
Unwitting 
Distributed 

Genetic 
Programming

via Asyncronous JavaScript and XML

This work was supported by NSF Grant No. 0308540

Jon Klein and Lee Spector
School of Cognitive Science, Hampshire College



Introduction

• GP takes time
• Fortunately, GP scales well
• More fitness test evaluations = more results
• Lots of unused computation out there



Distributed GP

• GP is embarrassingly parallel: use more 
machines for more fitness tests

• Several existing systems/frameworks 
for distributed GP, including the 
Distributed Genetic Programming 
Framework (Weise & Geihs, 2006)

• Existing systems for other evolutionary 
computing paradigms



Problems with 
Distributed GP

• Require client-side software installation
• Require client-side motivation
• Require client-side permission



Unwitting Distributed 
Genetic Programming

• Solve GP problems without (you) 
running any fitness tests

• All fitness tests run, unwittingly, by 
unaffiliated web users

• A.K.A. “parasitic computing”— see 
Nature 412, August 2001

• See also GECCO-2007 workshop paper 
by Merelo et al.



AJAX 

• Asynchronous JavaScript + XML = interactive 
web applications 

• Send data back and forth between client and 
server from a fully loaded webpage

• Buzzwordy!
• Light-weight, ubiquitous, generally innocuous 
• “Web 2.0”: Google Apps, Digg, Amazon use 

AJAX for interactive web pages



Push3 Language

• Designed for evolutionary computation
• Multi-type stack based language
• Very simple syntax
• Unusually powerful semantics
• Easy to implement



Push3

• KEY IDEA: Stack-based postfix language 
with one stack per type: integer, float, 
vector, Boolean, name, code, exec, ....

• Syntax-independent handling of multiple 
data types.

• Code and exec stacks support use and 
evolution of subroutines (any architecture), 
recursion, evolved control structures, and 
meta-evolutionary mechanisms.



Push3 Syntax

program ::= instruction | literal | ( program* )



Push3 Semantics

• To execute program P :

1. Push P onto the EXEC stack.

2. While the EXEC stack is not empty, pop and pro-
cess the top element of the EXEC stack, E:

(a) If E is an instruction: execute E (accessing
whatever stacks are required).

(b) If E is a literal: push E onto the appropriate
stack.

(c) If E is a list: push each element of E onto
the EXEC stack, in reverse order.

All of the Push2 control structures (e.g. CODE.DO*TIMES) are
expressed in Push3 as sequences of instructions that pushed
onto the EXEC stack and subsequently executed by the loop
in step 2 above. The CODE.DO*COUNT instruction, for exam-
ple, was implemented in Push2 as a loop in the Push inter-
preter’s native language that would repeatedly push counter
values on to the INTEGER stack and then execute code from
the CODE stack. In Push3, the CODE.DO*COUNT instruction
simply pushes code (including a recursive call) and integers
onto the EXEC stack, and the continued execution of elements
from the EXEC stack produces the same results. Other fea-
tures of Push can also be more elegantly implemented in
Push3 than in Push2; for example the CODE.QUOTE instruc-
tion, which formerly required an exception to the standard
evaluation rule and a global flag, can now be implemented
simply by copying the top of the EXEC stack to the CODE
stack (making it the inverse of CODE.DO*).

At first glance the use of the EXEC stack does not appear
to be a dramatic departure from the program execution al-
gorithm used in Push2. The power of this approach be-
comes evident, however, when one considers what it means
to manipulate the EXEC stack during a computation. Just
as control structures can be implemented by manipulating
and later executing items on to the CODE stack, novel con-
trol structures can also be implemented through EXEC stack
manipulation and these implementations are often more par-
simonious (and therefore potentially more evolvable).

Since a list of code to be executed is placed on the EXEC stack
in reverse order, EXEC instructions have the property of oper-
ating on elements in the code which come after them, unlike
operators applied to other types which use the postfix nota-
tion standard in stack-based languages. The following two
programs fragments, for example, both produce the same
results:

( 5 CODE.QUOTE ( INTEGER.+ ) CODE.DO*COUNT )
( 5 EXEC.DO*COUNT ( INTEGER.+ ) )

3.2 Combinators
The stack manipulation instructions that are provided for all
types in Push can be used to manipulate the EXEC stack, but
the EXEC stack can also be manipulated with Push versions
of the standard combinators K, S and Y [19, 5]. These
combinatory logic operators allow complex computational
processes to be built up from simple expressions on the EXEC
stack.

The combinator EXEC.K simply removes the second element
from the EXEC stack. For example, if the EXEC stack contains
(A, B, C) then executing EXEC.K yields (A, C). The combi-
nator EXEC.S pops three items, A, B and C from the EXEC
stack and then pushes back three separate items: (B, C),
C and A (leaving the A on top). Note that this produces
two calls to C. The fixed point Y -combinator instruction
EXEC.Y can also be used to implement recursion using anony-
mous expressions on the EXEC stack; it inspects (but does not
pop) the top of the EXEC stack, A, and then inserts the list
(EXEC.Y A) as the second item on the EXEC stack. By itself,
this generates an endlessly recursive call to the unnamed
non-recursive “function” A. Recursion can be terminated
through further manipulation of the EXEC stack that may
occur, possibly conditionally, within A.

3.3 Re-entrance
An additional benefit of the EXEC stack is that the state of a
Push interpreter can now be fully specified by its configura-
tion, its NAME bindings, and the contents of its stacks. No in-
ternal state variables such as loop counters, execution point-
ers or continuations are necessary. Among other things, this
makes Push interpreters fully re-entrant and allows stricter
control over program execution. Loops, previously imple-
mented in the native language’s for-loop (or analogous con-
trol structure), are now implemented by pushing a series of
elements onto the EXEC stack. Execution of the loop pro-
ceeds through the sequential execution of the elements on
the EXEC stack.

Re-entrant interpreters are of particular interest when using
Push programs as controllers in time sensitive applications.
In these situations, Push programs cannot be allowed to run
until they are complete or until a loop terminates—there
may be strict limits on the number of Push instructions that
can be executed per time-step. The re-entrant interpreter
allows for the controlled execution of a particular number of
instructions per time-step.

3.4 Naming simplified
Previous incarnations of Push allowed names to be bound
to values using a SET instruction and retrieved later using a
GET instruction. This allowed, in principle, for evolution of
named constants and subroutines but it required synchro-
nization of several different instructions. The introduction
of the EXEC stack presents opportunities for simplification.

Binding a name to a subroutine has been simplified by one
instruction, using the EXEC stack instead of a quoted value
on the CODE stack:

Push2:
( TIMES2 CODE.QUOTE ( 2 INTEGER.* ) CODE.SET )

Push3:
( TIMES2 EXEC.DEFINE ( 2 INTEGER.* ) )

Executing a subroutine has been simplified by two instruc-
tions. The bound symbol is now executed directly (the bind-
ing is copied to the EXEC stack), instead of being loaded onto
the CODE stack with CODE.GET and executed with CODE.DO:



Sample Push3 Instructions
Table 1: Sample Push instructions.

Stack manipulation POP, SWAP, YANK,
instructions DUP, STACKDEPTH,
(all types) SHOVE, FLUSH, =
Math +, −, /, ∗, >, <,
(INTEGER and FLOAT) MIN, MAX
Logic (BOOLEAN) AND, OR, NOT,

FROMINTEGER
Code manipulation QUOTE, CAR, CDR, CONS,
(CODE) INSERT, LENGTH, LIST,

MEMBER, NTH, EXTRACT
Control manipulation DO*, DO*COUNT, DO*RANGE,
(CODE and EXEC) DO*TIMES, IF

programming (e.g. [15, 27, 28]) by providing multiple stacks,
one per type. Types are provided for integers, floating point
numbers, Boolean values, symbolic names, and code (de-
scribed in more detail below), each of which has a corre-
sponding data stack. Additional types for vectors, matrices,
and other data are provided in some implementations, and
it is straightforward to add new types.1 As instructions
are executed they pop any required input values from the
appropriate stacks, preform calculations, and push any out-
put values onto the appropriate stacks. The types of the
values that will be needed or produced are specified in the
implementations of the instructions themselves, and are in-
dependent of the syntactic contexts in which calls to the
instructions occur. This scheme ensures that Push instruc-
tions will always receive inputs and produce outputs of the
appropriate types, regardless of the structure of the pro-
grams in which they occur. Whenever an instruction finds
insufficient items on the stacks for its inputs it acts as a
“no-op” and has no effect.

Instructions in Push3 are typically given names such as
<TYPE>.<NAME>, where NAME specifies the operation and
TYPE specifies the data type upon which the operation should
be preformed. INTEGER.=, for example, takes two input val-
ues from the INTEGER stack, compares them, and places the
result of the comparison on the BOOLEAN stack. It is not un-
common for the same operator to be implemented for mul-
tiple types. The instructions INTEGER.POP, FLOAT.POP, and
CODE.POP, for example, each pop the top item from the cor-
responding stack.

The full Push instruction set is large and cannot be fully
documented here,2 but a sample of some of the more com-
monly used Push instructions is shown in Table 1. The
instructions shown on the right-hand side are implemented
for each of the types described in the left column, so the in-
struction MAX, for example, exists both as INTEGER.MAX and
as FLOAT.MAX.

Flexibility with respect to control arises because CODE is it-
self a native type in Push. A Push program can put code

1Support for the definition of new types from within Push
programs is not part of the current Push3 specification, al-
though several proposals for accomplishing this are under
consideration.
2See [25].

on the CODE stack (for example, dwith the CODE.QUOTE in-
struction), duplicate or otherwise manipulate it, and later
execute it by means of other CODE instructions. This allows
programs to dynamically create novel control structures and
subroutine architectures. Examples of several such results
in earlier versions of Push are described elsewhere [21, 26,
22, 25].

Code manipulation by evolving programs can also support
entirely new forms of evolutionary computation such as “au-
toconstructive evolution,” in which evolving programs must
generate their own offspring, eschewing hardcoded genetic
operators in favor of evolved genetic operators that are im-
plemented by code-manipulation instructions working on
the CODE stack. The results of experiments employing au-
toconstructive evolution in earlier versions of Push can be
found in [21, 23, 24].

3. THE PUSH3 EXEC STACK
3.1 Push Program Interpretation
The most significant change to the Push language in Push3
is the introduction of the EXEC stack, which stores expres-
sions, instructions, and literals that the Push interpreter will
subsequently execute. This stack is independent of the CODE
stack, which can still be used for code manipulation and for
general list manipulation. Code on the CODE stack is static
data unless it is executed with an instruction like CODE.DO*
or CODE.DO*TIMES; such instructions are now implemented
by moving code to the EXEC stack. In contrast the EXEC
stack holds the code that is queued for execution in the in-
terpereter, and it is continuously executed. Although the
EXEC stack execution model of Push3 is backward compati-
ble with program execution in Push2, it nonetheless repre-
sents a fundamental change in the way that Push programs
are executed and it does so in a way that provides new op-
portunities for the evolution of arbitrary control.

In Push2, programs were executed according to the following
algorithm:

• To execute program P :

1. If P is an INSTRUCTION: execute P (accessing
whatever stacks are required).

2. If P is a LITERAL: push P onto the appropriate
stack.

3. If P is a LIST: recursively execute each subpro-
gram in P .

In this scheme an interpreter that encounters a list must
maintain the state of the computation for continuation after
returning from recursive calls; for example, when executing
a list of two subprograms the interpreter must store the
second (for later execution) while recursively executing the
first. If the Push interpreter is implemented in a language
that supports recursion then this can be handled by the
language’s native mechanisms, which presumably store local
variables in activation records during recursive calls. Push3,
by contrast, performs the same computation by storing all
of the necessary information within the interpreter itself, on
an EXEC stack:



A Simple Push3 Program

( 2 3 INTEGER.* 4.1 5.2 FLOAT.+ TRUE FALSE 
BOOLEAN.OR )

Resulting stacks:
BOOLEAN STACK: ( TRUE )

CODE STACK: ( ( 2 3 INTEGER.* 4.1 5.2
            FLOAT.+ TRUE FALSE BOOLEAN.OR
            ) )

FLOAT STACK: ( 9.3 )

INTEGER STACK: ( 6 )



Scrambled

( 4.1 2 ( TRUE ) ( 3 5.2 ( FALSE ) ) FLOAT.+ 
BOOLEAN.OR INTEGER.* )

Resulting stacks:
BOOLEAN STACK: ( TRUE )

CODE STACK: ( ( 4.1 2 ( TRUE ) ( 3 5.2 
( FALSE ) ) FLOAT.+ BOOLEAN.OR INTEGER.* ) )

FLOAT STACK: ( 9.3 )

INTEGER STACK: ( 6 )



Better Living through

Code Manipulation

• Subroutines (with evolved architecture)
• Iterators (standard and evolved)
• Recursion and combinators
• Evolved control structures
• Evolved genetic operators

You get ALL of this for FREE! (or at least real cheap)



PushScript

• Lightweight (<30k) JavaScript Push 
implementation

• Supports all standard Push3 stack types, 
most Push3 instructions

• Runs in most web broswers including 
Internet Explorer, Firefox, Safari, iPhone*

• Requires NO software installation: 
loads automatically with webpage

*which is Safari anyway, but it’s just fun to say that our system runs on the iPhone



Interactive Demo

http://www.spiderland.org/PushScript

http://www.spiderland.org/PushScript
http://www.spiderland.org/PushScript


Server-Side Code

• Lightweight server implementation to 
avoid server-side bottlenecks

• New fitness cases sent as XML via PHP 
script

• Data collection via PHP scripts
• New generations generated via breve 

script, using the C++ Push3 
implementation



Process

browser loads 

webpage

fetch fitness tests

and programs 

via AJAX

run push fitness tests

web content and 

fitness test 

 server

return fitness values 

to server via AJAX

PushScript interpreter

pushfitnesstest.js

push.js



Problems

• 5 simple symbolic regression problems 
we’ve studied previously

• Deployed on a low traffic website (breve: 
http://www.spiderland.org/breve)

• Proof of concept question: can unwitting 
computation be used to solve our GP 
problems without (us) running fitness 
tests, and no voluntary user participation?



Parameters
Table 1: Problems and parameters used to demonstrate genetic programming with unwitting distributed
computation.

Problems 1. 8 ∗ x ∗ x ∗ x + 3 ∗ x ∗ x + x
2. x ∗ x ∗ x + x ∗ x + x
3. x ∗ x ∗ x− 2 ∗ x ∗ x− x
4. x ∗ x ∗ x ∗ x + x ∗ x ∗ x + x ∗ x + x− 8
5. x ∗ x ∗ x ∗ x ∗ x ∗ x− 2 ∗ x ∗ x ∗ x ∗ x + x ∗ x− 2

Input (x) values 1-8
Fitness sum of absolute value of errors

Crossover rate 40%
Fair mutation rate 40%

Deletion mutation rate 5%
Duplication rate 15%
Population size 2000

Maximum program size 50
Tournament size 7

Ephemeral random constants integers from -10 to 10
Instruction set FLOAT.+, FLOAT.-, FLOAT.*, FLOAT./, FLOAT.POP, FLOAT.DUP

(Dec. 10 problems 1, 2 and 3) FLOAT.SWAP, INPUT
Instruction set INTEGER.+, INTEGER.-, INTEGER.*, INTEGER./, INTEGER.POP,

(Dec. 10 problems 4 and 5, Jan. 15 all) INTEGER.DUP, INTEGER.SWAP, INPUT

Table 2: Solutions to the test problems evolved with unwitting distributed computation.
Problem Generation Solution

1 32 (2 INTEGER.* INTEGER.DUP INTEGER.DUP INTEGER.DUP
INTEGER.* INTEGER.+ INTEGER.DUP INPUT INTEGER.- INTEGER.+
INTEGER.SWAP INTEGER.SWAP INTEGER.SWAP INPUT INTEGER.-
INTEGER.* INPUT INTEGER.+)

2 14 (INPUT INTEGER.DUP INTEGER.* INTEGER.DUP INPUT INTEGER.*
INTEGER.+ INTEGER.+)

3 7 (INPUT INPUT INTEGER.+ INTEGER.- INTEGER.DUP INTEGER.*
INPUT INTEGER.- INPUT INTEGER.- 1 INTEGER.- INPUT INTEGER.*)

4 49 (-8 INPUT INPUT INTEGER.* INTEGER.DUP 9 INTEGER.+
INTEGER.POP INTEGER.DUP INPUT INTEGER.* INPUT INTEGER.DUP
INTEGER.* INTEGER.DUP INTEGER.* INTEGER.+ INTEGER.+
INTEGER.+ INTEGER.+)

5 91 (INPUT INPUT INPUT INTEGER.* INTEGER.* INTEGER.-
INTEGER.DUP INTEGER.* -1 INTEGER.+ -1 INTEGER.+)



Results

• Yes!  We can solve symbolic regression 
problems.

• Very, very slowly.
• Several hours to solve a problem which 

takes a few minutes on the desktop
• Probably not practical for simple 

problems, but...



... it can be practical if: 

• ... to compliment local computation 
on more open-ended problems

• ... local fitness computation takes 
longer than about .5 seconds per 
fitness test (on a low-traffic server) 

• ... the system is deployed on a very 
high traffic website



Stealing?

• Short answer, “yes” with an “if”, long 
answer, “no”, with a “but”

• No more computation than typical AJAX 
applications

• ... but we’re using the computation for 
our own benefit



Future Work

• New problem classes: implement 
domain-specific functions for use with 
PushScript.

• New problems: which is to say, “real” 
problems.

• Faster fitness test evaluation: PushJava?  
PushFlash?


