
Lexicase Selection Beyond Genetic
Programming

Blossom Metevier*, Anil Kumar Saini*, Lee Spector*†

October 15, 2018

*University of Massachusetts Amherst, MA
†Hampshire College, MA



Summary

1. Motivation

2. Background: Lexicase Selection

3. Background: Boolean CSP

4. Experiments and Results

5. Analysis and Discussion

6. Conclusions

1



Motivation



Why Lexicase?

• Proven to be helpful for several GP problems
• Not specific to GP
• Should be useful wherever there are many objectives (test
cases), all of which we want to handle correctly

2



Why GAs? Why Boolean CSP?

• Lexicase selection is not
necessarily unique to genetic
programming

• We want to study lexicase
selection in a less complex
setting; GA provides this

• Boolean Constraint
Satisfaction Problem (CSP)
can easily be mapped to GAs

• Boolean CSP is more
constrainted than most GP
problems

• Lexicase does well with
uncompromising problems

• Boolean CSP can serve as a
proxy for problems with many
interconnected constraints

3



Background: Lexicase Selection



Lexicase Selection

• Parent selection algorithm
• Employs repeated filtering steps of randomly chosen test cases

Result: Parent chosen for recombination
candidates := the entire population
cases := list of all test cases in a random order
while True do

candidates := candidates who perform best on case[0]
if only one candidate exists in candidates then

return candidate
end
if cases is empty then

return a randomly selected candidate from candidates
end
delete case[0]

end
Algorithm 1: Lexicase Selection

4



Lexicase Selection: An Example

• We want to evolve programs that do well over 4 objectives
• Our population size is 10
• Now we come to the point in our program that uses lexicase
selection

• First we set our cases to be the number of objectives, and
shuffle this list [0, 1, 2, 3] → [2, 0, 1, 3]

• Then we set our candidates equal to the initial population.

5



Lexicase Selection: An Example

6



Lexicase Selection: An Example

7



Lexicase Selection: An Example

8



Lexicase Selection: An Example

9



Lexicase Selection: An Example

10



Lexicase Selection: An Example

11



Lexicase Selection: An Example

12



Lexicase Selection: An Example

13



Lexicase Selection: An Example

14



Lexicase Selection: A Short Analysis

• Let’s assume we have a
population of individuals,
and that there exist only two
objectives, or fitness cases

• Where do individuals
selected by lexicase fall on
the pareto front?

• What does this mean?
• Why is this important? In
aggregation, these case
specialists are not often the
most fit.

• However, they may contain
features good at solving niche
portions of our problem.

• Contributes to diversity.

15



Background: Boolean CSP



Boolean Expressions

• Evaluate to either TRUE or FALSE (1 or 0)
• (¬x1 ∨ x3 ∨ x0) ∧ (x2 ∨ x0 ∨ x4 ∨ ¬x1)
• This formula has 5 variables, all of which are either 1 or 0
• This formula is in CNF (conjunctive normal form)
• In 3CNF, all clauses must have 3 variables
• (¬x1 ∨ x3 ∨ x0) ∧ (x2 ∨ x0 ∨ x4) ∧ (x0 ∨ x4 ∨ ¬x1)

16



Boolean CSP

• Let’s look at the following boolean constraints: (x0 ∨ x3 ∨ ¬x1)
and (x2 ∨ x1 ∨ ¬x0)

• Let’s assign to each variable a value. α = [1, 1, 1, 1]. In this case,
both the constraints evaluate to TRUE. Hence, α = [1, 1, 1, 1] is a
solution to the CSP.

• Correct assignment does not have to be unique. Another
assignment for this problem is β = [1, 1, 0, 0].

17



Experiments and Results



Mapping Boolean CSP to GA

• We experiment on GA with different selection algorithms:
tournament selection (with replacement), roulette selection,
and lexicase selection

• (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x4 ∨ x5) ∧ (x3 ∨ x5 ∨ ¬x3) ∧ (x2 ∨ x4 ∨ x1)
• How would we encode this?
• Candidate solutions are binary vectors of fixed length

18



Fitness Function

• Let’s come back to our example expression
• (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x4 ∨ x5) ∧ (x3 ∨ x5 ∨ ¬x3) ∧ (x2 ∨ x4 ∨ x1)
• Split the formula into pieces
• piece 1: (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x4 ∨ x5)
• piece 2: (x3 ∨ x5 ∨ ¬x3) ∧ (x2 ∨ x4 ∨ x1)
• Essentially, each constraint is a subformula of our original
expression

• We define our fitness function by the number of constraints our
solution satisfied. We can interpret this as error. An assignment
that solves a given problem then has a fitness value of 0.

19



Why Boolean Constraints?

• Remember that Boolean CSPs are a proxy for real world
problems.

• Many real world problems have different components of error,
and this is what our constraints represent.

20



Experimental Setup

• Tournament selection (various sizes)
• Lexicase selection
• Roulette (fitness proportionate) selection
• 15 different initializations
• 50 different runs for each initialization
• Hence, 750 runs for each parameter combination

21



Tournament Selection

• For integer-valued size t, we first form a tournament set of t
individuals, each chosen with uniform probability (with
replacement) from the entire population. We then return, as the
selected parent, the individual in the set with the lowest total
error.

• For a non-integer-valued size t between 1 and 2 we use
tournament size 2 with probability t-1, and select a parent
entirely randomly otherwise.

22



Roulette Selection

The probability of selection for an individual i that satisfies si
constraints is si divided by sum of sj for all individuals j across the
population. In the degenerate case of no individuals satisfying any
constraints, which would produce a denominator of zero, an
individual is selected at random.

23



Parameters

Table 1: Problem parameters

Parameter Value
Number of variables (v) 20,30,40
Number of constraints (c) 8,12,16,32

Number of clauses per constraint (n) 20,25,30,35,40
Number of problems per combination of v, c, and n 15

Number of runs per method per problem 50
Total runs per method per combination of v, c, and n 750

24



Parameters

Table 2: Genetic algorithm parameters

Parameter Value
Population size 200

Number of generations 500
Mutation operator bit-flip

Probability of Mutation 0.1
Crossover operator one-point

Probability of Crossover 0.9

25



Error Profile

26



Quality Measures

• Mean Least Error:

MLE = (1/N)
∑
i

error(best_progi)

• Success Generation: Number of generations the algorithm took
to find a solution

• Success Rate: Fraction of the total runs that succeeded

27



Mean Least Error

(a) C = 8

(b) C = 12

(a) C = 16

(b) C = 32 28



Success Generation

(a) C = 8

(b) C = 12

(a) C = 16

(b) C = 32 29



Success Rates: different selection algorithms

Table 3: Success rates. Underlines indicate statistically significant
improvements, determined using a pairwise chi-square test with Holm
correction and p < 0.05.

Number of Number of Fitness Tournament Lexicase
Variables (v) Constraints (c) Proportionate (size 2)

20 8 0.835 0.867 0.992
20 12 0.940 0.954 1.000
20 16 0.980 0.987 1.000
20 32 0.999 1.000 1.000
30 8 0.415 0.475 0.889
30 12 0.614 0.697 0.995
30 16 0.815 0.869 1.000
30 32 0.983 0.995 1.000
40 8 0.205 0.257 0.689
40 12 0.224 0.310 0.927
40 16 0.433 0.576 0.993
40 32 0.861 0.944 1.000

30



Success Rates: different tournament sizes

Table 4: Success rate for different tournament sizes. Boldfaced numbers
indicate the highest success rate in a particular row.

Number of Number of Tournament Tournament Tournament Tournament Tournament
Variables (v) Constraints (c) Size 1.25 Size 1.5 Size 2 Size 4 size 8

20 8 0.850 0.860 0.856 0.818 0.777
20 12 0.948 0.955 0.959 0.952 0.934
20 16 0.982 0.987 0.988 0.989 0.979
20 32 1.000 1.000 0.999 1.000 0.999
30 8 0.443 0.485 0.471 0.428 0.367
30 12 0.644 0.702 0.773 0.712 0.618
30 16 0.850 0.888 0.879 0.846 0.766
30 32 0.993 0.996 0.996 0.990 0.974
40 8 0.226 0.271 0.137 0.120 0.105
40 12 0.254 0.322 0.293 0.245 0.213
40 16 0.510 0.614 0.503 0.423 0.335
40 32 0.938 0.958 0.901 0.794 0.680

31



Analysis and Discussion



Diversity Analysis

Average number of unique chromosomes (individuals) in the
population, over evolutionary time, under different conditions.

32



Conclusions



Future Work

• Apply lexicase to problems that can be mapped to GA
• Lexicase is being used in GP and GA as a parent selection
algorithm. However, it really is just a selection algorithm for
optimization over many objectives

• Diversity analysis of error vectors. We only looked at the
structure of bit strings. Considering error distributions might be
interesting

• Study diversity of populations produced by other parent
selection algorithms

33



Conclusions

• Lexicase is not necessarily unique to GP
• Lexicase outperforms tournament selection
• Lexicase maintains high genome diversity
• Studying where lexicase works and where it has difficulty in the
Boolean CSP domain may help us improve it

34



Acknowledgments

We thank Thomas Helmuth and Nic Mcphee for providing useful
suggestions.

This material is based upon work supported by the National Science
Foundation under Grant No. 1617087. Any opinions, findings, and
conclusions or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the views of the
National Science Foundation.

35


	Motivation
	Background: Lexicase Selection
	Background: Boolean CSP
	Experiments and Results
	Analysis and Discussion
	Conclusions

