] \

sigevo™ @

DENVER, COLORADO, USA
JuLy 20-24, 2016

Evolution Evolves with Autoconstruction

6th Workshop on Evolutionary Computation for the Automated Design of Algorithms
Genetic and Evolutionary Computation Conference (GECCO)
Denver, Colorado, USA, July, 2016

Lee Spector Nicholas Freitag McPhee Thomas Helmuth
School of Cognitive Science Div. of Science & Mathematics Dept. of Computer Science
Hampshire College U. Minnesota, Morris Washington and Lee U.
Amherst, Massachusetts, USA Morris, Minnesota, USA Lexington, Virginia, USA
Ispector@hampshire.edu mcphee@morris.umn.edu helmutht@wlu.edu
Maggie M. Casale Julian Oks
Div. of Science & Mathematics School of Cognitive Science
U. Minnesota, Morris Hampshire College

Morris, Minnesota, USA Amherst, Massachusetts, USA
casal033@morris.umn.edu juao15@hampshire.edu

Outline

- What is autoconstructive evolution?

- Prior work

- Recent developments

- Results

- Prospects

Autoconstructive Evolution (1)

- Evolve evolution while evolving solutions

- How? Individuals produce and vary their own
children, with methods that are subject to variation

 Requires understanding the evolution of variation

- Hope: May produce EC systems more powerful
than we can write by hand

Autoconstructive Evolution (2)

- A 15 year old project (building on older and broader-
based ideas)

- Like genetic programming, but harder and less
successful!

- Recent: AutoDoG, sometimes solve significant
problems, intriguing patterns of evolving evolution

Evolutionary Computing

Random =) Assessment =3 Solution

!

Selection

!

Variation

Genetic Programming

Random

—) Assessment =) Software
Programs

!

Selection

!

Variation

Variation in Genetic Programming

Program Program Program Program
Mutation Crossover

! !

Program Program Program

Variation in Genetic Programming

Written and configured by humans

Program: Program !Program Program

Program Program Program

Autoconstruction

Program

!

Execute!

!

Program

Autoconstruction

Program

!

Execute!

!

Program

A bit more complicated when genomes distinguished from programs

Autoconstructive Evolution (3)

- Individual programs make their own children

In doing so, they control their own mutation and
recombination rates and methods, and in some
cases mate selection, etc.

- The machinery of reproduction and diversification
(i.e., the machinery of evolution) evolves

In Push, experimentation with autoconstructive
evolution is easy and natural

Hazards

- Clones

- Deadenders

- Error catastrophes

Push (1)

- A programming language
- Designed for programs that evolve
-+ Data flows via stacks, not syntax

+ One stack per type:
integer, float, boolean, string, code, exec, vector, ...

Push (2)

* program » instruction | literal | (program*)

- Turing complete, rich data and control structures
- PushGP: GP system that evolves Push programs

- Makes it easy to combine manipulation of
programs/genomes with other computations

Plush

Instruction mm—

Close?
Silence? 1 0 0 1 0

Linear genomes for Push programs
Facilitates useful placement of code blocks
Permits uniform linear genetic operators

Allows for epigenetic hill-climbing

Push (3)

- Implementations in C++, Clojure, Common Lisp,

Java, Javascript, Python, Racket, Ruby, Scala,
Scheme, Swift

+ The work described here uses Clojush, in Clojure

- http://pushlanguage.org

http://pushlanguage.org

Pushpop (2001)

- Construct eggs while solving problems

- Tournaments for hatching rights

- Clones are stillborn

- Programs can access and run code of the entire
population, both while solving problems and while
building babies (which they do at the same time)

SwarmEvolve 2.0 (2005)

- Behavior (including reproduction) in a 3D virtual
world controlled by evolved programs

- Autoconstruction followed by imposed but program-
controlled mutation

- Color sensing, energy conservation,
communication, energy sharing

AutoPush (2010)

- Goals:

+ Superior problem-solving performance (maybe)

- Tractable analysis (yes)

- Asexual

 Reproductive vs. problem-solving phases

- Constraints on selection and birth

Example Constraints

- Prefer parents with non-stagnant lineages (changed
performance in the most recent half of the lineage,
after some threshold lineage length)

- Prevent birth from lineages with constant
differences from each generation to the next

AX/AM (2012)

- Kyle Harrington, Una-May O'Reilly, and Jordan
Pollack

- Zipper data structures for constructing children
- No cloning + neutral-or-better error

+ Synthetic problems involving program structure

Results of Prior Work

- Demonstrated that selection can promote diversity
- Exhibited dynamics of diversification and adaptation
- Weak problem-solving power

- Difficult to analyze results, compare to ordinary
genetic programming, or generalize

AutoDoG (2016)

- Autoconstructive Diversification of Genomes

- Construct genomes, not programs
- Distinct mode/phase for construction of offspring
- Select combinatorially, not on aggregate error

- Enforce diversification constraints

What is Constructed?

- In prior work: Push programs, manipulated on code
stacks using Lisp-inspired code-manipulation
instructions

* In AutoDoG: Plush genomes, which are linear
sequences of genes that specity instructions along
with epigenetic markers that determine structure
when Plush genomes are translated into Push
programs, prior to running them

Table 1: Genome instructions in AutoDoG

Instruction Description
close_dec Decrement close marker on a gene
close_inc Increment close marker on a gene
dup Duplicate top genome
empty Boolean, is genome stack empty?
eq Boolean, are top genomes equal?
flush Empty genome stack
gene_copy Copy gene from genome to genome

gene_copy_range

gene_delete
gene_dup

gene_randomize

new
parentl
parent?2
pop
rot
rotate
shove
silence
stackdepth
swap
toggle_silent
unsilence
yank
yankdup

Copy genome segment

Remove gene

Duplicate gene

Replace with random

Push empty genome

Push first parent’s genome

Push second parent’s genome
Remove top genome

Rotate top 3 genomes on stack
Rotate sequence of top genome
Insert top genome deep in stack
Add epigenetic silencing marker
Push integer depth of genome stack
Exchange top two genomes

Reverse silencing of a gene

Remove epigenetic silencing marker
Pull genome from deep in stack
Copy genome from deep in stack

When/how is it Constructed?

- In prior work: Various; sometimes during error
testing, sometimes with problem inputs, sometimes
with imposed but controllable variation

+In AutoDoG: Only within the autoconstruction
genetic operator, entirely by the program itself

+ Construction: inputs are no-ops

- Error testing: rand instructions produce constants

Who Constructs?

- In prior work: Parents selected using standard, error

aggregating methods (tournament selection)

- |In AutoDoGQG: Lexicase selection

Lexicase Selection

To select single parent:

1. Shuffle test cases
2. First test case — keep best individuals
3. Repeat with next test case, etc.

Until one individual remains
The selected parent may be a specialist, and may or

may not be particularly good on average, even though
it may contribute to the evolution of generalists later

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014

Solving Uncompromising Problems with Lexicase
Selection

Thomas Helmuth, Lee Spector Member, IEEE, James Matheson

Abstract—We describe a broad class of problems, called
“uncompromising problems,” characterized by the requirement
that solutions must perform optimally on each of many test cases.
Many of the problems that have long motivated genetic program-
ming research, including the automation of many traditional pro-
gramming tasks, are uncompromising. We describe and analyze
the recently proposed “lexicase” parent sclection algorition and
show that it can facilitate the solution of uncompromising prob-
lems by genetic programming. Unlike most traditional parent
selection techniques, lexicase selection does not base selection on
a fitness value that is aggregated over all test cases; rather, it con-
siders test cases one at a time in random order. We present results
comparing lexicase selection to more traditional parent selection
methods, including standard tournament selection and implicit
fitness sharing, on four uncompromising problems: finding terms
in finite algebras, designing digital multipliers, counting words in
files, and performing symbaolic regression of the factorial function.
We provide evidence that lexicase selection maintains higher
levels of population diversity than other selection methods, which
may partially explain its utility as a parent selection algorithm
in the context of uncompromising problems.

Index Terms—parent selection, lexicase selection, tournament
selection, genetic programming, PushGP.

I. INTRODUCTION

ENETIC programming problems generally involve test
cases that are used to determine the performance of
programs during evolution, While some classic genetic pro-
gramming problems, such as the artificial ant problem and the

See Bill La Cava's presentation on Epsilon Lexicase
Selection, and Tom Helmuth's presentation in the
GP best paper track, both on Saturday afternoon

example, we can imagine
simulated wind turbine in
performance in low wind
performance in high wind ¢
optimize performance on al
and some sort of compro
Many common parent selc
ment selection, introduce ¢
aggregating the performan
cases into a single fitness
may be as simple as sum
squares, into a single error
as implicit fitness sharing
based on population statist

By contrast, we wish to
mising” problems: problem
must perform as well on
perform on that test case; U
is a problem for which i
to perform sub-optimally
for good performance on
problem defined by the se
programs in the search sj
produced by program p;
lower error being better. Tl
program p € PP would be ¢
if and onlv if nlt.) < n.(t

Previous Results

Problem
Count Odds 8
Double Letters 6
Mirror Image 78
Negative To Zero 45
Replace Space with Newline 51
String Lengths Backwards 66
Syllables 18
Vector Average 16
X-Word Lines 8

Lexicase Tourney

0
0
46
10
8
7
1
14
0

e 9 of 29 program synthesis benchmark

problems

e Also higher levels of behavioral diversity

Who Survives?

- In prior work: Sometimes everyone except clones,
sometimes only those satisfying constraints on
progress within lineages

In AutoDoG: Only those satisfying diversification
constraints on reproductive behavior, determined
from a cascade of temporary descendants

Diversification Constraint

- Applied to a cascade of temporary descendants

- Used here:

- Children must differ from parent, differently
+ Applied to programs expressed by genomes

- Enforced on a cascade with two children

Diversification Constraint

Parent
Execute! Execute!
Child Child

Parent/child program differences positive; not the same

Diversification Constraint

- Still under development

- How can you tell if an individual has the potential to

produce diverse, adaptive descendants?

- Considering larger cascades, variation of:
* genomes

* reproductive behavior

+ problem solving behavior

Needed for Evolution to Evolve

- Diversity: Individuals vary

- Diversification: Individuals produce descendants
that vary, in various ways (used here)

 Recursive Variance: Individuals produce
descendants that vary in the ways that they vary
their offspring (under development)

29 Software Synthesis Benchmarks

* Number 10, Small or Large, For Loop Index, Compare
String Lengths, Double Letters, Collatz Numbers, Replace
Space with Newline, String Differences, Even Squares,
Wallis Pi, String Lengths Backwards, Last Index of Zero,
Vector Average, Count Odds, Mirror Image, Super
Anagrams, Sum of Squares, Vectors Summed, X-Word
Lines, Pig Latin, Negative to Zero, Scrabble Score, Word
Stats, Checksum, Digits, Grade, Median, Smallest,
Syllables

- PushGP has solved all of these except for the ones in blue

- Presented in a GECCO-2015 GP track paper

7. Replace Space with Newline (P 4.3) Given a
string input, print the string, replacing spaces with
newlines. Also, return the integer count of the non-
whitespace characters. The input string will not have

tabs or newlines.

Replace Space With Newline

- Multiple types, looping, multiple tasks

- Simplified solution:
(\space char dup exec dup inl \newline string replacechar
print string string removechar string length)

- PushGP can achieve success rates up to ~95%

- AutoDoG as described here succeeds 5-10%

600 - g

S
-
o
1
-

200 -

Damerau-Levenshtein distance

0 50 100
Generation

Figure 1: DL-distances between parent and child
during a single non-autoconstructive run of GP on
the Replace Space With Newline problem

2500 -

n
o
o
o
1

1500 - -

Damerau-Levenshtein distance

0 50 100 150 200
Generation

Figure 3: DL-distances between parent and child
during a single autoconstructive run of GP on the
Replace Space With Newline problem

400 -

]
300 - »'e

Genome size
N
(-]
(-]
]

100 -

0 50 100
Generation

Figure 2: Genome sizes during a single non-
autoconstructive run of GP on the Replace Space

With Newline problem

800 - ——

600 -

Genome size
NN
o
o

200 -

0 50 100 150 200
Generation

Figure 4: Genome sizes during a single autocon-
structive run of GP on the Replace Space With
Newline problem

Ancestors of Solutions
Replace Space with Newlines

P ST DD IETET 0 e

L N fo- +- o - x:"‘

——
) o e apie e
v
-

e —

- -

=S

di b e @ ot as = b Sbee

e e v———

.
e LR E 5
RS L

TEET BT I IS BES S RS

A T N N T Y
TR SN0 e T _EDTGETS W WO
Sxmer i oam ,

1 "i" L e
. — r

i T
e e, e
— A T T I T T ST o ——

== e ST T TSI TR I
R I I R T) S WO @ e Wy o

— - A -

e

——
e e m————— o e ol — —

L S T S 3 h .

B L S Y [YT r g Y

. S—

L.

W TR

LR W e ——

e ——. — e —

Conclusions and Prospects

- Autoconstructive evolution can now solve reasonably hard
problems, at least some of the time

- S0 far, it takes longer, because it must evolve evolution
along with solutions

-+ Can it solve problems that can't be solved by ordinary
genetic programming? Possibly, because it evolves

- Studying how/why it works may help us to improve it

- Studying how/why it works may help us to understand the
evolution of biological evolution

Thanks

- Members of the Hampshire College Computational Intelligence Lab
for discussions

- Anonymous reviewers for both corrections and insightful comments
- Josiah Erikson for systems support

- Hampshire College for support for the Hampshire College Institute
for Computational Intelligence

- This material is based upon work supported by the National Science
Foundation under Grants No. 1129139 and 1331283. Any opinions,
findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessatrily reflect
the views of the National Science Foundation.

