UNWITTING
DISTRIBUTED
GENETIC

PROGRAMMING

JON KLEIN AND LEE SPECTOR
SCHOOL OF COGNITIVE SCIENCE, HAMPSHIRE COLLEGE

THIS WORK WAS SUPPORTED BY NSF GRANT No. 0308540

INTRODUCTION

GP takes time
Fortunately, GP scales well

More fitness test evaluations = more results

Lots of unused computation out there

DISTRIBUTED GP

* GP is embarrassingly parallel: use more
machines for more fitness tests

e Several existing systems/frameworks
for distributed GP, including the
Distributed Genetic Programming
Framework (Weise & Geihs, 2006)

e Existing systems for other evolutionary
computing paradigms

PROBLEMS WITH
DISTRIBUTED GP

e Require client-side software installation

e Require client-side motivation

e Require client-side permission

UNWITTING DISTRIBUTED
GENETIC PROGRAMMING

Solve GP problems without (you)
running any fitness tests

All fitness tests run, unwittingly, by
unaffiliated web users

IS & parasitic computing - see
Nature 412, August 2001

See also GECCO-2007 workshop paper
by Merelo et al.

AJAX

Asynchronous JavaScript + XML = interactive
web applications

Send data back and forth between client and
server from a fully loaded webpage

Buzzwordy!

Light-weight, ubiquitous, generally innocuous

“Web 2.0”: Google Apps, Digg, Amazon use
AJAX for interactive web pages

PUSH3 LANGUAGE

Designed for evolutionary computation

Multi-type stack based language

Very simple syntax
Unusually powerful semantics

Easy to implement

PUSHS3

e KEY IDEA: Stack-based postfix language
with one stack per type: integer, float,
vector, Boolean, name, code, exeg,

Syntax-independent handling of multiple
data types.

Code and exec stacks support use and
evolution of subroutines (any architecture),
recursion, evolved control structures, and
meta-evolutionary mechanisms.

PUSH3 SYNTAX

program := instruction | literal | (program™)

PUSH3 SEMANTICS

e lo execute program F:

1. Push P onto the EXEC stack.

2. While the EXEC stack is not empty, pop and pro-
cess the top element of the EXEC stack, E:

(a) If E is an instruction: execute F (accessing
whatever stacks are required).

(b) If E is a literal: push E onto the appropriate
stack.

(c) If E is a list: push each element of E onto
the EXEC stack, in reverse order.

SAMPLE PUSH3 INSTRUCTIONS

Stack manipulation POP, SWAP, YANK,
instructions DUP, STACKDEPTH,

(all types) SHOVE, FLUSH, =
Ma“th —I_a e /7 *, >7 <7
(INTEGER and FLOAT) | MIN, MAX

Logic (BOOLEAN) AND, OR, NOT,
FROMINTEGER

Code manipulation QUOTE, CAR, CDR, CONS,
(CODE) INSERT, LENGTH, LIST,
MEMBER, NTH, EXTRACT
Control manipulation | DO*, DO*COUNT, DO*RANGE,
(CDDE and EXEC) DO*xTIMES, IF

A SIMPLE PUSH3 PROGRAM

(2 3 INTEGER.* 4.1 5.2 FLOAT.+ TRUE FALSE
BOOLEAN.OR)

Resulting stacks:

BOOLEAN STACK: (TRUE)

CODE STACK: ((2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE BOOLEAN.OR

))

FLOAT STACK: (9.3)

INTEGER STACK: (6)

SCRAMBLED

@ 11 2 (TRUE) (3 5.2 (FALSE)) ELOAT =
BOOLEAN.OR INTEGER.*)

Resulting stacks:

BOOLEAN STACK: (TRUE)

CODE STACK: ((4.1 2 (TRUE) (3 5.2
(FALSE)) FLOAT.+ BOOLEAN.OR INTEGER.*))

FLOAT STACK: (9.3)

INTEGER STACK: (6)

BETTER LIVING THrROUGH
CODE MANIPULATION

You get ALL of thiS for FREE! (or at least real cheap)

Subroutines (with evolved architecture)
[terators (standard and evolved)
Recursion and combinators

Evolved control structures

Evolved genetic operators

PUSHSCRIPT

Lightweight (<30k) JavaScript Push
implementation

Supports all standard Push3 stack types,
most Push3 instructions

Runs in most web broswers including
Internet Explorer, Firefox, Safari, iPhone*

Requires NO software installation:
loads automatically with webpage

*which is Safari anyway, but it’s just fun to say that our system runs on the iPhone

INTERACTIVE DEMO

http: / /www.spiderland.org/PushScript

Type in a Push program below:

((5.04.0 FLOAT./ 7.0 FLOAT.+ } {2 3 INTEGER.>] } " Run Push Program \

In conjunction with annoyingly buzzwordy AJAX technologies, we can dynamically load a Push
program from a server, execute it in a web-browser and submit the results back to the server. Note
that this does not require any actual user interaction. It can be done continuously while a user views
a webpage.

* Run Random Push Program From Server)

http://www.spiderland.org/PushScript
http://www.spiderland.org/PushScript

SERVER-SIDE CODE

Lightweight server implementation to
avoid server-side bottlenecks

New fitness cases sent as XML via PHP
script

Data collection via PHP scripts

New generations generated via breve
script, using the C++ Push3

implementation

web content and
fitness test
server

PROCESS

browser loads
webpage

lpushfitnesstest.js‘

fetch fitness tests [«—
and programs
via AJAX

v

run push fitness tests

Y

return fithess values
to server via AJAX

| —_—

push.js

PushScript interpreter

PROBLEMS

e 5 simple symbolic regression problems
we’ve studied previously

e Deployed on a low traffic website (breve:

http:/ / www.spiderland.org /breve)

* Proof of concept question: can unwitting
computation be used to solve our GP
problems without (us) running fitness
tests, and no voluntary user participation?

PARAMETERS

Problems SR A e e e S e g
o A e e e B S e i
b S R S P e
. rxrkrxrt+rxrrxrtrikrtr—8
5. T T *TRL*XTH*T — 2% T *%T*TokE =t
Input (x) values | 1-8
Fitness | sum of absolute value of errors
Crossover rate | 40%
Fair mutation rate | 40%
Deletion mutation rate | 5%
Duplication rate | 15%
Population size | 2000
Maximum program size | 50
Tournament size | 7
Ephemeral random constants | integers from -10 to 10
Instruction set | FLOAT.+, FLOAT.-, FLOAT.*x, FLOAT./, FLOAT.POP, FLOAT.DUP
(Dec. 10 problems 1, 2 and 3) | FLOAT.SWAP, INPUT
Instruction set | INTEGER.+, INTEGER.-, INTEGER.*, INTEGER./, INTEGER.POP,
(Dec. 10 problems 4 and 5, Jan. 15 all) INTEGER.DUP, INTEGER.SWAP, INPUT

RESULTS

Yes! We can solve symbolic regression
problems.

Very, very slowly.

Several hours to solve a problem which
takes a few minutes on the desktop

Probably not practical for simple
problems, but...

= IT CAN BE PRACTICAL [EF:

e ...to compliment local computation
on more open-ended problems

e ...local fitness computation takes
longer than about .5 seconds per
fitness test (on a low-traffic server)

e ...the system is deployed on a very
high traffic website

STEALING?

e Short answer, “yes” with an “if”, long
ganswer, “no”’, with a “but”

e No more computation than typical AJAX
applications

e ... but we're using the computation for
our own benefit

FUTURE WORK

e New problem classes: implement
domain-specific functions for use with
PushScript.

e New problems: which is to say, “real”
problems.

e Faster fitness test evaluation: PushJava?
PushFlash?

