition for the generic MOD function in Common Lisp, which is
described for example at
http://www.lispworks.com/reference/HyperSpec/Body/f_mod_r.htm.)
INTEGER.*: Pushes the product of the top two items.
INTEGER.+: Pushes the sum of the top two items.
INTEGER.-: Pushes the difference of the top two items; that is, the second item minus

the top item.
INTEGER./: Pushes the quotient of the top two items; that is, the second item divided
by the top item. If the top item is zero this acts as a NOOP.
INTEGER.<: Pushes TRUE onto the BOOLEAN stack if the second item is less than
the top item, or FALSE otherwise.
INTEGER.=: Pushes TRUE onto the BOOLEAN stack if the top two items are equal,
or FALSE otherwise.
INTEGER.>: Pushes TRUE onto the BOOLEAN stack if the second item is greater
than the top item, or FALSE otherwise.
INTEGER.DEFINE: Defines the name on top of the NAME stack as an instruction
that will push the top item of the INTEGER stack onto the EXEC stack.
INTEGER.DUP: Duplicates the top item on the INTEGER stack. Does not pop its
argument (which, if it did, would negate the effect of the duplication!).
INTEGER.FLUSH: Empties the INTEGER stack.
INTEGER.FROMBOOLEAN: Pushes 1 if the top BOOLEAN is TRUE, or 0 if the top
BOOLEAN is FALSE.
INTEGER.FROMFLOAT: Pushes the result of truncating the top FLOAT.
INTEGER.MAX: Pushes the maximum of the top two items.
INTEGER.MIN: Pushes the minimum of the top two items.
INTEGER.POP: Pops the INTEGER stack.
INTEGER.RAND: Pushes a newly generated random INTEGER that is greater than or
equal to MIN-RANDOM-INTEGER and less than or equal to MAX-RANDOM-
INTEGER.
INTEGER.ROT: Rotates the top three items on the INTEGER stack, pulling the third
item out and pushing it on top. This is equivalent to "2 INTEGER.YANK".
INTEGER.SHOVE: Inserts the second INTEGER "deep" in the stack, at the position
indexed by the top INTEGER. The index position is calculated after the index is
removed.
INTEGER.STACKDEPTH: Pushes the stack depth onto the INTEGER stack (thereby
increasing it!).
INTEGER.SWAP: Swaps the top two INTEGERs.
INTEGER.YANK: Removes an indexed item from "deep" in the stack and pushes it
on top of the stack. The index is taken from the INTEGER stack, and the indexing is
done after the index is removed.
INTEGER.YANKDUP: Pushes a copy of an indexed item "deep" in the stack onto the
top of the stack, without removing the deep item. The index is taken from the
INTEGER stack, and the indexing is done after the index is removed.

Type NAME
Description For creating bindings between symbolic identifiers and values of various types; that is, for

implementing (global) variables and defined instructions. Bindings are created with DEFINE
instructions. Any identifier that is not a known Push instruction or a known literal of any
other type is considered a NAME and will be pushed onto the NAME stack when
encountered, unless it has a definition (in which case its associated value will be pushed on
the EXEC stack when it is encountered. The NAME.QUOTE instruction can be used to get a
name that already has a definition onto the NAME stack.

Instructions NAME.=: Pushes TRUE if the top two NAMEs are equal, or FALSE otherwise.
NAME.DUP: Duplicates the top item on the NAME stack. Does not pop its argument
(which, if it did, would negate the effect of the duplication!).

NAME.FLUSH: Empties the NAME stack.
NAME.POP: Pops the NAME stack.
NAME.QUOTE: Sets a flag indicating that the next name encountered will be pushed
onto the NAME stack (and not have its associated value pushed onto the EXEC stack),
regardless of whether or not it has a definition. Upon encountering such a name and
pushing it onto the NAME stack the flag will be cleared (whether or not the pushed
name had a definition).
NAME.RAND: Pushes a newly generated random NAME.
NAME.RANDBOUNDNAME: Pushes a randomly selected NAME that already has a
definition.
NAME.ROT: Rotates the top three items on the NAME stack, pulling the third item
out and pushing it on top. This is equivalent to "2 NAME.YANK".
NAME.SHOVE: Inserts the top NAME "deep" in the stack, at the position indexed by
the top INTEGER.
NAME.STACKDEPTH: Pushes the stack depth onto the INTEGER stack.
NAME.SWAP: Swaps the top two NAMEs.
NAME.YANK: Removes an indexed item from "deep" in the stack and pushes it on
top of the stack. The index is taken from the INTEGER stack.
NAME.YANKDUP: Pushes a copy of an indexed item "deep" in the stack onto the top
of the stack, without removing the deep item. The index is taken from the INTEGER
stack.

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. 0308540
and Grant No. 0216344, and by the Defense Advanced Research Projects Agency (DARPA) and Air Force
Research Laboratory, Air Force Materiel Command, USAF, under agreement number F30502-00-2-0611.

Document Version History

The first version of this document was created in November, 2003.

YYYYMMDD
20031229: - Created this version history.
 - Addition re: use of names for code variables.
 - Additions related to instruction constants.
 - Addition of RANDOM-SEED parameter.
20040109: - Tweaked descriptions of *.GET instructions (thanks Maarten Keijzer)
20040112: - Added Random Code Generation section.
 - Changed specified behavior of division/modulus by zero to
 be NOOP rather than pushing zero. (& related text changes).
 - Change specified behavior of *.GET with unbound NAME to be NOOP.
 - Added "Under Discussion" section.
20040113: - More rejected names for Push2.
20040412: - Added CODE.FROMBOOLEAN, CODE.FROMINTEGER, CODE.FROMFLOAT
 CODE.FROMNAME, CODE.DO*COUNT, CODE.DO*TIMES.
20040730: - Major revisions for Push2->Push3 transition.
 - Maarten Keijzer added as co-author.
20040731: - Fixed typos, added "Pushkin," other minor fixes.
 - Fixed factorial examples for input of zero.

20040802: - Added correct attribution to Christophe Mckeon.
20040829: - Fixed bug in EXEC.IF example, thanks to Christophe Mckeon.
20040901: - Removed duplicate entry for BOOLEAN.POP, thanks to Christophe Mckeon.
20040910: - Cosmetic changes for publication as a Hampshire College Cognitive
 Science Technical Report.

[end]

