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ABSTRACT
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entanglement-generating powers of unitary 2-qubit gates. The
exploration is aided by a computational search technique called
genetic programming.
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We explore tradeoffs between classical communication and entanglement-
generating powers of unitary 2-qubit gates. The exploration is aided by a compu-
tational search technique called genetic programming.

The question of tradeoffs between classical communication and
entanglement-generating powers of unitary transformations in quantum com-
putation has great current interest.1 If simple general rules of tradeoff are
worked out, the power of a transformation U to benefit bi-partite interactions
will be characterized by a single number, thus abetting and advancing the
“resource” or commodity metaphor for quantum information. Bennett has
theorized that a single use of any given two-particle transformation U has a
unique maximum power for entanglement or communication (forward, back-
ward or two-way) between Alice and Bob. Which of these various effects U
produces would depend on the protocol in which it is embedded. The rule
is that only U may connect Alice to Bob, as in the previous investigation of
two-qubit Hamiltonian interactions epitomized by the myth of Pyramis and
Thisbe.2 The question is how many c-bits of communication and/or e-bits of
entanglement one can create per U . The search for algorithms to deploy this
power with or without ancilla, and with or without prior entanglement, begins
the general work on Bennett’s conjecture. In principle the power of U may
require asymptotic ratios of the number of e- or c-bits generated to instances
of U deployed in the algorithm.

We pursue the search for algorithms relevant to this study using a com-
putational search technique called genetic programming (GP). In prior work
we used GP to discover new quantum algorithms for determining properties
of unitary oracles.3 In the present work we used the PushGP GP system4

(http://hampshire.edu/lspector/push.html) in conjunction with the QGAME
quantum computer simulator (http://hampshire.edu/lspector/qgame.html).

We first consider the 2-bit Smolin gate suggested by Smolin (personal com-
munication) and shown in Figure 1 (along with the matrices for most other
gates mentioned in this paper). Smolin suggested this gate, which obviously
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SMOLIN ≡

 1√
2

0 0 1√
2

0 1 0 0
0 0 1 0
1√
2

0 0 − 1√
2

 J(θ) ≡

 cos(θ) 0 0 sin(θ)
0 1 0 0
0 0 1 0

sin(θ) 0 0 −cos(θ)

 SWAP ≡

 1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


BS(θ) ≡

 cos(θ) 0 0 sin(θ)
0 0 1 0
0 1 0 0

sin(θ) 0 0 −cos(θ)

 CNOT ≡

 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 CPHASE ≡

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiα


Uθ ≡

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
H ≡ 1√

2

[
1 1
1 −1

]
QNOT ≡

[
0 1
1 0

]
SRN ≡

[
1√
2
− 1√

2
1√
2

1√
2

]
Figure 1. Matrices for gates used in this paper.

generates entanglement, as a potential counterexample to Bennett’s conjec-
ture, suggesting that this gate could produce one bit of entanglement per use
but that it could not communicate. We show here that the Smolin gate can
communicate one c-bit per use, either forward or backward, with no error and
no ancilla. The algorithm evolved by GP is as follows: Initialize both qubits
to 0 (qubit 0 is Alice’s and qubit 1 is Bob’s). Alice leaves her qubit unchanged
to send a 0 or flips it to send a 1. Execute: U−π

4
on qubit 1; QNOT on qubit

0; Uπ
8

on qubit 0; square-root-of-not (SRN) on qubit 0; SMOLIN on qubits
1 and 0; U−π

4
on qubit 1. Bob reads the bit from qubit 1 with no probability

of error. By symmetry, Bob and Alice’s roles could be reversed for backward
classical communication (B to A). Gate array diagrams for the algorithms in
this paper can be found at http://hampshire.edu/lspector/qcmc-figures.pdf.

We analyzed the evolved algorithm and, in conjunction with our work
on a generalized Smolin gate (below), realized that could be expressed more
simply as follows: Initialize both qubits to 0. Alice leaves qubit 0 in the 0
state to send a 0 or flips it to send a 1. Execute: Uπ

8
on qubit 0; QNOT on

qubit 1; U 3π
4

on qubit 1; SMOLIN on qubits 0 and 1; U 3π
4

on qubit 1. Bob
reads from qubit 1 with no probability of error.

We recognized the relation between π
8 in this algorithm and the π

4 im-
plicit in the Smolin gate and developed a family of gates generalizing this
angle. J(θ) (see Figure 1) defines a one-parameter family of gates, all square
roots of identity, for which the perfect 1 c-bit communication strategy is an
obvious generalization of the strategy we discovered for the Smolin gate. In
fact, the entire family of gates, which runs from CPHASE through Smolin
(at θ = π

4 ) to a version of SWAP as θ ranges from 0 to π
2 , can be used

for perfect communication, forward or back, using our strategy and no prior
entanglement or ancilla. The following scheme was discovered by human anal-
ysis (GP independently found equivalent results): Initialize both qubits to 0.
Alice leaves qubit 0 unchanged to send a 0 or flips it to send a 1. Execute:
U θj

2
on qubit 0, where θj is the value of θ used in J below; QNOT on qubit

1; U 3π
4

on qubit 1; J(θ) on qubits 0 and 1; U 3π
4

on qubit 1. Bob reads from
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Figure 2. Errors of some evolved strategies for communicating a bit through BS(θ) with no
ancilla and no prior entanglement for various values of θ. The worst case error of a scheme

found early in evolution is equivalent to
sin2(θ)

2
. A peculiar strategy (using different gates

for different θ) found in generation 764 does worse for small θ but better elsewhere.

qubit 1 with no probability of error.
After discovering that the Smolin gate could be used for exact communi-

cation we developed a new gate that appears to block communication while
nonetheless entangling; that is, it seems to fulfill Smolin’s initial intent. We
define BS(θ) as in Figure 1. This ranges from SWAP ×CPHASE through a
modified Smolin (SMOLIN ×SWAP ) to QNOT ×QNOT as θ ranges from
0 to π

2 . Clearly the π
2 endpoint, as a product of local transformations, can

neither communicate nor entangle. For other angles this gate can entangle
and has some communication potential. Search by GP has thus far discovered
error-free communication strategies through BS(θ) without ancilla only at θ
mod π = 0; see Figure 2.

Although we suspect that perfect communication through BS(π
4 ) is not

possible without prior entanglement, it is indeed possible with one bit of
prior entanglement. The following algorithm was found by GP: Initialize
both qubits to 0. Then provide entanglement by executing a Hadamard (H)
gate on qubit 0 and a controlled-not (CNOT ) gate with qubit 0 as the control
and qubit 1 as the target. Alice then leaves qubit 0 unchanged to send a 0 or
flips it to send a 1. Execute: H on qubit 0; H on qubit 1; BS(π

4 ) on qubits
0 and 1. Bob reads from qubit 1 with no probability of error. Note that Bob
may also use spin-flip choice to simultaneously send 1 bit to Alice.

Knowing that BS(π) can communicate one bit with no prior entangle-
ment, we employed GP to find out if a single execution of BS(π), in the
presence of one bit of prior entanglement, could communicate 2 bits without
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error. GP found a way, as follows: Initialize four qubits to 0. Then provide
prior entanglement by executing H on qubit 1 and CNOT with qubit 1 as the
control and qubit 3 as the target. Qubits 0 and 1 are Alice’s and qubits 2 and
3 are Bob’s. Alice leaves her qubits unchanged to send 0s or flips them to send
1s. Then execute: CPHASE(π) on qubit 0 (control) and qubit 1 (target);
BS(π) on qubits 2 and 1; CNOT on qubits 2 and 3; U 7π

4
on qubit 2. Bob

reads the message from qubits 2 and 3 with no probability of error. Qubit 2
will contain the message set by Alice in qubit 0, and qubit 3 will contain the
message set by Alice in qubit 1. This is equivalent to dense coding.

Our work on BS(θ) and J(θ) led us to an understanding of the impor-
tance of the eigenvalue/eigenvector expansion of these gates. In particular
there is a close relation between the communication potential of J(θ) and the
presence of an odd number of positive eigenvalues, as opposed to the lack of
communication potential of BS(θ) where there are an even number of positive
eigenvalues. Later analytical investigation shows that BS(θ) for 0 < θ < π

4
can always entangle a full e-bit of entanglement, too. And of course multi-
ple uses of BS(π

4 )—still in the absence of ancilla—can also communicate one
bit per gate. This is accomplished in two steps, by alternating a stage of
entanglement generation with a stage of the entanglement-consuming 2-way
communication mentioned above. But even this strategy fails to close the
apparent gap between the entanglement and communication power of BS(θ)
for 0 < θ < π

4 . The two fully entangled states one generates in this case are
non-orthogonal. They image distinct non-orthogonal product states whose
restoration in stage 2 cannot unerringly signal a c-bit to both Alice and Bob.
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Additional Figures

The remainder of this document contains additional figures from the poster
presentation “Communication Capacities of Some Quantum Gates, Discov-
ered in Part through Genetic Programming,” by Lee Spector and Herbert
J. Bernstein, presented at the Sixth International Conference on Quantum
Communication, Measurement, and Computing (QCMC), July 22–26, 2002,
on the campus of the Massachusetts Institute of Technology.
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Figure 3. Genetic programming found this zero-error, one c-bit communication protocol for
the Smolin gate.
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Figure 4. A simpler expression of the Smolin protocol that was discovered by genetic pro-
gramming.
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Figure 5. The strategy discovered for the Smolin gate works for any instance of J(θ) with
zero error.
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Figure 6. With one bit of prior entanglement we can communicate one c-bit through BS(π
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without error (discovered by genetic programming).
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Figure 7. With one bit of prior entanglement we can communicate two c-bits through BS(π)
without error (discovered by genetic programming).

Figure 8. Flowchart of the genetic programming algorithm.
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Figure 9. Graphic overview of the use of genetic programming for exploration of quantum
algorithms.
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Figure 10. Execution architecture of the Push programming language.
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Figure 11. Graphical user interface of the QGAME quantum computer simulator.
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