
Winner, Best Paper Award, AAAA Track, GECCO-2003

Emergence of Collective Behavior
in Evolving Populations of Flying

Agents

Lee Spector1, Jon Klein1,2, Chris Perry1, Mark Feinstein1

1 Cognitive Science
Hampshire College

Amherst, MA 01002, USA

2 Physical Resource Theory
Chalmers U. of Technology and Göteborg University

SE-412 96 Göteborg, Sweden

{lspector, jklein, perry, mfeinstein}@hampshire.edu

ABSTRACT

We demonstrate the emergence of collective behavior in two evo-
lutionary computation systems, one an evolutionary extension of a
classic (highly constrained) flocking algorithm and the other a rel-
atively un-constrained system in which the behavior of agents is
governed by evolved computer programs. We describe the systems
in detail, document the emergence of collective behavior, and argue
that these systems present new opportunities for the study of group
dynamics in an evolutionary context.

FULL CITATION

Spector, L., J. Klein, C. Perry, and M. Feinstein. 2003. Emergence of Collective
Behavior in Evolving Populations of Flying Agents. In E. Cantu-Paz, J.A. Fos-
ter, K. Deb, L.D. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. Standish, G.
Kendall, S. Wilson, M. Harman, J. Wegener, D. Dasgupta. M.A. Potter, A.C.
Schultz, K.A. Dowsland, N. Jonoska, J. Miller (Eds.), Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-2003), pp. 61–73. Berlin:
Springer-Verlag.

Emergence of Collective Behavior
in Evolving Populations of Flying Agents

Lee Spector1, Jon Klein1,2, Chris Perry1, and Mark Feinstein1

1 School of Cognitive Science, Hampshire College
Amherst, MA 01002, USA

2 Physical Resource Theory, Chalmers U. of Technology and Göteborg University
SE-412 96 Göteborg, Sweden

{lspector, jklein, perry, mfeinstein}@hampshire.edu
http://hampshire.edu/lspector

Abstract. We demonstrate the emergence of collective behavior in two
evolutionary computation systems, one an evolutionary extension of a
classic (highly constrained) flocking algorithm and the other a relatively
un-constrained system in which the behavior of agents is governed by
evolved computer programs. We describe the systems in detail, docu-
ment the emergence of collective behavior, and argue that these systems
present new opportunities for the study of group dynamics in an evolu-
tionary context.

1 Introduction

The evolution of group behavior is a central concern in evolutionary biology
and behavioral ecology. Ethologists have articulated many costs and benefits of
group living and have attempted to understand the ways in which these factors
interact in the context of evolving populations. For example, they have consid-
ered the thermal advantages that warm-blooded animals accrue by being close
together, the hydrodynamic advantages for fish swimming in schools, the risk of
increased incidence of disease in crowds, the risk of cuckoldry by neighbors, and
many advantages and risks of group foraging [4]. Attempts have been made to
understand the evolution of group behavior as an optimization process operat-
ing on these factors, and to understand the circumstances in which the resulting
optima are stable or unstable [6], [10]. Similar questions arise at a smaller scale
and at an earlier phase of evolutionary history with respect to the evolution of
symbiosis, multicellularity, and other forms of aggregation that were required to
produce the first large, complex life forms [5], [1].

Artificial life technologies provide new tools for the investigation of these is-
sues. One well-known, early example was the use of the Tierra system to study
the evolution of a simple form of parasitism [7]. Game theoretic simulations,
often based on the Prisoner’s Dilemma, have provided ample data and insights,
although usually at a level of abstraction far removed from the physical risks and
opportunities presented by real environments (see, e.g., [2], about which we say
a bit more below). Other investigators have attempted to study the evolution of

collective behavior in populations of flying or swimming agents that are similar
in some ways to those investigated here, with varying degrees of success [8], [13].
The latest wave of artificial life technology presents yet newer opportunities,
however, as it is now possible to conduct much more elaborate simulations on
modest hardware and in short time spans, to observe both evolution and behav-
ior in real time in high-resolution 3d displays, and to interactively explore the
ecology of evolving ecosystems.

In the present paper we describe two recent experiments in which the emer-
gence of collective behavior was observed in evolving populations of flying agents.
The first experiment used a system, called SwarmEvolve 1.0, that extends a
classic flocking algorithm to allow for multiple species, goal orientation, and
evolution of the constants in the hard-coded motion control equation. In this
system we observed the emergence of a form of collective behavior in which
species act similarly to multicellular organisms. The second experiment used
a later and much-altered version of this system, called SwarmEvolve 2.0, in
which the behavior of agents is controlled by evolved computer programs instead
of a hard-coded motion control equation.3 In this system we observed the emer-
gence of altruistic food-sharing behaviors and investigated the link between this
behavior and the stability of the environment.

Both SwarmEvolve 1.0 and SwarmEvolve 2.0 were developed within
breve, a simulation package designed by Klein for realistic simulations of de-
centralized systems and artificial life in 3d worlds [3]. breve simulations are
written by defining the behaviors and interactions of agents using a simple
object-oriented programming language called steve. breve provides facilities
for rigid body simulation, collision detection/response, and articulated body sim-
ulation. It simplifies the rapid construction of complex multi-agent simulations
and includes a powerful OpenGL display engine that allows observers to ma-
nipulate the perspective in the 3d world and view the agents from any location
and angle. The display engine also provides several “special effects” that can
provide additional visual cues to observers, including shadows, reflections, light-
ing, semi-transparent bitmaps, lines connecting neighboring objects, texturing
of objects and the ability to treat objects as light sources. More information
about breve can be found in [3]. The breve system itself can be found on-line
at http://www.spiderland.org/breve.

In the following sections we describe the two SwarmEvolve systems and the
collective behavior phenomena that we observed within them. This is followed
by some brief remarks about the potential for future investigations into the
evolution of collective behavior using artificial life technology.

3 A system that appears to be similar in some ways, though it is based on 2d
cellular automata and the Santa Fe Institute Swarm system, is described at
http://omicrongroup.org/evo/.

2 SwarmEvolve 1.0

One of the demonstration programs distributed with breve is swarm, a simu-
lation of flocking behavior modeled on the “boids” work of Craig W. Reynolds
[9]. In the breve swarm program the acceleration vector for each agent is de-
termined at each time step via the following formulae:

V = c1V1 + c2V2 + c3V3 + c4V4 + c5V5

A = m(
V
|V|)

The ci are constants and the Vi are vectors determined from the state of the
world (or in one case from the random number generator) and then normalized
to length 1. V1 is a vector away from neighbors that are within a “crowding”
radius, V2 is a vector toward the center of the world, V3 is the average of the
agent’s neighbors’ velocity vectors, V4 is a vector toward the center of gravity
of all agents, and V5 is a random vector. In the second formula we normalize
the resulting velocity vector to length 1 (assuming its length is not zero) and
set the agent’s acceleration to the product of this result and m, a constant that
determines the agent’s maximum acceleration. The system also models a floor
and hard-coded “land” and “take off” behaviors, but these are peripheral to the
focus of this paper. By using different values for the ci and m constants (along
with the “crowding” distance, the number of agents, and other parameters) one
can obtain a range of different flocking behaviors; many researchers have explored
the space of these behaviors since Reynolds’s pioneering work [9].

SwarmEvolve 1.0 enhances the basic breve swarm system in several
ways. First, we created three distinct species4 of agents, each designated by a
different color. As part of this enhancement we added a new term, c6V6, to the
motion formula, where V6 is a vector away from neighbors of other species that
are within a “crowding” radius. Goal-orientation was introduced by adding a
number of randomly moving “energy” sources to the environment and imposing
energy dynamics. As part of this enhancement we added one more new term,
c7V7, to the motion formula, where V7 is a vector toward the nearest energy
source. Each time an agent collides with an energy source it receives an energy
boost (up to a maximum), while each of the following bears an energy cost:

– Survival for a simulation time step (a small “cost of living”).
– Collision with another agent.
– Being in a neighborhood (bounded by a pre-set radius) in which represen-

tatives of the agent’s species are outnumbered by representatives of other
species.

– Giving birth (see below).
4 “Species” here are simply imposed, hard-coded distinctions between groups of agents,

implemented by filling “species” slots in the agent data structures with integers
ranging from 0 to 2. This bears only superficial resemblance to biological notions of
“species.”

The numerical values for the energy costs and other parameters can be ad-
justed arbitrarily and the effects of these adjustments can be observed visually
and/or via statistics printed to the log file; values typical of those that we used
can be found in the source code for SwarmEvolve 1.0.5

As a final enhancement we leveraged the energy dynamics to provide a fitness
function and used a genetic encoding of the control constants to allow for evolu-
tion. Each individual has its own set of ci constants; this set of constants controls
the agent’s behavior (via the enhanced motion formula) and also serves as the
agent’s genotype. When an agent’s energy falls to zero the agent “dies” and is
“reborn” (in the same location) by receiving a new genotype and an infusion
of energy. The genotype is taken, with possible mutation (small perturbation of
each constant) from the “best” current individual of the agent’s species (which
may be at a distant location).6 We define “best” here as the product of energy
and age (in simulation time steps). The genotype of the “dead” agent is lost,
and the agent that provided the genotype for the new agent pays a small en-
ergy penalty for giving birth. Note that reproduction is asexual in this system
(although it may be sexual in SwarmEvolve 2.0).

The visualization system presents a 3d view (automatically scaled and tar-
geted) of the geometry of the world and all of the agents in real time. Commonly
available hardware is sufficient for fluid action and animation. Each agent is a
cone with a pentagonal base and a hue determined by the agent’s species (red,
blue, or purple). The color of an agent is dimmed in inverse proportion to its
energy — agents with nearly maximal energy glow brightly while those with
nearly zero energy are almost black. “Rebirth” events are visible as agents flash
from black to bright colors.7 Agent cones are oriented to point in the direction
of their velocity vectors. This often produces an appearance akin to swimming
or to “swooping” birds, particularly when agents are moving quickly. Energy
sources are flat, bright yellow pentagonal disks that hover at a fixed distance
above the floor and occasionally glide to new, random positions within a fixed
distance from the center of the world. An automatic camera control algorithm
adjusts camera zoom and targeting continuously in an attempt to keep most of
the action in view.

Figure 1 shows a snapshot of a typical view of the SwarmEvolve world. An
animation showing a typical action sequence can be found on-line.8

SwarmEvolve 1.0 is simple in many respects but it nonetheless exhibits
rich evolutionary behavior. One can often observe the species adopting different
strategies; for example, one species often evolves to be better at tracking quickly
moving energy sources, while another evolves to be better at capturing static en-

5 http://hampshire.edu/lspector/swarmevolve-1.0.tz
6 The choice to have death and rebirth happen in the same location facilitated, as an

unanticipated side effect, the evolution of the form of collective behavior described
below. In SwarmEvolve 2.0, among many other changes, births occur near parents.

7 Birth energies are typically chosen to be random numbers in the vicinity of half of
the maximum.

8 http://hampshire.edu/lspector/swarmevolve-ex1.mov

Fig. 1. A view of SwarmEvolve 1.0 (which is in color but will print black and white
in the proceedings). The agents in control of the pentagonal energy source are of the
purple species, those in the distance in the upper center of the image are blue, and a
few strays (including those on the left of the image) are red. All agents are the same
size, so relative size on screen indicates distance from the camera.

ergy sources from other species. An animation demonstrating evolved strategies
such as these can be found on-line.9

3 Emergence of Collective Behavior in SwarmEvolve 1.0

Many SwarmEvolve runs produce at least some species that tend to form static
clouds around energy sources. In such a species, a small number of individuals
will typically hover within the energy source, feeding continuously, while all
of the other individuals will hover in a spherical area surrounding the energy
source, maintaining approximately equal distances between themselves and their
neighbors. Figure 2 shows a snapshot of such a situation, as does the animation
at http://hampshire.edu/lspector/swarmevolve-ex2.mov; note the behavior of
the purple agents.

We initially found this behavior puzzling as the individuals that are not
actually feeding quickly die. On first glance this does not appear to be adaptive
behavior, and yet this behavior emerges frequently and appears to be relatively
stable. Upon reflection, however, it was clear that we were actually observing
the emergence of a higher level of organization.

When an agent dies it is reborn, in place, with a (possibly mutated) version
of the genotype of the “best” current individual of the agent’s species, where
9 http://hampshire.edu/lspector/swarmevolve-ex2.mov

Fig. 2. A view of SwarmEvolve 1.0 in which a cloud of agents (the blue species) is
hovering around the energy source on the right. Only the central agents are feeding;
the others are continually dying and being reborn. As described in the text this can be
viewed as a form of emergent collective organization or multicellularity. In this image
the agents controlling the energy source on the left are red and most of those between
the energy sources and on the floor are purple.

quality is determined from the product of age and energy. This means that the
new children that replace the dying individuals on the periphery of the cloud will
be near-clones of the feeding individuals within the energy source. Since the cloud
generally serves to repel members of other species, the formation of a cloud is a
good strategy for keeping control of the energy source. In addition, by remaining
sufficiently spread out, the species limits the possibility of collisions between its
members (which have energy costs). The high level of genetic redundancy in the
cloud is also adaptive insofar as it increases the chances that the genotype will
survive after a disruption (which will occur, for example, when the energy source
moves).

The entire feeding cloud can therefore be thought of as a genetically coupled
collective, or even as a multicellular organism in which the peripheral agents
act as defensive organs and the central agents act as digestive and reproductive
organs.

4 SwarmEvolve 2.0

Although SwarmEvolve 2.0 was derived from SwarmEvolve 1.0 and is su-
perficially similar in appearance, it is really a fundamentally different system.

Fig. 3. A view of SwarmEvolve 2.0 in which energy sources shrink as they are con-
sumed and agents are “fatter” when they have more energy.

The energy sources in SwarmEvolve 2.0 are spheres that are depleted (and
shrink) when eaten; they re-grow their energy over time, and their signals (sensed
by agents) depend on their energy content and decay over distance according to
an inverse square law. Births occur near mothers and dead agents leave corpses
that fall to the ground and decompose. A form of energy conservation is main-
tained, with energy entering the system only through the growth of the energy
sources. All agent actions are either energy neutral or energy consuming, and the
initial energy allotment of a child is taken from the mother. Agents get “fatter”
(the sizes of their bases increase) when they have more energy, although their
lengths remain constant so that length still provides the appropriate cues for
relative distance judgement in the visual display. A graphical user interface has
also been added to facilitate the experimental manipulation of system parame-
ters and monitoring of system behavior.

The most significant change, however, was the elimination of hard-coded
species distinctions and the elimination of the hard-coded motion control for-
mula (within which, in SwarmEvolve 1.0, only the constants were subject to
variation and evolution). In SwarmEvolve 2.0 each agent contains a computer
program that is executed at each time step. This program produces two values
that control the activity of the agent:

1. a vector that determines the agent’s acceleration,
2. a floating-point number that determines the agent’s color.

Agent programs are expressed in Push, a programming language designed
by Spector to support the evolution of programs that manipulate multiple data
types, including code; the explicit manipulation of code supports the evolution
of modules and control structures, while also simplifying the evolution of agents
that produce their own offspring rather than relying on the automatic application
of hand-coded crossover and mutation operators [11], [12].

Table 1. Push instructions available for use in SwarmEvolve 2.0 agent programs

Instruction(s) Description

DUP, POP, SWAP, REP, =, NOOP, Standard Push instructions
PULL, PULLDUP, CONVERT, CAR, (See [11])
CDR, QUOTE, ATOM, NULL, NTH,
+, ∗, /, >, <, NOT, AND, NAND
OR, NOR, DO*, IF

VectorX, VectorY, VectorZ, Vector access, construction,
VPlus, VMinus, VTimes, VDivide, and manipulation
VectorLength, Make-Vector

RandI, RandF, RandV, RandC Random number, vector, and
code generators

SetServoSetpoint, SetServoGain, Servo-based persistent
Servo memory

Mutate, Crossover Stochastic list manipulation
(parameters from stacks)

Spawn Produce a child with code
from code stack

ToFood Vector to energy source
FoodIntensity Energy of energy source

MyAge, MyEnergy, MyHue, Information about self
MyVelocity, MyLocation,
MyProgram

ToFriend, FriendAge, FriendEnergy, Information about closest
FriendHue, FriendVelocity, agent of similar hue
FriendLocation, FriendProgram

ToOther, OtherAge, OtherEnergy, Information about closest
OtherHue, OtherVelocity, agent of non-similar hue
OtherLocation, OtherProgram

FeedFriend, FeedOther Transfer energy to closest
agent of indicated category

The Push instructions available for use in agent programs are shown in Table
1. In addition to the standard Push instructions, operating on integers, floating
point numbers, Boolean values, and code expressions, instructions were added
for the manipulation of vectors and for SwarmEvolve-specific sensors and ac-
tions. Note that two sets of instructions are provided for getting information

about other agents in the world, the “friend” instructions and the “other” in-
structions. Each “friend” instruction operates on the closest agent having a color
similar to the acting agent (currently defined as having a hue within 0.1 in a
hue scale that ranges from 0.0 to 1.0). Each “other” instruction operates on
the closest agent having a color that is not similar to the acting agent.10 In
some cases, in particular when an agent sets its color once and never changes it,
the “friend” instructions will be likely to operate on relatives, since presumably
these relatives would set their colors similarly. But since agents can change their
colors dynamically each time-step, a “friend” is not necessarily a relative and
a relative is not necessarily a “friend.” The term “friend” here should be taken
with a grain of salt; the friend/other distinction provides a way for agents to
distinguish among each other based on color, but they may use this capability
in a variety of ways.

SwarmEvolve 2.0 is an “autoconstructive evolution” system, in which agents
are responsible for producing their own offspring and arbitrary reproductive
mechanisms may evolve [11]. Whenever an agent attempts to produce a child
(by executing the Spawn instruction), the top of its code stack is examined. If
the expression is empty (which happens rarely once the system has been running
for some time) then a newly generated, random program is used for the child.
If the expression is not empty then it is used as the child’s program, after a
possible mutation. The probability of mutation is also determined by the parent.
A random number is chosen from a uniform distribution from zero to the absolute
value of the number on top of the Integer stack; if the chosen number is zero
then a mutation is performed. The mutation operation is similar to that used
in traditional genetic programming: a random sub-expression is replaced with a
newly generated random expression. Note that the program access instructions
provide the means for agents to produce their children asexually or sexually,
potentially using code from many “mates.”

At the beginning of a SwarmEvolve 2.0 run most of the agents, which
will have been generated randomly, will not have programs that cause them
to seek food and produce offspring; they will therefore die rather quickly and
the population will plummet. Whenever the population drops below a user-
defined threshold the system injects new random agents into the world. With
the parameters used here, however, it usually takes only a few hundred time-steps
before “reproductive competence” is achieved — at this point the population is
self-sustaining as there are a large number of agents capable of reproducing.

SwarmEvolve 2.0 is a complex program with many parameters, not all of
which can be addressed in the scope of this short paper. However, the source
code for the system (including the parameters used in the experiments described
below) is available on-line.11 Figure 3 shows a typical scene from SwarmEvolve
2.0; an animation of a typical action sequence can be found on-line.12

10 If there are no other agents meeting the relevant criterion then each of these instruc-
tions operates on the acting agent itself.

11 http://hampshire.edu/lspector/swarmevolve-2.0.tz
12 http://hampshire.edu/lspector/swarmevolve2-ex1.mov

5 Emergence of Collective Behavior in SwarmEvolve 2.0

The last two instructions listed in Table 1, FeedFriend and FeedOther, provide a
means for agents to transfer energy to one another (to share food). Each of these
instructions transfers a small increment of energy (0.01 out of a possible total
of 1.0), but only under certain conditions which we varied experimentally (see
below). Ordinarily, the use of these instructions would seem to be maladaptive,
as they decrease the energy of the acting agents. The use of a Feed instruction
thereby makes the feeding agent both more vulnerable and less likely to produce
children.

Might there nonetheless be some circumstances in which it is adaptive for
agents to feed one another? We set out to investigate this question by conducting
runs of SwarmEvolve 2.0 and monitoring the proportion of agents that feed or
attempt to feed other agents.13 Because the Feed instructions will occasionally
occur in randomly generated code and in mutations, we expect every run to
produce some number of calls to these instructions. We expect, however, that
the proportion of food sharing agents, when averaged over a large number of
runs, will reflect the extent to which food sharing is adaptive.

We hypothesized, for example, that dynamic, unstable environments might
provide a breeding ground for altruistic feeding behavior. We reasoned as follows,
from the perspective of a hypothetical agent in the system: “If the world is stable,
and everyone who’s smart enough to find food can reliably get it, then I should
get it when I can and keep it to myself. If the world is unstable, however, so that
I’ll sometimes miss the food despite my best efforts, then it’d be better for me
if everyone shared. Food from others would help to buffer the effects of chance
events, and I’d be willing to share food when I have it in order to secure this
kind of insurance.” Of course one shouldn’t put too much faith in such “just so
stories,” but they can sometimes be a guide for intuitions. In the present case
they led us to conduct a simple experiment in which we varied the stability of the
energy sources and the sharing conditions in SwarmEvolve 2.0 and measured
the proportion of food-sharing agents that resulted.

We conducted a total of 1,625 runs under a variety of stability and sharing
conditions. We used values of the “stability” parameter ranging from 20 (unsta-
ble) to 2,000 (highly stable). The stability parameter governs the frequency with
which energy sources begin to drift to new, random locations; the probability
that a particular energy source will begin to drift to a new location in any partic-
ular time step is 1

stability . We collected data on four different sharing conditions.
In all of the conditions the potential recipient is the closest agent of similar or
dissimilar color, depending on whether the agent is executing the FeedFriend or
FeedOther instruction respectively. In all cases the feeding is conditional on the
recipient having less energy than the provider. In “waste” sharing the energy
is all lost in the transfer, and the recipient receives nothing; we included this

13 For the analyses presented below we did not distinguish between FeedFriend and
FeedOther executions; we explored the distinction briefly but there were no obvious
patterns in the data.

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

10 100 1000 10000
Environmental Stability

Waste Sharing

✸

✸
✸

✸

✸
Charity Sharing

+ + +

+

+
Mutual Sharing✷

✷

✷

✷

✷
Noop Sharing

×

×

×
×

×

Fig. 4. Proportion of agents that share food (on the y axis) graphed vs. environmental
(energy source) stability (on the x axis) for four sharing conditions (see text).

sharing condition as a control. In “charity” sharing the recipient receives all of
the energy, regardless of whether or not the recipient itself shares energy. In
“mutual” sharing the recipient receives all of the energy, but only if it has itself
shared energy at least once in its life. Finally, in “noop” sharing no energy is
transferred or lost; this is another control.

We collected data only from runs with at least 5,300 consecutive time-steps
of reproductive competence — there were 936 runs meeting this condition. For
qualifying runs we then collected data over the last 5,000 of time-steps, divided
into 100-time-step “epochs.” At each epoch boundary we took a census, recording
the proportion of living agents that have attempted to share energy with another
agent on at least one occasion.

Our results are graphed in Figure 4. Our hypothesis that dynamic, unstable
environments might provide a breeding ground for altruistic feeding behavior was
only partially confirmed; indeed, the most stable environments also appear to be
conducive to food sharing. To the extent that the hypothesis is confirmed it is
interesting to note that a similar effect, involving the preference for cooperation
in unpredictable environments, has been observed in a radically different, game-
theoretic context [2].

The “waste” sharing control produced less food sharing than all of the other
sharing conditions; this is what one would expect, as “waste” sharing has costs
but no possible benefits. The “noop” sharing control, on the other hand, which
has no costs and no benefits, produced slightly more sharing than all other con-
ditions at low stability. Note, however, that both “charity” sharing and “mutual”

sharing, which have both costs and potential benefits, produced more sharing
than both of the controls at several stability settings. There is substantial vari-
ance in the data, and the statistical significance of some of the differences visible
in the graph is questionable. In any event we can say that the amount of sharing
in the “charity” and “mutual” conditions was, under several stability settings,
either greater than or at least not significantly less than the amount of sharing
in the “noop” control. This by itself is evidence that altruistic feeding behavior
is adaptive in the environment under study. Many of the other differences in the
data are clearly significant, and the trends indicate that collective feeding behav-
iors do arise in some circumstances and not in others. These simulations provide
a rich framework for investigating the relations between collective behavior and
evolution, which we have only begun to explore.

6 Conclusions and Future Work

The emergence of collective behavior is an intriguing and at times counter-
intuitive phenomenon, an understanding of which will have significant impacts
on the study of living systems at all levels, from symbiotic microbes to hu-
man societies. The work presented in this paper demonstrates that new artificial
life technologies provide new tools for the synthetic investigation of these phe-
nomena, complementing the well-established analytic methods of evolutionary
biology and behavioral ecology.

In particular we demonstrated the emergence of a simple form of multicellu-
lar organization in evolving populations of agents based on a traditional flocking
algorithm. We also demonstrated the emergence of altruistic feeding behavior
in a system that is considerably less constrained, as the agents are controlled
by evolved computer programs. We believe that this latter system provides sig-
nificant new avenues of study by allowing for agents of arbitrary complexity to
evolve within complex, dynamic worlds.

Our own plans for this work in the near future include a systematic explo-
ration of the effects of various parameter changes on the emergence of collec-
tive behavior. We are making the source code for SwarmEvolve 1.0 and 2.0
freely available in the hopes that others will also contribute to this process; see
http://hampshire.edu/lspector/swarmevolve-1.0.tz and
http://hampshire.edu/lspector/swarmevolve-2.0.tz.

Acknowledgments

Raymond Coppinger, Rebecca Neimark, Wallace Feurzeig, Oliver Selfridge, and
three anonymous reviewers provided comments that helped to improve this work.
This effort was supported by the Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory, Air Force Materiel Command,
USAF, under agreement number F30502-00-2-0611, and by NSF grant EIA-
0216344.

References

1. Bonner, J.T.: The evolution of complexity by means of natural selection. Princeton
University Press, Princeton, NJ (1988)

2. Eriksson, A., Lindgren, K.: Cooperation in an Unpredictable Environment. Proc.
Eighth Intl. Conf. on Artificial Life. The MIT Press, Cambridge, MA (2002) 394–
399.

3. Klein, J.: breve: a 3D Environment for the Simulation of Decentralized Systems and
Artificial Life. Proc. Eighth Intl. Conf. on Artificial Life. The MIT Press, Cambridge,
MA (2002) 329–334. http://www.spiderland.org/breve/breve-klein-alife2002.pdf

4. Krebs, J.R., Davies, N.B.: An Introduction to Behavioural Ecology. 3rd edn. Black-
well Scientific Publications LTD, Oxford London Edinburgh Boston Melbourne Paris
Berlin Vienna (1981)

5. Maynard Smith, J., Szathmáry, E.: The origins of life. Oxford University Press
(1999)

6. Pulliam, H.R., Caraci, T.: Living in groups: is there an optimal group size? In
J.R. Krebs and N.B. Davies (eds), Behavioral Ecology: An Evolutionary Approach,
2nd edn. Blackwell Scientific Publications LTD, Oxford London Edinburgh Boston
Melbourne Paris Berlin Vienna (1984) 122–147

7. Ray, T.S.: Is it Alive or is it GA. Proc. Fourth Intl. Conf. on Genetic Algorithms.
Morgan Kaufmann, San Mateo, CA (1991) 527–534

8. Reynolds, C.W.: An Evolved, Vision-Based Behavioral Model of Coordinated Group
Motion. In From Animals to Animats 2: Proc. Second Intl. Conf. on Simulation of
Adaptive Behavior. The MIT Press, Cambridge, MA (1993) 384–392

9. Reynolds, C.W.: Flocks, Herds, and Schools: A Distributed Behavioral Model. Com-
puter Graphics 24:4 (1987) 25–34

10. Silby, R.M.: Optimal group size is unstable. Anim. Behav. 31 (1983) 947–948
11. Spector, L., Robinson, A.: Genetic Programming and Autoconstructive Evolution

with the Push Programming Language. Genetic Programming and Evolvable Ma-
chines 3:1 (2002) 7–40

12. Spector, L.: Adaptive Populations of Endogenously Diversifying Pushpop Organ-
isms are Reliably Diverse. Proc. Eighth Intl. Conf. on Artificial Life. The MIT Press,
Cambridge, MA (2002) 142–145

13. Zaera, N., Cliff, D., Bruten, J.: (Not) Evolving Collective Behaviours in Synthetic
Fish. From Animals to Animats 4: Proc. Second Intl. Conf. on Simulation of Adap-
tive Behavior. The MIT Press, Cambridge, MA (1996)

