To appear as:

Spector, L., and J. Klein. 2005. Trivial Geography in Genetic
Programming. In Genetic Programming Theory and Practice 111,
edited by T. Yu, R.L. Riolo, and B. Worzel, pp. 109-124. Boston,
MA: Kluwer Academic Publishers.

Chapter 8

TRIVIAL GEOGRAPHY
IN GENETIC PROGRAMMING

Lee Spector' and Jon Klein',?

1Cognitive Science, Hampshire College, Amherst, MA, 01002-3359 USA.; 2Physical Resource
Theory, Chalmers University of Technology & Goteborg University, Goteborg, Sweden.

Abstract Geographical distribution is widely held to be a major determinant of evolution-
ary dynamics. Correspondingly, genetic programming theorists and practitioners
have long developed, used, and studied systems in which populations are struc-
tured in quasi-geographical ways. Here we show that aremarkably simple version
of this idea produces surprisingly dramatic improvements in problem-solving
performance on a suite of test problems. The scheme is trivial to implement, in
some cases involving little more than the addition of a modulus operation in the
population access function, and yet it provides significant benefits on all of our
test problems (ten symbolic regression problems and a quantum computing prob-
lem). We recommend the broader adoption of this form of “trivial geography” in
genetic programming systems.

Keywords: geography, locality, demes, symbolic regression, quantum computing

1. Geography

All biological populations are distributed in space, with the result that some
organisms are close neighbors while others live at great distances from one
another. It has long been recognized that such geographical distribution, even
in uniform environments, can influence evolutionary dynamics in significant and
complex ways (Mayr, 1942, Wright, 1945, Avise, 2000, Lieberman et al., 2005).
In particular, positive influences of geographical distribution on the evolution of
individuals with certain desirable features (e.g. altruistic behavior) have been
demonstrated in both analytical models and simulations (Eshel, 1972, Nowak
and May, 1992, Axelrod et al., 2004, Spector and Klein, 2005a).

2 GENETIC PROGRAMMING THEORY AND PRACTICE IlI

It is therefore not surprising that many evolutionary cotagion systems
also model some form of geography, locating their evolvimdjviduals within
grid-based or continuous virtual spaces. This is a pagibulnatural move
for systems that are designed to model aspects of naturaysems (Ray,
1991, Holland, 1995, Ofria and Wilke, 2004). But it is alsoapplar move
in problem-solving evolutionary computation systemshia ¢ontext of which
geography is often justified by the ways in which it can be usedhaintain
population diversity.

Standard genetic algorithms and genetic programming tgeba are non-
spatial in their most common formulations (Holland, 1998zK, 1992, Banzhaf
etal., 1998). However, many researchers and practitiooatmely divide their
populations in to discrete or overlapping sub-populatiafien calleddemes
that provide a form of geography (Collins and Jefferson,1)9fh these systems
selection and competition takes place locally but seleicidisliduals occasion-
ally mate or migrate across demes. Because the computdtkimg place
in different demes are generally independent—particylarthen the demes
are non-overlapping, in which case they are sometimesdcaitands”—one
can often run them on independent processors and reap bdrafitof paral-
lelism and of the diversity maintenance supported by ggabgcal distribution
(Maruyama et al., 1993, Nowostawski and Poll, 1999, Andeléoza, 1996).

Demes have been demonstrated, in certain cases, to impahem solving
performance (see e.g. (Collins and Jefferson, 1991, Fdezaet al., 2003)). A
wide range of connectivity patterns and migration reginastieen discussed in
the literature, and there are initial results linking sfie@onnectivity patterns
to expected performance on specific problems (Bryden 2@05).

In this chapter we present a form of geography that is coredudle sim-
pler than those generally used in genetic programming.t@ual geography
model is a 1-dimensional “overlapping neighborhoods” nhtitk implements
a concept of geography similar to that used in many artifidfialsimulations
(Ray, 1991, Ofria and Wilke, 2004, Axelrod et al., 2004). dtalso similar
in many respects to the “local selection” genetic algoriinCollins and Jef-
ferson (1991); although their work is often cited as ingmrafor the use of
isolated demes with migration, the individuals in their rabdere actually
distributed across 1-dimensional or 2-dimensional gnaith one individual
per grid location, and selection and mating were perfornrmelddal areas of
the grid. For example, short random walks through the gricevased to pair
mates. A more recent genetic programming model, known aisilae or “dif-
fusion” genetic programming, locates individuals on a @sional grid and
allows interactions only between immediate neighborst@yetl997, Folino
etal., 1999, Folino et al., 2003). Several other modelslifing related notions
of locality have been used in other genetic programming waftkn in the con-

Trivial Geography in Genetic Programming 3

text of additional innovations (e.g. co-evolution or awostructive evolution)
(D’haeseleer and Bluming, 1994, Spector, 2001).

Trivial geography requires no explicit representation @es, connectivity
patterns, or migration rates. It requires only minimal desto a standard
genetic programming system and a single new parameter. dégtign we
set out to investigate was whether such a minimal form of gaalyy could
make much of a difference with respect to problem-solvindgsmance, and
if so what that difference might be. Our data show that trigieography does
indeed appear to make a substantial positive differencprawng problem-
solving performance.

In the next section we describe our concept of trivial geplyyaand its sim-
ple implementation. This is followed by two sections dent@img the utility
of trivial geography, first on a suite of ten symbolic regresgproblems and
then on a difficult problem in quantum computing. We followsl demonstra-
tions with a general discussion and a recommendation kil yeography be
incorporated into genetic programming systems more byoadl|

2. Trivial Geography

In our trivial geography scheme the population is viewed adny a 1-
dimensional spatial structure—actually a circle, as wesiter the first and
last locations to be adjacent. The production of an indigidor location:
is permitted to involve only parents from's local neighborhood, where the
neighborhood is defined as all individuals within distafté&he neighborhood
radius) ofi. Aside from this restriction no changes are made to the genet
programming system.

This scheme can be applied to most standard genetic progrgrsys-
tems with very little effort. Since most systems store tipapulations in 1-
dimensional data structures (arrays or lists) anywayhall is required is that
one restrict the selection of parents relative to the indexahild.

To avoid conflation of geography and genetic operators wenasshat ge-
netic operators are chosen independently of location. uRrably the opera-
tors are chosen randomly, with biases incorporated intsahdom choice to
achieve desired operator ratios. This is indeed a commoleimgntation strat-
egy (used, for example, in E€Jalthough in some implementations (e.g. that
described in (Koza, 1992)) a particular genetic operatapdied to produce
the first segment of the population, another operator isiegpd produce the
next segment, and so on. Under such an implementation opgreduld be re-
stricted to certain geographic areas and one can imagihetthage dynamics

Ihttp://cs.gmu.edu/"eclab/projects/ecj/

4 GENETIC PROGRAMMING THEORY AND PRACTICE IlI

Table 1-1. Symbolic regression problems used for tests of trivial gaply.

Problem

y=8x>4+3z% +x
y="Te3— 32>+ 17z
y = 5z + 1222 — 3z
y . R R
y=a>—222 -z
y=8z"+323 4+ 22 +6
y = Tz* — 62 + 32° + 170 — 3
y =55 —2z° — 52 + 322 +5
y=a'+a3 42> +x -8

0 y=2a%—2z*+2%2-2

P OoOo~NO OO~ WNR| H#

would result; one would probably want to convert first to kimaindependent
operator selection, which is itself usually a simple modiian.

While trivial geography can be used with various selectiohemes it is
particularly simple to describe in terms of tournamentc@e. In this context
it can be implemented simply by changing the function thabsles a random
individual to participate in atournament. Whereas theddasthscheme chooses
each such individual randomly from the entire populatiortrivial geography
we choose each such individual from the neighborhood of dleation for
which we are creating a new individual. In particular we cd®anly from
individuals with indices in the range — R, i + R), wherei is the index of the
location for which we are creating an individudt,is aradius parameter, and
we “wrap around” from the bottom to the top of the range ane viers& The
modification to restrict the range of choices is indeed oftemal, involving
only one or a few lines of code.

3. Trivial Geography Applied to Symbolic Regression

We tested trivial geography on the ten arbitrarily chosemtsylic regres-
sion problems listed in Table 1-1. We used the PushGP gepetizamming
system, which evolves programs in the Push language (Sp26fil, Spector
and Robinson, 2002, Spector et al., 20§)EBush is a multi-type, stack-based
programming language that supports the evolution of nowetrol structures
through explicit code and control manipulation, but nondhefse novel fea-

2|In some programming languages this “wrapping around” caadsemplished with a single call to the
modulus function.
Shttp://hampshire.edu/lspector/push.html

Trivial Geography in Genetic Programming 5

Table 1-2. Parameters for symbolic regression tests of trivial ggalgyaThe instruction set is
limited to simple integer manipulation and integer stackipalation. TheINPUT instruction
pushes the current input) value onto the integer stack.

Problems Symbolic regression problems listed in Table 1-1.
Input () values 0-9
Fitness Sum of absolute values of errors for all inputs.
Runs per problem 115 with trivial geography, 115 withouti&iigeography.
Radius R) 10
Population size 2000
Crossover rate 40%
Mutation rate 40%, fair mutation (Crawford-Marks and Spec2002)
Duplication rate 20%
Tournament size 7
Maximum generations 200
Initial program size limit 100
Child program size limit 100
Program evaluation limit 100
Ephemeral random constants inte¢en 0, 10)
Instructions INTEGER.+, INTEGER.-, INTEGER.*, INTEGER./,

INTEGER.POP, INTEGER.DUP, INTEGER.SWAP,
INTEGER.SHOVE, INTEGER.YANK,
INTEGER.YANKDUP, INPUT

tures were used in the present study. For the experimerageehere we used
only a minimal integer-oriented instruction set, so thatH&P was acting here
much like any standard genetic programming systeWle have no reason to
believe that the remaining differences between PushGP thied genetic pro-
gramming systems contributed to our results in any sigmtigeay. The full
set of parameters used for our runs is presented in Table 1-2.

We examined the results in two ways, looking both at the “cotaional ef-
fort” required to find a solution (Koza, 1994) and the mean fieess across all
runs on a particular problem. Computational effort was coteg as described
by Koza (pp. 99-103), first calculating()/, i), the cumulative probability of
success by generatiomsing a population of siz# (this is just the total num-
ber of runs that succeeded on or beforeithegeneration, divided by the total
number of runs conductedJ (M, i, z), the number of individuals that must be
processed to produce a solution by generaitiaith probability greater tham
(by conventionz =99%) is then calculated as:

4We used the version of PushGP distributed with the Brevelsiion environment (Klein, 2002). Breve is
available fromhttp://www.spiderland.org/breve.

6 GENETIC PROGRAMMING THEORY AND PRACTICE IlI

Table 1-3. Successes/runs and computational efforts for the symimgiession problems with
and without trivial geography.

Successes/runs without Effort without ~ Successes/ruhs wi Effort with
trivial geography trivial geography trivial geography tial geography

1 67/115 600, 000 113/115 316, 000
2 24/115 3,024, 000 64/115 2,176, 000
3 8/114 12, 566, 000 50/115 3,160, 000
4 115/115 36,000 115/115 30,000
5 106/115 132, 000 115/115 66, 000
6 17/115 5,928, 000 76/113 1, 840, 000
7 2/114 54, 810, 000 6/114 38,406, 000
8 0/113 00 1/113 144,282, 000
9 73/113 848, 000 113/113 276, 000
10 101/113 280, 000 113/113 164, 000

. . log(1 — z)
I(M,i,z) = M * (i+ 1) % [log(l —P(M,i))—‘

The minimum ofI (M, i, z) over all values of is defined to be the “compu-
tational effort” required to solve the problem.

The computational efforts calculated from @2ir283 runs (115 runs for
each of the2 conditions for each of th&0 problems, with17 runs lost to
miscellaneous system problems) are shown in Table 1-3. Lefferts are,
of course, better, so this data demonstrates that triviefyigghy provides a
considerable benefit on all of the symbolic regression ksl

Because the problems vary widely in difficulty we also showkigure 1-1,
a graph of these results normalized independently for eeabigm, with the
effort for the standard configuration (without trivial geaghy) set tal 00; the
values for the runs with trivial geography therefore intiicéhe computational
effort as a percentage of that in the standard configurafioom this graph it
is clear that the benefits provided by trivial geography adeéd substantial.

The mean best fithess values from our runs are shown in TadbleLbwer
fithess values are better, so this data also demonstrateivied geography
provides a considerable benefit for all of the symbolic regjmn problems.
We also show, in Figure 1-2, a graph of these results norathlfar each
problem, with the mean best fitness for the standard configaréwithout
trivial geography) set td00; the values for the runs with trivial geography
therefore indicate the mean best fitness as a percentagat dr tthe standard
configuration. For problems #5, #9 and #10 trivial geogragttyieved a 100%
solution rate (best fitness = 0 for all runs). Problem #4 waseptionally

Trivial Geography in Genetic Programming 7

120 T T T T T T T T T T
With trivial geography s
Without trivial geography &——=1
£ 100 | — = = .
=)
0
£ 80r 1
5|
a
IS 60 .
Q
(6]
3
N 40t]
©
£
[e]
=4 20 1
0

1 2 3 4 5 6 7 8 9 10
Problem

Figure 1-1. Computational efforts calculated for the symbolic redi@sproblems with and
without trivial geography. This plot is hormalized indegently for each problem, with the
values for runs in the standard configuration (without &ligeography) shown as 100%. Problem
#8 is anomalous because no solutions were found withotgltgeography, producing an infinite
computational effort.

easy, leading to 100% solution rates in both configuratibo#hy are therefore
plotted as 100%. From the mean best fithess values it is adso that the
benefits provided by trivial geography are indeed substhnti

For the mean best fithess values we conducted T tests to #issedtatisti-
cal significance of the differences between the configunatigith and without
trivial geography. Aside from problem #4 (the problem on ebhboth con-
figurations achieved 100% solution rates) all differenagessgnificant with p
< 0.01.

4. Trivial Geography Applied to a Quantum Computing
Problem

Quantum information technology is expected to provide Igi@nary ben-
efits for computing, but quantum computers are counteitimeuand difficult
to program. Genetic programming can be used to automatidellelop quan-
tum computing algorithms, and the resulting algorithms rhayuseful both
for solving practical problems and for answering open daestin the the-

8 GENETIC PROGRAMMING THEORY AND PRACTICE IlI

Table 1-4. Mean best fitness values (for which lower values are betethe symbolic regres-
sion problems with and without trivial geography.

Mean best fitness without Mean best fitness with

trivial geography trivial geography
1 52.50 0.65
2 98.67 19.13
3 148.77 48.39
4 0 0
5 5.51 0
6 7,149.94 63.19
7 957.43 332.48
8 27,475.48 16, 859.71
9 22.41 0
10 1.81 0

ory of quantum computing. A detailed discussion of the agaidbn of genetic
programming to quantum computing problems can be foundgad¢®r, 2004).

The problem we set out to solve, like many quantum computggioblems,
involves determining how a “black box” computational gaédlexd anoracle
transforms the qubits to which it is appliédn particular, we were interested
in determining whether a given 2-input, 1-output Booleaacts flips its output
qubit under the conditions illustrated in Figure 1-3. Thmtwe are asked to
determine if the cases for which the oracle flips its outputitgsatisfy the
logical formula(Iyy V Ip1) A (1o V I11), wherel,, indicates whether or not
the output is flipped for the inpuyt,).

This problem, which is called the “AND/OR” oracle problengsbeen the
subject of several of our previous investigations (Speet@l., 1999, Barnum
et al., 2000, Spector, 2004). We previously used genetigraroming to find
quantum algorithms that perform better than any possilassatal algorithm
(that is, they have lower probability of error) when regt@etto a single oracle
call. In our more recent work we have been investigating W dracle-call
version of this problem. The lowest error probability ohtble by a prob-
abilistic classical algorithm on the two-oracle-call versof this problem is
% = 0.1666..., but in our recent work we have found, using genetic program-
ming, quantum algorithms with an error probability of lelsart0.11 (Spector
and Klein, 2005b).

5A qubit is the quantum analog of a classical “bit”; see (Spec@004) for a detailed description of qubits
and the ways in which they are manipulated by quantum gates.

Trivial Geography in Genetic Programming 9

120 T T T T T T T T T
With trivial geography s
Without trivial geography &——=1

w 100 /o = e e R
[0}
Q
=
T 80 j
[}
Q
M
3
o 60 .
=
e
8
= 40 .
£
2

20 l T

0

1 2

4

5 6 7 8 9 10
Problem

Figure 1-2. Mean best fitness values (for which lower values are betterfhie symbolic re-
gression problems with and without trivial geography. i@t is normalized independently for
each problem, with the values for runs in the standard corgtgun (without trivial geography)
shown as 100%. For problems #5, #9 and #10 trivial geographigeed a 100% solution rate
(fitness = 0 for all runs). For problem #4 both configuratiookieved a 100% solution rate.

ORACLE(0,0) ORACLE(0,1) ORACLE(1,0) ORACLE(1,1)

Figure 1-3. An “AND/OR” tree describing the property of interest in theNB/OR oracle

problem (see text).

10 GENETIC PROGRAMMING THEORY AND PRACTICE IlI

Our new results on the two-oracle-call AND/OR problem usedal ge-
ography, and our anecdotal evidence led us to believe tivil tgeography
played an important role in our success. But this work alsolied inten-
sive runs with expensive fitness tests and large populati@tsbuted across
a 23-CPU computer cluster. It was not practical to replicates of this scale
the hundreds of times that would be necessary to fully agskessontribution
of trivial geography, so we opted instead to conduct manyllsrascale runs
which, while they would not solve the problem of beating thessical error
probability, would still produce significant improvemeinditness.

We conducted 92 runs with and 92 runs without trivial geofgyapsing the
parameters shown in Table 1-5 and, again, the version ofuee@®P genetic
programming system that is distributed with the Breve satioh environment.
Fitness was assessed using the QGAME quantum computeasima version
of which is also distributed with Brevé.

Computational effort is meaningful and finite only in the e of a success
criterion that is reached in at least some runs. But the diffiof this problem,
relative to the resources we employed, prevented us frorm@rathy solutions
that beat the classical error probability. Since there isther obvious choice
for a success criterion we report here only a comparison @nnbest fithess
values.

The mean best fitness for the runs without trivial geographag0as 1, while
the mean best fitness for the runs with trivial geography vesieh a0.32. AT
test shows this difference to be statistically significaribyp < 0.005. Again,
we see a substantial improvement in problem-solving pevémce provided by
trivial geography.

5. Discussion

We have presented a simple modification to the standard iggregram-
ming technique that appears, from the tests we have run & taprovide
substantial benefits to problem-solving performance oh hdificial and real-
world problems. The modification incorporates notions afgyephical distri-
bution that have a long history in evolutionary biology andny precedents
in genetic programming and other forms of evolutionary cotafion. Our
modification, however, is arguably simpler to implementthay of its prede-
cessors; in many cases it can be implemented in one or a hardines of
code. We were surprised to find that this “trivial” form of ggaphy nonethe-
less provides real benefits, and although we cannot makeajet@ms about

6QGAME documentation and code is available fragtp: //hampshire.edu/lspector/qgame.html.

Trivial Geography in Genetic Programming 11

Table 1-5. Parameters for quantum computing tests of trivial geogrator this problem a
developmental approach was used in which certain instmgtidd quantum gates to adeveloping
“embryo”; see (Spector, 2004) for details.

Problem AND/OR oracle problem (Spector, 2004), with twdsal
to the oracle permitted.
Embryo Three-qubit quantum circuit with a final
measurement on one qubit (ind&f (0-2)).
Fitness cases All possible two-input, one-output Boolean
oracles, specificallylpoIo1 I10111 : answer):
0000:0, 0001:0, 0010:0, 0011:0,
0100:0, 0101:1, 0110:1, 0111:1,
1000:0, 1001:1, 1010:1, 1011:1,
1100:0, 1101:1, 1110:1, 1111:1
Fitness function = Misses + MaxError whereMisses is the number
of cases for which the probability of error is greater
than 0.48 and\/ax Error is the maximum probability
of error of any case.
Runs 92 with trivial geography, 92 without trivial geogrgph
Radius R) 15
Population size 2500
Crossover rate 40%
Mutation rate 40%, fair mutation (Crawford-Marks and Spec2002)
Duplication rate 20%
Tournament size 7
Maximum generations 500
Initial program size limit 100
Child program size limit 250
Program evaluation limit 250
Ephemeral random constants integerl 0, 10), float(—10.0, 10.0)
Instructions FLOAT.%, FLOAT.*, FLOAT.+, FLOAT.-, FLOAT./,
FLOAT.DUP, FLOAT.POP, FLOAT.SWAP,
FLOAT.FROMINTEGER, LIMITED-ORACLE, HADAMARD,
U-THETA, MEASURE, SRN, CNOT, U2, CPHASE, SWAP,
END

its utility” we recommend that trivial geography be adopted more widely i
genetic programming systems.

Forresearchers and practitioners using genetic progragsystems that al-
ready involve geographical distribution (e.g. in isolatkegnes with migration)
an obvious practical question, not addressed here, is thatwotrivial geogra-
phy compares to their presumably more complex techniquae.n@ght also be
interested in the effects of combining several forms of geplgy, for example

7Such claims would require analysis and discussion of thetesis the context of the No Free Lunch theorem
(Wolpert and Macready, 1997, Droste et al., 1999).

12 GENETIC PROGRAMMING THEORY AND PRACTICE IlI

by using an island model in which trivial geography is usethimieach island.
Although comparisons of these techniques are simple to ingk@nciple, one
would have to conduct large numbers of tests using each of gewgraphical
schemes to make definitive recommendations. Our conteh@omis not that
trivial geography necessarily outperforms other formsexfgraphy, but only
that it appears to provide benefits over non-geographicaletsan many cases
for nearly no cost.

The mechanism by which trivial geography improves prob&atving per-
formance is presumably a form of diversity maintenance. Bviaus follow-
up study would apply diversity measures to runs like thosedaooted here
and investigate the relations between problems, perfoacmaand diversity.
Many diversity measures for genetic programming have beseldped, as
have methodologies for correlating various diversity meas and aspects of
system performance (Burke et al., 2004).

The values ofR, the neighborhood radius, that we used in the experiments
reported herel(and15) were chosen somewhat arbitrarily. We conducted
preliminary runs with several values &fand many appeared to perform well;
we chose the values that we did because they appeared toogigeesults, but
we did not investigate other values Bfsystematically. Our suspicion is that
trivial geography will often provide benefits with a rangef¥alues and that
the choice ofR is not critical, another obvious follow-up study would tésis
suspicion.

6. Summary

An extremely simple maodification to the genetic programmahgorithm,
incorporating “trivial geography,” appears to improve lpem-solving perfor-
mance for nearly no cost. This modification has many prededargenetic
programming and evolutionary computation, but it is swipg that so simple
a form of the idea can have such substantial effects. We nexcord that trivial
geography be adopted more broadly in genetic programming.

Acknowledgments

This material is based upon work supported by the Nation&nge Foun-
dation under Grant No. 0308540 and Grant No. 0216344. Angiops,
findings, and conclusions or recommendations expresshiipublication are
those of the authors and do not necessarily reflect the viéwseoNational
Science Foundation. We thank Nic McPhee, Ellery Crane,stian Jacob,
and the other participants in the Genetic Programming Theaod Practice
Workshop for many helpful comments that led to substamigdrovements in
this chapter.

Trivial Geography in Genetic Programming 13

References

Andre, David and Koza, John R. (1996). A parallel implemgaiaof genetic
programming that achieves super-linear performance. &fvAia, Hamid R.,
editor, Proceedings of the International Conference on Paralleti &is-
tributed Processing Techniques and Applicatiomdume 11, pages 1163—
1174, Sunnyvale. CSREA.

Avise, J. C. (2000)Phylogeography: The History and Formation of Species
Harvard University Press.

Axelrod, R., Hammond, R. A., and Grafen, A. (2004). Altruigiakin-selection
strategies that rely on arbitrary tags with which they cbasoEvolution
58(8):1833-1838.

Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., andri€éone, Frank D.
(1998).Genetic Programming — An Introduction; On the Automatic levo
tion of Computer Programs and its Applicatioddorgan Kaufmann.

Barnum, Howard, Bernstein, Herbert J, and Spector, LeeQR@uantum cir-
cuits for OR and AND of ORsJournal of Physics A: Mathematical and
Genera) 33(45):8047-8057.

Bryden, Kenneth M., Ashlock, Daniel A., Corns, Steven, anlibdh, Stephen J.
(2005). Graph based evolutionary algorithiiEE Transactions on Evolu-
tionary Computationforthcoming.

Burke, Edmund K., Gustafson, Steven, and Kendall, Graha@4(2 Diver-
sity in genetic programming: An analysis of measures antetagion with
fitness.IEEE Transactions on Evolutionary Computati@{1):47—-62.

Collins, Robert J. and Jefferson, David R. (1991). Seladtionassively parallel
genetic algorithms. In Belew, Rick and Booker, Lashon@djProceedings
of the Fourth International Conference on Genetic Alganithpages 249—
256, San Mateo, CA. Morgan Kaufman.

Crawford-Marks, Raphael and Spector, Lee (2002). Sizercbwia size fair
genetic operators in the PushGP genetic programming systdrangdon,
W. B., Cantl-Paz, E., Mathias, K., Roy, R., Davis, D., PRli,Balakrishnan,
K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potidr,A., Schultz,
A. C., Miller, J. F., Burke, E., and Jonoska, N., editdae&CCO 2002: Pro-
ceedings of the Genetic and Evolutionary Computation Gente pages
733-739, New York. Morgan Kaufmann Publishers.

D’haeseleer, Patrik and Bluming, Jason (1994). Effectedlity in individual
and population evolution. In Kinnear, Jr., Kenneth E., @difdvances in
Genetic Programmingchapter 8, pages 177-198. MIT Press.

Droste, Stefan, Jansen, Thomas, and Wegener, Ingo (1999aps not a free
lunch but at least a free appetizer. In Banzhaf, Wolfgangj&@adason, Eiben,
Agoston E., Garzon, Max H., Honavar, Vasant, Jakiela, Mark] Smith,
Robert E., editorsProceedings of the Genetic and Evolutionary Computa-

14 GENETIC PROGRAMMING THEORY AND PRACTICE IlI

tion Conferencgvolume 1, pages 833-839, Orlando, Florida, USA. Morgan
Kaufmann.

Eshel, I. (1972). On the neighbor effect and the evolutiomlttiistic traits.
Theoretical Population Biology3:258-277.

Fernandez, Francisco, Tomassini, Marco, and Vannescbhdrdo (2003). An
empirical study of multipopulation genetic programmif@gnetic Program-
ming and Evolvable Machingg(1):21-51.

Folino, G., Pizzuti, C., Spezzano, G., Vanneschi, L., anddssini, M. (2003).
Diversity analysis in cellular and multipopulation geggtrogramming. In
Sarker, Ruhul, Reynolds, Robert, Abbass, Hussein, Tanden, McKay,
Bob, Essam, Daryl, and Gedeon, Tom, edit®®sceedings of the 2003
Congress on Evolutionary Computation CEC20pages 305-311, Can-
berra. IEEE Press.

Folino, Gianluigi, Pizzuti, Clara, and Spezzano, Giandoicte (1999). A cel-
lular genetic programming approach to classification. Ineaf, Wolfgang,
Daida, Jason, Eiben, Agoston E., Garzon, Max H., HonavaaiMa Jakiela,
Mark, and Smith, Robert E., editorBroceedings of the Genetic and Evo-
lutionary Computation Conferencgolume 2, pages 1015-1020, Orlando,
Florida, USA. Morgan Kaufmann.

Holland, J. H. (1992)Adaptation in Natural and Artificial SystemdIT Press.

Holland, J. H. (1995)Hidden Order: How Adaptation Builds Complexity
Perseus Books.

Klein, Jon (2002). BREVE: a 3d environment for the simulata decentral-
ized systems and artificial life. In Standish, R. K., BedauA\land Abbass,
H. A., editors,Proceedings of Artificial Life VIII, the 8th Internationalo@-
ference on the Simulation and Synthesis of Living Systeages 329-334.
The MIT Press.
http://www.spiderland.org/breve/breve-klein-alife2002.pdf.

Koza, John R. (1992)Genetic Programming: On the Programming of Com-
puters by Means of Natural SelectiddIT Press, Cambridge, MA, USA.

Koza, JohnR. (1994%enetic Programming |l: Automatic Discovery of Reusable
Programs MIT Press, Cambridge Massachusetts.

Lieberman, E., Hauert, C., and Nowak, M. A. (2005). Evolatioy dynamics
on graphsNature 433:312-316.

Maruyama, Tsutomu, Hirose, Tetsuya, and Konagaya, Akifiik®3). A fine-
grained parallel genetic algorithm for distributed pagidlystems. In Forrest,
Stephanie, editoRroc. of the Fifth Int. Conf. on Genetic Algorithnsages
184-190, San Mateo, CA. Morgan Kaufmann.

Mayr, Ernst (1942)Systematics and the origin of species from the viewpoint of
a zoologist Columbia University Press.

Nowak, M. A. and May, R. M. (1992). Evolutionary games andtighahaos.
Naturg 359:826—829.

Trivial Geography in Genetic Programming 15

Nowostawski, M. and Poll, R. (1999). Parallel genetic altpon taxonomy.

Ofria, Charles and Wilke, Claus O. (2004). Avida: A softwalatform for
research in computational evolutionary biologytificial Life, 10(2):191—
229.

Pettey, Chrisila C. (1997). Diffusion (cellular) models Back, Thomas, Fogel,
David B., and Michalewicz, Zbigniew, editorslandbook of Evolutionary
Computation pages C6.4:1-6. Institute of Physics Publishing and @ixfor
University Press, Bristol, New York.

Ray, Thomas S. (1991). Is it alive or is it GA. In Belew, Riath&t. and Booker,
Lashon B., editorsProceedings of the Fourth International Conference on
Genetic Algorithmspages 527-534, University of California - San Diego,
La Jolla, CA, USA. Morgan Kaufmann.

Spector, Lee (2001). Autoconstructive evolution: Pusish@P, and pushpop.
In Spector, Lee, Goodman, Erik D., Wu, Annie, Langdon, W. \Rigt,
Hans-Michael, Gen, Mitsuo, Sen, Sandip, Dorigo, MarcoeBbk, Shahram,
Garzon, Max H., and Burke, Edmund, editoPspceedings of the Genetic
and Evolutionary Computation Conference (GECCO-20payes 137-146,
San Francisco, California, USA. Morgan Kaufmann.

Spector, Lee (2004 Automatic Quantum Computer Programming: A Genetic
Programming Approachvolume 7 ofGenetic ProgrammingKluwer Aca-
demic Publishers, Boston/Dordrecht/New York/London. ri@ss.

Spector, Lee, Barnum, Howard, Bernstein, Herbert J., arah8ywNikhil (1999).
Finding a better-than-classical quantum AND/OR algoritliing genetic
programming. In Angeline, Peter J., Michalewicz, Zbysz8khoenauer,
Marc, Yao, Xin, and Zalzala, Ali, editor&roceedings of the Congress on
Evolutionary Computatianvolume 3, pages 2239-2246, Mayflower Hotel,
Washington D.C., USA. IEEE Press.

Spector, Lee and Klein, Jon (2005a). Genetic stability @nditorial structure
facilitate the evolution of tag-mediated altruisAntificial Life. Forthcoming.

Spector, Lee and Klein, Jon (2005b). Machine invention @rgum computing
circuits by means of genetic programming. In preparation.

Spector, Lee, Klein, Jon, and Keijzer, Maarten (2005). Thsh execution
stack and the evolution of control. Froc. of the Genetic and Evolutionary
Computation Conferenc&pringer-Verlag.

Spector, Lee and Robinson, Alan (2002). Genetic programrai autocon-
structive evolution with the push programming languagenetic Program-
ming and Evolvable Maching8(1):7—40.

Wolpert, David H. and Macready, William G. (1997). No freadt theorems for
optimization.|EEE Transactions on Evolutionary Computatjdfl):67—-82.

Wright, Sewall (1945). Tempo and mode in evolution: a caitteview.Ecology
26:415-4109.

