The Future of
Genetic Programming

Lee Spector
Cognitive Science, Hampshire College
Computer Science, UMass Amherst
http://hampshire.edu/lspector

http://hampshire.edu/lspector

Qutline

 Genetic programming

» Past and present

* Future

- for solving problems
- for advancing science and technology

» for understanding life

« Risks

Background

B.A., Oberlin College: Philosophy, Music/Art Technology
Ph.D., U. Maryland, College Park: Computer Science (Al)

Professor of Computer Science and Director, Institute for Computational

Intelligence, Hampshire College.
Past: Dean, Cognitive Science; MacArthur Chair; Co-chair, Re-visioning Committee;

Faculty Trustee; Co-director of the Design, Art and Technology program; Member,
Governance Task Force, Educational Policy Committee, etc.

Adjunct Professor of Computer Science, U. Massachusetts, Amherst
Editor-in-Chief, Genetic Programming and Evolvable Machines (Springer)

Executive Committee, ACM-SIGEVO

NS SS

CS

Language

Phonplogy Syntax
Semantics

Sociolinguistics
Animal Behavior
Cognitive Psychology

Bioacoustics

Philosophy, of Language Developmental Psychology

Evolutionary Theory
Cognition ¢f Sound

Computer Modelling

Artificial Life

Internet

Children & TV
Dlgital Media
Creativity

Computer Graphics

Arts Technologies

CS Connections Sketch, January 27,2004

Grants

Google: CS Engagement Award, Programming for Science
NSF: Human-Competitive Evolutionary Computation

NSF: Four College Biomath Consortium

NSF: Evolution of Robustly Intelligent Computational Systems
Sherman Fairchild Foundation: Design, Art, and Technology
NSF CreativelT: The Computational Creativity Curriculum

NSF Director’s Award for Distinguished Teaching Scholars: Open-Ended
Evolution in Visually Rich Virtual Worlds

NSF, MRI/RUI: Acquisition of Instrumentation for Research in Genetic
Programming, Quantum Computation, and Distributed Systems

DARPA Agent Based Computing: Multi-type, Self-adaptive Genetic
Programming for Complex Applications

NSF Learning and Intelligent Systems: Inquiry-Based Science Education:
Cognitive Measures and Systems Support

Not GP

What, if anything, is a VWolf?
Planning, Neuropsychology, and Artificial Intelligence: Cross-Fertilization

Group size, individual role differentiation and effectiveness of cooperation
in a homogeneous group of hunters

Behind every innovative solution lies an obscure feature

Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in
computational simulations

Genetic Stability and Territorial Structure Facilitate the Evolution of Tag-
mediated Altruism

Hierarchy Helps it WWork That Way

Partial and total-order planning: evidence from normal and prefrontally
damaged populations

Genetic Programming

* Evolution of computer programs

Genetic Programming

- Active evolution of computer programs

Genetic Programming

- Active evolution of computer programs
» for solving problems
- for advancing science and technology

» for understanding life

Genetic Programming

- Active evolution of computer programs
- for solving problems
- for advancing science and technology

» for understanding life

Genetic Algorithms

Random Generation

Assessment > Solution

/N

Selection ~ Variation

Genetic Programming

* Genetic algorithms that produce executable
computer programs

* Programs are assessed by executing them

» Automatic programming by evolution

GPTP 2014

Analyzing a Decade of Human-Competitive
(“HUMIE”) Winners: What Can We Learn?

Karthik Kannappan, Lee Spector, Moshe Sipper, Thomas Helmuth, William
Lacava, Jake Wisdom, Omri Bernstein

7“@

Humies Criteria

The result was Patented as an invention in the past is an improvement over a patented invention or would

qualify today as a patentable new invention.

The result is equal to or better than a result that was accepted as a IEW SCientiﬁC result ac the time when it
was published in a peer-reviewed scientific journal.

The result is equal to or better than a result that was placed into a database or archive of results maintained by an

internationally recognized panel of scientific experts.

The result is PUinShabIe in its own ”ght as a new scientific result independent of the fact that the result

was mechanically created.

The result is equal to or better than the M OST recent human-created solution to a long-standing

problem for which there has been a succession of increasingly better human-created solutions.

The result is equal to or better than a result that was considered an achievement in its ﬁ@ld at the time it

was first discovered.

The result solves a problem of indiSPUtabIe d’fﬁCUIty in its field.

The result holds its own or wins a regulated ComPEtition inVOIVing human contestants (in the

form of either live human players or human-written computer programs).

Humies Algorithms

Algorithm Count
Genetic Programming (GP) 22
Genetic Algorithms (GA) 15
Evolutionary Strategies (ES) 2
Differential Evolution (DE) 1

Genetics Based Machine Learning (GBML) 1
Metaheuristic 1

Humies Applications

Application Count Application Category
Antennas 1 Engineering (19)
Biology 2 Science (7)
Chemistry 1 Science (7)
Computer vision 2 Computer science (7)
Electrical engineering 1 Engineering (19)
Electronics 5 Engineering (19)
Games 6 Games (6)

Image processing 3 Computer science (7)
Mathematics 2 Mathematics (3)
Mechanical engineering 4 Engineering (19)
Medicine 2 Medicine (2)
Operations research 1 Engineering (19)
Optics 2 Engineering (19)
Optimization 1 Mathematics (3)
Photonics 1 Engineering (19)
Physics 1 Science (7)

Planning 1 Computer science (7)
Polymers 1 Engineering (19)
Quantum 3 Science (7)

Security 1 Computer science (7)
Software engineering 3 Engineering (19)

Humies Problem Types

Problem Type Count

Classification 5
Clustering 1

Design 20
Optimization &
Planning 1

Programming 4
Regression 3

Evolution, the Designer

WHAT WOULD DARWIN SAY? | LEE SPECTCR

. . . The Boston Globe
And now, digital evolution

By Lee Spector | August 29, 2005

RECENT developments in computer science provide new perspective on
“intelligent design," the view that life's complexity could only have arisen
through the hand of an intelligent designer. These developments show that
complex and useful designs can indeed emerge from random Darwinian
processes.

“Darwinian evolution is itself a designer worthy
of significant respect, if not religious devotion.”

IIIIIIIIIIIIIIII1

M

2 N :

1{ue ¢ TH] AN U(5.4205)) N
2 0.17y(0.07291)

°9H

ARRRRNERERNNRNNNE

pnnfnnnnnnnnf

IIIIIIIIIIIIIIII‘

>

° A

Figure 8.11. A gate array diagram for an evolved solution to the AND/OR oracle
problem. The gate marked “f” is the oracle. The sub-diagrams on the right represent
the possible execution paths following the intermediate measurements.

Humies 2004
GOLD MEDAL

Genetic Programming for Finite Algebras

Lee Spector David M. Clark lan Lindsay
Cognitive Science Mathematics Hampshire College
Hampshire College SUNY New Paltz ~ Amherst, MA 01002

Amherst, MA 01002 New Paltz, NY 12561 iml04@hampshire.edu
Ispector@hampshire.edu clarkd@newpaltz.edu

Bradford Barr Jon Klein

Hampshire College Hampshire College
Amherst, MA 01002 Amherst, MA 01002
bradford.barr@gmail.com jk@artificial.com

Humies 2008
GOLD MEDAL

Goal

Find finite algebra terms that have certain special
properties

For decades there was no way to produce these terms
in general, short of exhaustive search

Previous best methods are exponentially slow or
produce enormous terms

Want to be able to find small terms quickly

Significance, Time

Uninformed Search
Expected Time (Trials)

3 element algebras

Mal’cev 5 seconds (3'° ~ 107)

Pixley/majority 1 hour (34! ~ 1019)

discriminator 1 month (327 ~ 1013)
4 element algebras

Mal’cev 10° years (42® ~ 1017)

Pixley/majority 1019 years (440 ~ 102%4)
discriminator 1024 years (464 o 1038)

Significance, Time

Uninformed Search GP
Expected Time (Trials) Time
3 element algebras
Mal’cev 5 seconds (3'° ~ 107) 1 minute
Pixley/majority 1 hour (34! ~ 1019) 3 minutes
discriminator 1 month (327 ~ 1013) 5 minutes
4 element algebras
Mal’cev 102 years (42® ~ 10'7) | 30 minutes
Pixley/majority 1019 years (440 ~ 102%4) 2 hours
discriminator 1024 years (4°% ~ 103%) 7

Significance, Size

Term Type Primality Theorem

Mal’cev 10, 060, 219
Majority 6,847,499
Pixley 1,257,556,499
Discriminator 12,575, 109

(fOI" AI)

Significance, Size

Term Type Primality Theorem

Mal’cev 10, 060, 219 | 12
Majority 0,847,499 | 49

Pixley 1,257,556,499 | 59
Discriminator 12,575,109 | 39

(fOI" AI)

World Scientific

Vol. 23, No. 5 (2013) 1175-1205 —
www.worldscientific.com

(© World Scientific Publishing Company
DOI: 10.1142/S0218196713500227

International Journal of Algebra and Computation \\pe
B

EVOLUTION OF ALGEBRAIC TERMS 1: TERM
TO TERM OPERATION CONTINUITY

DAVID M. CLARK

Mathematics Department
State University of New York at New Paltz

FOB E1, New Paltz, New York 12561, USA
clarkd@newpaltz. edu

Received 29 January 2012
Accepted 22 May 2013
Published 18 June 2013

Communicated by R. McKenzie

This study was inspired by recent successful applications of evolutionary computation
to the problem of finding terms to represent arbitrarily given operations on a primal
groupoid. Evolution requires that small changes in a term result in small changes in the
associated term operation. We prove a theorem giving two readily testable conditions
under which a groupoid must have this continuity property, and offer evidence that most
primal groupoids satisfy these conditions.

Keywords: Evolutionary computation; term generation; term operation; primal algebras.

To the Future

* Expressive program representations (Push)

* Flexible genetic/epigenetic variation (Plush)

* Well-informed selection (Lexicase)

= Automation of human programming

Program Representations

- Should facilitate the expression of programs that use:
- Arbitrary data structures

- Arbitrary control structures

* Modularity

» Should facilitate the development of effective (and ideally
evolvable) genetic/epigenetic variation operators

Push

Designed for program evolution
Data flows via stacks, not syntax

One stack per type:
integer, float, boolean, string, code, exec, vector, ...

Rich data and control structures

Minimal syntax:
program — instruction | literal | (program™)

Uniform variation, meta-evolution

Plush

marucion [

Close?
Silence? 1 0 0 1 0

Selection

* In genetic programming, selection is typically based on
average performance across all test cases (sometimes
weighted, e.g. with "implicit fitness sharing")

* In nature, selection is typically based on sequences of
interactions with the environment

| exicase Selection

 Emphasizes individual test cases and combinations of
test cases; not aggregated fitness across test cases

- Random ordering of test cases for each selection event

| exicase Selection

To select single parent:
|. Shuffle test cases
2. First test case — keep best individuals
3. Repeat with next test case, etc.

Until one individual remains

The selected parent may be a specialist in the tests that
happen to have come first,and may or may not be
particularly good on average

WC

® 00 [_|WC — bash — 80x40

WC Swec we.tex
449 8105 55491 wc.tex

WC $

newlines
words

characters

wc Test Cases

* 0 to 100 character files

* Random string (200 training, 500 test)
* Random string ending in newline (20 training, 50 test)

 Edge cases (22; empty string, multiple newlines, etc.)

Instructions

General purpose
/O

Control flow

Tags for modularity

String, integer, and boolean

Random constants

Input

file_readchar, file_readline, file_-
EOF, file_begin

Output

output_charcount, output_wordcount,
output_linecount

Exec

exec_pop, exec_swap, exec_rot,
exec_dup, exec_yank, exec_yankdup,
exec_shove, exec_eq, exec_stack-
depth, exec_when, exec_if, exec_-
do*times, exec_do*count, exec_-
do*range, exec_y, exec_k, exec_s

Tag ERCs

tag_exec, tag_integer, tag _string,
tagged

String

string_split, string parse_to_chars,
string _whitespace, string_contained,
string_reverse, string_concat,
string_take, string_pop, string_ -
eq, string_ stackdepth, string _rot,
string_yank, string_swap, string -
yankdup, string flush, string -
length, string_shove, string_dup

Integer

integer_add, integer_swap, integer_-
yank, integer_dup, integer_yankdup,
integer_shove, integer_mult, inte-
ger_div, integer_max, integer_sub,
integer_mod, integer_rot, integer_-
min, integer_inc, integer_dec

Boolean

boolean_swap, boolean_and, boolean_-
not, boolean_or, boolean_frominte-
ger, boolean_stackdepth, boolean_dup

ERC

Integer from [-100, 100]
{n\nn’ u\tn.‘ "u“ }

{z|z is a non-whitespace character}

wc Results

Tournament Successes

Selection Size (200 runs)
Lexicase - 1
Tournament 3 0

5 0
14 0
Implicit Fitness 3 0
Sharing 5 0
14 0

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 1

Solving Uncompromising Problems with Lexicase
Selection

Thomas Helmuth, Lee Spector Member, IEEE, James Matheson

Abstract—We describe a broad class of problems, called
‘“‘uncompromising problems,” characterized by the requirement
that solutions must perform optimally on each of many test cases.
Many of the problems that have long motivated genetic program-
ming research, including the automation of many traditional pro-
gramming tasks, are uncompromising. We describe and analyze
the recently proposed “lexicase” parent selection algorition and
show that it can facilitate the solution of uncompromising prob-
lems by genetic programming. Unlike most traditional parent
selection techniques, lexicase selection does not base selection on
a fitness value that is aggregated over all test cases; rather, it con-
siders test cases one at a time in random order. We present results
comparing lexicase selection to more traditional parent selection
methods, including standard tournament selection and implicit
fitness sharing, on four uncompromising problems: finding terms
in finite algebras, designing digital multipliers, counting words in
files, and performing symbolic regression of the factorial function.
We provide evidence that lexicase selection maintains higher
levels of population diversity than other selection methods, which
may partially explain its utility as a parent selection algorithm
in the context of uncompromising problems.

Index Terms—parent selection, lexicase selection, tournament
selection, genetic programming, PushGP.

I. INTRODUCTION

GENETIC programming problems generally involve test

cases that are used to determine the performance of
nroorame< diirinoe evoliition While come claccic cenetic Dro-

example, we can imagine a problem involving control of a
simulated wind turbine in which some test cases focus on
performance in low wind conditions while others focus on
performance in high wind conditions. It may not be possible to
optimize performance on all of these test cases simultaneously,
and some sort of compromise may therefore be necessary.
Many common parent selection approaches, such as tourna-
ment selection, introduce compromises between test cases by
aggregating the performance of an individual on those test
cases into a single fitness value. The method of compromise
may be as simple as summing the test case errors, or their
squares, into a single error value; more complex methods such
as implicit fitness sharing [2] dynamically weight test cases
based on population statistics before aggregating them.

By contrast, we wish to consider what we call “uncompro-
mising” problems: problems for which any acceptable solution
must perform as well on each test case as it is possible to
perform on that test case; that is, an uncompromising problem
is a problem for which it is not acceptable for a solution
to perform sub-optimally on any one test case in exchange
for good performance on others. More formally, consider a
problem defined by the set of test cases 7' where the set of
programs in the search space is P and p;(¢;) is the error
produced by program p; € P on test case t; € 1" with
lower error being better. This problem is uncompromising if a

DR o T Ik [A R S Y T IR PR P D

29 Synthesis Benchmarks

* From iJava: Number IO, Small or Large, For Loop Index,
Compare String Lengths, Double Letters, :

Replace Space with Newline, , Even
Squares, , String Lengths Backwards, Last Index of

Zero,Vector Average, Count Odds, Mirror Image,
, Sum of Squares,Vectors Summed, X-Word Lines,

, Negative to Zero, Scrabble Score,

* From IntroClass: , Digits, Grade, Median, Smallest,
Syllables

* PushGP has solved all of these except for the ones in

Table 3: Number of successful runs out of 100 for
each setting, where “Tourn” is size 7 tournament se-
lection, “IFS” is implicit fitness sharing with size 7
tournaments, and “Lex” is lexicase selection. For
each problem, underline indicates significant im-
provement over the other two selection methods at
p < 0.05 based on a pairwise chi-square test with
Holm correction [12], or a pairwise Fisher’s exact
test with Holm correction if any number of successes
is below 5 [10]. The “Size” column indicates the
smallest size of any simplified solution program

Problem Tourn IFS Lex | Size
Number 10 68 72 98 5
Small Or Large 3 3 5 27
For Loop Index 0 0 1 21
Compare String Lengths 3 6 7 11
Double Letters 0 0 6 20
Collatz Numbers 0 0 0

Replace Space with Newline 8 16 51 9
String Differences 0 0 0

Even Squares 0 0 2 37
Wallis Pi 0 0 0

String Lengths Backwards 7 10 66 9
Last Index of Zero 8 4 21 5
Vector Average 14 13 16 7
Count Odds 0 0 8 7
Mirror Image 46 64 78 4
Super Anagrams 0 0 0

Sum of Squares 2 0 6 7
Vectors Summed 0 0 1 11
X-Word Lines 0 0 8 15
Pig Latin 0 0 0

Negative To Zero 10 8 45 8
Scrabble Score 0 0 2 14
Word Stats 0 0 0

Checksum 0 0 0

Digits 0 1 7 20
Grade 0 0 4 52
Median 7 43 45 10
Smallest 75 98 81 8
Syllables 1 7 18 14

Problems Solved

—_
w
—_
w
[\
(N

Plot Medians and Quartiles
RSWN (Replace Space with Newline)

add_generational_success_counts_plot(data rswn, plot_diversity medians_and quartiles(data_rswn))

1.00 -

0.75 -
.-? treatment
& .
g “ lexicase
? 0.50 7 ~= tourney
g “ifs
()

0.25 -

0.00 -
)
% treatment
§ 19g: - — lexicase
8 g% :_'_g—————'—_ — foumey

- 1 I I e i

S 0 100 200 300 s

generation

Life involves the
evolution of programs

Life i s the
evolution of programs

Life is the
evolution of programs

Digital Organisms

* For the study of general principles of living systems

* Populations of individuals that act locally in environments

 Explore, in silico, key aspects of evolutionary processes

» Core War, Tierra,Avida, Echo, Polyworld, Framsticks, ...

To the Future

 Expressive program representations (Push)

* Interactions among development, form, physics, behavior,
and ecology (in virtual worlds)

» Evolution of reproduction and variation
(autoconstructive evolution)

= Evolution of adaptive complexity

Autoconstructive Evolution

* Individual programs make their own children, with
endogenous variation

- Hence they control their own mutation rates and
methods, sexuality, reproductive timing, etc.

 The machinery of reproduction and diversification (i.e.,
the machinery of evolution) evolves

+ Requires expressive program representations (like Push)

SwarmEvolve 2

A "swarm-like" agent environment with energy dynamics
and conservation

» Behavior (including action, communication, energy

sharing, and reproduction) controlled by evolved Push
programs

- Supports exploration of relations between adaptation
and various kinds of resource sharing, under a range of
environmental settings

Pucks

core

membrane /
information

energy

Sensor range
inventory

AREA-B

AREA-A

Action

* Pucks act by making proposals to the universe

+ The universe accepts proposals permitted by physics and
compatible with the proposals of other pucks

- When conflicts arise the universe arbitrates

Proposals

« Accelerate
« Rotate

- Remember

- Transact (via bid/ask):
- Energy

* Information

* Inventory items
» Binding

* Spawn new pucks

[50 50] [150 50] [250 50] [350 50] [450 50] [550 50] [650 50] [750 50]

[50 150] [150 150] [250 150] [350 150] [450 150] [550 150]

[250 250] [350 250] [450 250] [550 250]

[650 150] [750 150]

[650 250] [750 250]

9O®
DL D N
.j@.ﬂ [250 350] (350 350]

[450 350] [550350] [650 350] [750 350]

[50 450] [150 450] [250 450] [35M 450]

[450 450]» ___ [550450] [650 450] [750 450]

[50 550] [150 550] [250 55 50 550] [45 155 50 550] [650 550] [750 550]

[50 650] [150 650]

[250650] |« |[350650) [450 65U (550 650] [.l@‘l]

[50 750] [150 750 [250 750 (350 750] [450 750] [550 750] [‘)@‘1}

Genetic Programming

- Active evolution of computer programs
» for solving problems
- for advancing science and technology

» for understanding life

Prospects

Automatic programming of large-scale software systems

Significant discoveries, produced by evolutionary
processes, in many areas of science and engineering

Computational life forms demonstrating open-ended
evolution and emergent evolutionary transitions

Risks

» Technology that we don't understand

* Human competitive technology

Thanks

» David Clark, Moshe Sipper, and members of the Hampshire

College Computational Intelligence Lab including Tom
Helmuth, Bill La Cava, Jon Klein, and Karthik Kannappan for
specific contributions to these slides.

» This material is based upon work supported by the

National Science Foundation under Grants No. 017817,
1129139,and 1331283.Any opinions, findings, and
conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

The Future of
Genetic Programming

Lee Spector
Cognitive Science, Hampshire College
Computer Science, UMass Amherst
http://hampshire.edu/lspector

http://hampshire.edu/lspector

