
The Future of  
Genetic Programming

Lee Spector
Cognitive Science, Hampshire College
Computer Science, UMass Amherst

http://hampshire.edu/lspector

http://hampshire.edu/lspector


Outline

• Genetic programming

• Past and present 

• Future

• for solving problems 

• for advancing science and technology

• for understanding life

• Risks



Background
• B.A., Oberlin College: Philosophy, Music/Art Technology

• Ph.D., U. Maryland, College Park: Computer Science (AI)

• Professor of Computer Science and Director, Institute for Computational 
Intelligence, Hampshire College.  
Past: Dean, Cognitive Science; MacArthur Chair; Co-chair, Re-visioning Committee; 
Faculty Trustee; Co-director of the Design, Art and Technology program; Member, 
Governance Task Force, Educational Policy Committee, etc.

• Adjunct Professor of Computer Science, U. Massachusetts, Amherst

• Editor-in-Chief, Genetic Programming and Evolvable Machines (Springer)

• Executive Committee, ACM-SIGEVO





Grants
• Google: CS Engagement Award, Programming for Science
• NSF: Human-Competitive Evolutionary Computation 
• NSF: Four College Biomath Consortium 
• NSF: Evolution of Robustly Intelligent Computational Systems 
• Sherman Fairchild Foundation: Design, Art, and Technology
• NSF CreativeIT: The Computational Creativity Curriculum
• NSF Director’s Award for Distinguished Teaching Scholars: Open-Ended 

Evolution in Visually Rich Virtual Worlds
• NSF, MRI/RUI: Acquisition of Instrumentation for Research in Genetic 

Programming, Quantum Computation, and Distributed Systems
• DARPA Agent Based Computing: Multi-type, Self-adaptive Genetic 

Programming for Complex Applications
• NSF Learning and Intelligent Systems: Inquiry-Based Science Education: 

Cognitive Measures and Systems Support



Not GP
• What, if anything, is a Wolf?

• Planning, Neuropsychology, and Artificial Intelligence: Cross-Fertilization

• Group size, individual role differentiation and effectiveness of cooperation 
in a homogeneous group of hunters

• Behind every innovative solution lies an obscure feature

• Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in 
computational simulations

• Genetic Stability and Territorial Structure Facilitate the Evolution of Tag-
mediated Altruism

• Hierarchy Helps it Work That Way

• Partial and total-order planning: evidence from normal and prefrontally 
damaged populations



Genetic Programming

• Evolution of computer programs

• for solving problems 

• for advancing science and technology

• for understanding life



Genetic Programming

• Active evolution of computer programs

• for solving problems 

• for advancing science and technology

• for understanding life



Genetic Programming

• Active evolution of computer programs

• for solving problems 

• for advancing science and technology

• for understanding life



Genetic Programming

• Active evolution of computer programs

• for solving problems 

• for advancing science and technology

• for understanding life



Genetic Algorithms



Genetic Programming

• Genetic algorithms that produce executable 
computer programs

• Programs are assessed by executing them

• Automatic programming by evolution



GPTP 2014



Humies Criteria
• The result was patented as an invention in the past is an improvement over a patented invention or would 

qualify today as a patentable new invention.

• The result is equal to or better than a result that was accepted as a new scientific result at the time when it 
was published in a peer-reviewed scientific journal.

• The result is equal to or better than a result that was placed into a database or archive of results maintained by an 

internationally recognized panel of scientific experts.

• The result is publishable in its own right as a new scientific result independent of the fact that the result 
was mechanically created.

• The result is equal to or better than the most recent human-created solution to a long-standing 
problem for which there has been a succession of increasingly better human-created solutions.

• The result is equal to or better than a result that was considered an achievement in its field at the time it 
was first discovered.

• The result solves a problem of indisputable difficulty in its field.

• The result holds its own or wins a regulated competition involving human contestants (in the 
form of either live human players or human-written computer programs).



Humies Algorithms



Humies Applications



Humies Problem Types



Evolution, the Designer

“Darwinian evolution is itself a designer worthy 
of significant respect, if not religious devotion.” 



Humies 2004
GOLD MEDAL



Genetic Programming for Finite Algebras

Lee Spector
Cognitive Science
Hampshire College
Amherst, MA 01002

lspector@hampshire.edu

David M. Clark
Mathematics

SUNY New Paltz
New Paltz, NY 12561

clarkd@newpaltz.edu

Ian Lindsay
Hampshire College
Amherst, MA 01002

iml04@hampshire.edu

Bradford Barr
Hampshire College
Amherst, MA 01002

bradford.barr@gmail.com

Jon Klein
Hampshire College
Amherst, MA 01002
jk@artificial.com

ABSTRACT
We describe the application of genetic programming (GP)
to a problem in pure mathematics, in the study of finite al-
gebras. We document the production of human-competitive
results in the discovery of particular algebraic terms, namely
discriminator, Pixley, majority and Mal’cev terms, showing
that GP can exceed the performance of every prior method
of finding these terms in either time or size by several or-
ders of magnitude. Our terms were produced using the ECJ
and PushGP genetic programming systems in configurations
that included alternative code generators, asynchronous is-
lands, trivial geography, parsimony-based selection, alpha-
inverted selection pressure, and fitness case challenges. We
conclude with a discussion of the prospects for further ap-
plications of the presented methods.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis; I.1.2 [Symbolic and Algebraic Ma-
nipulation]: Algorithms—algebraic algorithms

General Terms
Algorithms, Experimentation, Performance

Keywords
ECJ, genetic programming, finite algebras, PushGP

1. INTRODUCTION
Genetic programming (GP) has the potential for applica-

tion to many areas of mathematics. In particular, any area
in which open questions can be resolved by discovering rela-
tively small equations, terms, or finite structures is a promis-
ing area for the application of GP. For some such questions
the very existence of a constraint-satisfying equation, term

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO 2008 Atlanta, Georgia USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

or structure may settle the issue under study, while for oth-
ers the specific properties of discovered solutions may have
additional implications or provide additional insights.

In this paper we present initial but promising results from
the application of GP to an area of pure mathematics, the
study of finite algebras. While the idea for application in
this general area has been raised in the literature [?], we are
not aware of significant prior results. We document here the
discovery of particular algebraic terms that have both theo-
retical significance and quantifiable di⇤culty, and we argue
that the results we have achieved are human-competitive
according to widely promulgated criteria.

In the following section we briefly describe the relevant
mathematical context and the specific problems solved. In
Section ?? we describe the GP techniques that we used to
produce our results, which are themselves presented in Sec-
tion ??. In Section ?? we discuss the significance of these
results, including our claims of human-competitive perfor-
mance, and in Section ?? we summarize our findings and
discuss prospects for further applications of the presented
methods.

2. FINITE ALGEBRAS
For the sake of this paper, and within the over-arching

area of mathematics known as universal algebra, an algebra
A := ⌥A, F � consists of an underlying set A and an asso-
ciated collection F of operations f : Ar � A on A. The
natural number r is called the arity of the operation f . Uni-
versal algebra is a significant branch of mathematics with a
long history (for example see [?], [?], [?]), important sub-
disciplines such as group theory [?], and applications to sev-
eral areas of science and engineering.

We use the term finite algebra to refer to an algebra in
which the underlying set is finite. The finite algebra most
familiar to most computer scientists is the ordinary two-
element Boolean algebra, B := ⌥{0, 1},⇤,⌅,¬�, in which
the underlying set is {0, 1} and the associated operations
are the Boolean operators AND (⇤), OR (⌅) and NOT (¬).
These operations can be defined by tables:

⇥ 0 1
0 0 0
1 0 1

⇤ 0 1
0 0 1
1 1 1

¬
0 1
1 0

A well-known and convenient feature of Boolean alge-
bra is the fact that this small set of operations is su⇤cient

Humies 2008
GOLD MEDAL



Goal

• Find finite algebra terms that have certain special 
properties

• For decades there was no way to produce these terms 
in general, short of exhaustive search

• Previous best methods are exponentially slow or 
produce enormous terms

• Want to be able to find small terms quickly



Significance, Time



Significance, Time



Significance, Size

(for A1)



Significance, Size

(for A1)





To the Future

• Expressive program representations (Push)

• Flexible genetic/epigenetic variation (Plush)

• Well-informed selection (Lexicase)

⇒ Automation of human programming



Program Representations

• Should facilitate the expression of programs that use:

• Arbitrary data structures

• Arbitrary control structures

• Modularity

• Should facilitate the development of effective (and ideally 
evolvable) genetic/epigenetic variation operators



Push
• Designed for program evolution

• Data flows via stacks, not syntax

• One stack per type:  
integer, float, boolean, string, code, exec, vector, ...

• Rich data and control structures

• Minimal syntax:  
program → instruction | literal | ( program* )

• Uniform variation, meta-evolution



Plush

integer_eq exec_dup char_swap integer_add exec_if

2 0 0 0 1

1 0 0 1 0

Instruction
Close?

Silence?



Selection

• In genetic programming, selection is typically based on 
average performance across all test cases (sometimes 
weighted, e.g. with "implicit fitness sharing")

• In nature, selection is typically based on sequences of 
interactions with the environment



Lexicase Selection

• Emphasizes individual test cases and combinations of 
test cases; not aggregated fitness across test cases

• Random ordering of test cases for each selection event 



Lexicase Selection
To select single parent:

1. Shuffle test cases 

2. First test case – keep best individuals 

3. Repeat with next test case, etc. 

Until one individual remains

The selected parent may be a specialist in the tests that 
happen to have come first, and may or may not be 
particularly good on average



wc



wc Test Cases

• 0 to 100 character files

• Random string (200 training, 500 test)

• Random string ending in newline (20 training, 50 test)

• Edge cases (22; empty string, multiple newlines, etc.)



Instructions

• General purpose

• I/O 

• Control flow 

• Tags for modularity 

• String, integer, and boolean 

• Random constants



wc Results





29 Synthesis Benchmarks
• From iJava: Number IO, Small or Large, For Loop Index, 

Compare String Lengths, Double Letters, Collatz Numbers, 
Replace Space with Newline, String Differences, Even 
Squares, Wallis Pi, String Lengths Backwards, Last Index of 
Zero, Vector Average, Count Odds, Mirror Image, Super 
Anagrams, Sum of Squares, Vectors Summed, X-Word Lines, 
Pig Latin, Negative to Zero, Scrabble Score, Word Stats

• From IntroClass: Checksum, Digits, Grade, Median, Smallest, 
Syllables

• PushGP has solved all of these except for the ones in blue





(Replace Space with Newline)



Life involves the
evolution of programs



Life involves the
evolution of programs



Life is the
evolution of programs



Digital Organisms

• For the study of general principles of living systems

• Populations of individuals that act locally in environments

• Explore, in silico, key aspects of evolutionary processes

• Core War, Tierra, Avida, Echo, Polyworld, Framsticks, ...



To the Future

• Expressive program representations (Push)

• Interactions among development, form, physics, behavior, 
and ecology (in virtual worlds)

• Evolution of reproduction and variation 
(autoconstructive evolution)

⇒ Evolution of adaptive complexity



Autoconstructive Evolution

• Individual programs make their own children, with 
endogenous variation

• Hence they control their own mutation rates and 
methods, sexuality, reproductive timing, etc.

• The machinery of reproduction and diversification (i.e., 
the machinery of evolution) evolves

• Requires expressive program representations (like Push)



SwarmEvolve 2

• A "swarm-like" agent environment with energy dynamics 
and conservation

• Behavior (including action, communication, energy 
sharing, and reproduction) controlled by evolved Push 
programs

• Supports exploration of relations between adaptation 
and various kinds of resource sharing, under a range of 
environmental settings





Division Blocks





core
eye

sensor range

Pucks

membrane

energy

inventory

information





Action

• Pucks act by making proposals to the universe

• The universe accepts proposals permitted by physics and 
compatible with the proposals of other pucks

• When conflicts arise the universe arbitrates



Proposals
• Accelerate
• Rotate
• Remember 
• Transact (via bid/ask):

• Energy
• Information
• Inventory items 
• Binding

• Spawn new pucks







Genetic Programming

• Active evolution of computer programs

• for solving problems 

• for advancing science and technology

• for understanding life



Prospects

• Automatic programming of large-scale software systems

• Significant discoveries, produced by evolutionary 
processes, in many areas of science and engineering 

• Computational life forms demonstrating open-ended 
evolution and emergent evolutionary transitions



Risks

• Technology that we don't understand

• Human competitive technology



Thanks

• David Clark, Moshe Sipper, and members of the Hampshire 
College Computational Intelligence Lab including Tom 
Helmuth, Bill La Cava, Jon Klein, and Karthik Kannappan for 
specific contributions to these slides.

• This material is based upon work supported by the 
National Science Foundation under Grants No. 1017817, 
1129139, and 1331283. Any opinions, findings, and 
conclusions or recommendations expressed in this 
publication are those of the authors and do not necessarily 
reflect the views of the National Science Foundation.



The Future of  
Genetic Programming

Lee Spector
Cognitive Science, Hampshire College
Computer Science, UMass Amherst

http://hampshire.edu/lspector

http://hampshire.edu/lspector

