
Evolution Evolves with Autoconstruction

6th Workshop on Evolutionary Computation for the Automated Design of Algorithms  
Genetic and Evolutionary Computation Conference (GECCO) 

Denver, Colorado, USA, July, 2016

Outline

• What is autoconstructive evolution?

• Prior work

• Recent developments

• Results

• Prospects

Autoconstructive Evolution (1)

• Evolve evolution while evolving solutions

• How? Individuals produce and vary their own
children, with methods that are subject to variation

• Requires understanding the evolution of variation

• Hope: May produce EC systems more powerful
than we can write by hand

Autoconstructive Evolution (2)

• A 15 year old project (building on older and broader-
based ideas)

• Like genetic programming, but harder and less
successful!

• Recent: AutoDoG, sometimes solve significant
problems, intriguing patterns of evolving evolution

Evolutionary Computing

Random Assessment

Selection

Variation

Solution

Genetic Programming

Random
Programs

Assessment

Selection

Variation

Software

Variation in Genetic Programming

Program

Mutation

Program

Program

Crossover

Program

Program Program

Program

Variation in Genetic Programming

Program

Mutation

Program

Program

Crossover

Program

Program Program

Program

Written and configured by humans

Autoconstruction

Program

Execute!

Program

Program Program ProgramProgramProgram Program

Autoconstruction

Program

Execute!

Program

Program Program ProgramProgramProgram Program

A bit more complicated when genomes distinguished from programs

Autoconstructive Evolution (3)

• Individual programs make their own children

• In doing so, they control their own mutation and
recombination rates and methods, and in some
cases mate selection, etc.

• The machinery of reproduction and diversification
(i.e., the machinery of evolution) evolves

• In Push, experimentation with autoconstructive
evolution is easy and natural

Hazards

• Clones

• Deadenders

• Error catastrophes

Push (1)

• A programming language

• Designed for programs that evolve

• Data flows via stacks, not syntax

• One stack per type: 
integer, float, boolean, string, code, exec, vector, ...

Push (2)

• program ! instruction | literal | (program*)

• Turing complete, rich data and control structures

• PushGP: GP system that evolves Push programs

• Makes it easy to combine manipulation of
programs/genomes with other computations

Plush

• Linear genomes for Push programs
• Facilitates useful placement of code blocks
• Permits uniform linear genetic operators
• Allows for epigenetic hill-climbing

integer_eq exec_dup char_swap integer_add exec_if

2 0 0 0 1

1 0 0 1 0

Instruction
Close?

Silence?

Push (3)

• Implementations in C++, Clojure, Common Lisp,
Java, Javascript, Python, Racket, Ruby, Scala,
Scheme, Swift

• The work described here uses Clojush, in Clojure

• http://pushlanguage.org

http://pushlanguage.org

Pushpop (2001)

• Construct eggs while solving problems

• Tournaments for hatching rights

• Clones are stillborn

• Programs can access and run code of the entire
population, both while solving problems and while
building babies (which they do at the same time)

SwarmEvolve 2.0 (2005)

• Behavior (including reproduction) in a 3D virtual
world controlled by evolved programs

• Autoconstruction followed by imposed but program-
controlled mutation

• Color sensing, energy conservation,
communication, energy sharing

AutoPush (2010)

• Goals:

• Superior problem-solving performance (maybe)

• Tractable analysis (yes)

• Asexual

• Reproductive vs. problem-solving phases

• Constraints on selection and birth

Example Constraints

• Prefer parents with non-stagnant lineages (changed
performance in the most recent half of the lineage,
after some threshold lineage length)

• Prevent birth from lineages with constant
differences from each generation to the next

AX/AM (2012)

• Kyle Harrington, Una-May O'Reilly, and Jordan
Pollack

• Zipper data structures for constructing children

• No cloning + neutral-or-better error

• Synthetic problems involving program structure

Results of Prior Work

• Demonstrated that selection can promote diversity

• Exhibited dynamics of diversification and adaptation

• Weak problem-solving power

• Difficult to analyze results, compare to ordinary
genetic programming, or generalize

AutoDoG (2016)

• Autoconstructive Diversification of Genomes

• Construct genomes, not programs

• Distinct mode/phase for construction of offspring

• Select combinatorially, not on aggregate error

• Enforce diversification constraints

What is Constructed?

• In prior work: Push programs, manipulated on code
stacks using Lisp-inspired code-manipulation
instructions

• In AutoDoG: Plush genomes, which are linear
sequences of genes that specify instructions along
with epigenetic markers that determine structure
when Plush genomes are translated into Push
programs, prior to running them

When/how is it Constructed?

• In prior work: Various; sometimes during error
testing, sometimes with problem inputs, sometimes
with imposed but controllable variation

• In AutoDoG: Only within the autoconstruction
genetic operator, entirely by the program itself

• Construction: inputs are no-ops

• Error testing: rand instructions produce constants

Who Constructs?

• In prior work: Parents selected using standard, error
aggregating methods (tournament selection)

• In AutoDoG: Lexicase selection

Lexicase Selection

To select single parent:

1. Shuffle test cases 
2. First test case – keep best individuals 
3. Repeat with next test case, etc.

Until one individual remains

The selected parent may be a specialist, and may or
may not be particularly good on average, even though
it may contribute to the evolution of generalists later

See Bill La Cava's presentation on Epsilon Lexicase
Selection, and Tom Helmuth's presentation in the
GP best paper track, both on Saturday afternoon

Who Survives?

• In prior work: Sometimes everyone except clones,
sometimes only those satisfying constraints on
progress within lineages

• In AutoDoG: Only those satisfying diversification
constraints on reproductive behavior, determined
from a cascade of temporary descendants

Diversification Constraint

• Applied to a cascade of temporary descendants

• Used here:

• Children must differ from parent, differently

• Applied to programs expressed by genomes

• Enforced on a cascade with two children

Diversification Constraint

Parent

Execute!

Child

Execute!

Child

Parent/child program differences positive; not the same

Diversification Constraint

• Still under development

• How can you tell if an individual has the potential to
produce diverse, adaptive descendants?

• Considering larger cascades, variation of:
• genomes
• reproductive behavior
• problem solving behavior

Needed for Evolution to Evolve

• Diversity: Individuals vary

• Diversification: Individuals produce descendants
that vary, in various ways (used here)

• Recursive Variance: Individuals produce
descendants that vary in the ways that they vary
their offspring (under development)

29 Software Synthesis Benchmarks

• Number IO, Small or Large, For Loop Index, Compare
String Lengths, Double Letters, Collatz Numbers, Replace
Space with Newline, String Differences, Even Squares,
Wallis Pi, String Lengths Backwards, Last Index of Zero,
Vector Average, Count Odds, Mirror Image, Super
Anagrams, Sum of Squares, Vectors Summed, X-Word
Lines, Pig Latin, Negative to Zero, Scrabble Score, Word
Stats, Checksum, Digits, Grade, Median, Smallest,
Syllables

• PushGP has solved all of these except for the ones in blue

• Presented in a GECCO-2015 GP track paper

• Multiple types, looping, multiple tasks

• Simplified solution: 
(\space char_dup exec_dup in1 \newline string_replacechar
print_string string_removechar string_length)

• PushGP can achieve success rates up to ~95%

• AutoDoG as described here succeeds 5-10%

Replace Space With Newline

Ancestors of Solutions
Replace Space with Newlines

AutoconstructionStandard Operators

Conclusions and Prospects

• Autoconstructive evolution can now solve reasonably hard
problems, at least some of the time

• So far, it takes longer, because it must evolve evolution
along with solutions

• Can it solve problems that can't be solved by ordinary
genetic programming? Possibly, because it evolves

• Studying how/why it works may help us to improve it

• Studying how/why it works may help us to understand the
evolution of biological evolution

Thanks

• Members of the Hampshire College Computational Intelligence Lab
for discussions

• Anonymous reviewers for both corrections and insightful comments

• Josiah Erikson for systems support

• Hampshire College for support for the Hampshire College Institute
for Computational Intelligence

• This material is based upon work supported by the National Science
Foundation under Grants No. 1129139 and 1331283. Any opinions,
findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

