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INTRODUCTION

GP takes time
Fortunately, GP scales well

More fitness test evaluations = more results

Lots of unused computation out there




DISTRIBUTED GP

* GP is embarrassingly parallel: use more
machines for more fitness tests

e Several existing systems/frameworks
for distributed GP, including the
Distributed Genetic Programming
Framework (Weise & Geihs, 2006)

e Existing systems for other evolutionary
computing paradigms




PROBLEMS WITH
DISTRIBUTED GP

e Require client-side software installation

e Require client-side motivation

e Require client-side permission




UNWITTING DISTRIBUTED
GENETIC PROGRAMMING

Solve GP problems without (you)
running any fitness tests

All fitness tests run, unwittingly, by
unaffiliated web users

IS & parasitic computing - see
Nature 412, August 2001

See also GECCO-2007 workshop paper
by Merelo et al.




AJAX

Asynchronous JavaScript + XML = interactive
web applications

Send data back and forth between client and
server from a fully loaded webpage

Buzzwordy!

Light-weight, ubiquitous, generally innocuous

“Web 2.0”: Google Apps, Digg, Amazon use
AJAX for interactive web pages




PUSH3 LANGUAGE

Designed for evolutionary computation

Multi-type stack based language

Very simple syntax
Unusually powerful semantics

Easy to implement




PUSHS3

e KEY IDEA: Stack-based postfix language
with one stack per type: integer, float,
vector, Boolean, name, code, exeg, ....

Syntax-independent handling of multiple
data types.

Code and exec stacks support use and
evolution of subroutines (any architecture),
recursion, evolved control structures, and
meta-evolutionary mechanisms.




PUSH3 SYNTAX

program := instruction | literal | ( program™ )




PUSH3 SEMANTICS

e lo execute program F:

1. Push P onto the EXEC stack.

2. While the EXEC stack is not empty, pop and pro-
cess the top element of the EXEC stack, E:

(a) If E is an instruction: execute F (accessing
whatever stacks are required).

(b) If E is a literal: push E onto the appropriate
stack.

(c) If E is a list: push each element of E onto
the EXEC stack, in reverse order.




SAMPLE PUSH3 INSTRUCTIONS

Stack manipulation POP, SWAP, YANK,
instructions DUP, STACKDEPTH,

(all types) SHOVE, FLUSH, =
Ma“th —I_a e /7 *, >7 <7
(INTEGER and FLOAT) | MIN, MAX

Logic (BOOLEAN) AND, OR, NOT,
FROMINTEGER

Code manipulation QUOTE, CAR, CDR, CONS,
(CODE) INSERT, LENGTH, LIST,
MEMBER, NTH, EXTRACT
Control manipulation | DO*, DO*COUNT, DO*RANGE,
(CDDE and EXEC) DO*xTIMES, IF




A SIMPLE PUSH3 PROGRAM

( 2 3 INTEGER.* 4.1 5.2 FLOAT.+ TRUE FALSE
BOOLEAN.OR )

Resulting stacks:

BOOLEAN STACK: ( TRUE )

CODE STACK: ( ( 2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE BOOLEAN.OR

) )

FLOAT STACK: ( 9.3 )

INTEGER STACK: ( 6 )




SCRAMBLED

@ 11 2 ( TRUE ) ( 3 5.2 ( FALSE ) ) ELOAT =
BOOLEAN.OR INTEGER.* )

Resulting stacks:

BOOLEAN STACK: ( TRUE )

CODE STACK: ( ( 4.1 2 ( TRUE ) ( 3 5.2
( FALSE ) ) FLOAT.+ BOOLEAN.OR INTEGER.* ) )

FLOAT STACK: ( 9.3 )

INTEGER STACK: ( 6 )




BETTER LIVING THrROUGH
CODE MANIPULATION

You get ALL of thiS for FREE! (or at least real cheap)

Subroutines (with evolved architecture)
[terators (standard and evolved)
Recursion and combinators

Evolved control structures

Evolved genetic operators




PUSHSCRIPT

Lightweight (<30k) JavaScript Push
implementation

Supports all standard Push3 stack types,
most Push3 instructions

Runs in most web broswers including
Internet Explorer, Firefox, Safari, iPhone*

Requires NO software installation:
loads automatically with webpage

*which is Safari anyway, but it’s just fun to say that our system runs on the iPhone



INTERACTIVE DEMO

http: / /www.spiderland.org/PushScript

Type in a Push program below:

((5.04.0 FLOAT./ 7.0 FLOAT.+ } {2 3 INTEGER.> ] } " Run Push Program \

In conjunction with annoyingly buzzwordy AJAX technologies, we can dynamically load a Push
program from a server, execute it in a web-browser and submit the results back to the server. Note
that this does not require any actual user interaction. It can be done continuously while a user views
a webpage.

* Run Random Push Program From Server )



http://www.spiderland.org/PushScript
http://www.spiderland.org/PushScript

SERVER-SIDE CODE

Lightweight server implementation to
avoid server-side bottlenecks

New fitness cases sent as XML via PHP
script

Data collection via PHP scripts

New generations generated via breve
script, using the C++ Push3

implementation




web content and
fitness test
server

PROCESS

browser loads
webpage

lpushfitnesstest.js‘

fetch fitness tests  [«—
and programs
via AJAX

v

run push fitness tests

Y

return fithess values
to server via AJAX

| —_—

push.js

PushScript interpreter




PROBLEMS

e 5 simple symbolic regression problems
we’ve studied previously

e Deployed on a low traffic website (breve:

http:/ / www.spiderland.org /breve)

* Proof of concept question: can unwitting
computation be used to solve our GP
problems without (us) running fitness
tests, and no voluntary user participation?




PARAMETERS
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Input (x) values | 1-8
Fitness | sum of absolute value of errors
Crossover rate | 40%
Fair mutation rate | 40%
Deletion mutation rate | 5%
Duplication rate | 15%
Population size | 2000
Maximum program size | 50
Tournament size | 7
Ephemeral random constants | integers from -10 to 10
Instruction set | FLOAT.+, FLOAT.-, FLOAT.*x, FLOAT./, FLOAT.POP, FLOAT.DUP
(Dec. 10 problems 1, 2 and 3) | FLOAT.SWAP, INPUT
Instruction set | INTEGER.+, INTEGER.-, INTEGER.*, INTEGER./, INTEGER.POP,
(Dec. 10 problems 4 and 5, Jan. 15 all) INTEGER.DUP, INTEGER.SWAP, INPUT




RESULTS

Yes! We can solve symbolic regression
problems.

Very, very slowly.

Several hours to solve a problem which
takes a few minutes on the desktop

Probably not practical for simple
problems, but...




= IT CAN BE PRACTICAL [EF:

e ...to compliment local computation
on more open-ended problems

e ...local fitness computation takes
longer than about .5 seconds per
fitness test (on a low-traffic server)

e ...the system is deployed on a very
high traffic website




STEALING?

e Short answer, “yes” with an “if”, long
ganswer, “no”’, with a “but”

e No more computation than typical AJAX
applications

e ... but we're using the computation for
our own benefit




FUTURE WORK

e New problem classes: implement
domain-specific functions for use with
PushScript.

e New problems: which is to say, “real”
problems.

e Faster fitness test evaluation: PushJava?
PushFlash?




