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Motivation



Why Lexicase?

• Proven to be helpful for several GP problems
• Not specific to GP
• Should be useful wherever there are many objectives (test
cases), all of which we want to handle correctly
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Why GAs? Why Boolean CSP?

• Lexicase selection is not
necessarily unique to genetic
programming

• We want to study lexicase
selection in a less complex
setting; GA provides this

• Boolean Constraint
Satisfaction Problem (CSP)
can easily be mapped to GAs

• Boolean CSP is more
constrainted than most GP
problems

• Lexicase does well with
uncompromising problems

• Boolean CSP can serve as a
proxy for problems with many
interconnected constraints
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Background: Lexicase Selection



Lexicase Selection

• Parent selection algorithm
• Employs repeated filtering steps of randomly chosen test cases

Result: Parent chosen for recombination
candidates := the entire population
cases := list of all test cases in a random order
while True do

candidates := candidates who perform best on case[0]
if only one candidate exists in candidates then

return candidate
end
if cases is empty then

return a randomly selected candidate from candidates
end
delete case[0]

end
Algorithm 1: Lexicase Selection
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Lexicase Selection: An Example

• We want to evolve programs that do well over 4 objectives
• Our population size is 10
• Now we come to the point in our program that uses lexicase
selection

• First we set our cases to be the number of objectives, and
shuffle this list [0, 1, 2, 3] → [2, 0, 1, 3]

• Then we set our candidates equal to the initial population.
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Lexicase Selection: A Short Analysis

• Let’s assume we have a
population of individuals,
and that there exist only two
objectives, or fitness cases

• Where do individuals
selected by lexicase fall on
the pareto front?

• What does this mean?
• Why is this important? In
aggregation, these case
specialists are not often the
most fit.

• However, they may contain
features good at solving niche
portions of our problem.

• Contributes to diversity.
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Background: Boolean CSP



Boolean Expressions

• Evaluate to either TRUE or FALSE (1 or 0)
• (¬x1 ∨ x3 ∨ x0) ∧ (x2 ∨ x0 ∨ x4 ∨ ¬x1)
• This formula has 5 variables, all of which are either 1 or 0
• This formula is in CNF (conjunctive normal form)
• In 3CNF, all clauses must have 3 variables
• (¬x1 ∨ x3 ∨ x0) ∧ (x2 ∨ x0 ∨ x4) ∧ (x0 ∨ x4 ∨ ¬x1)
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Boolean CSP

• Let’s look at the following boolean constraints: (x0 ∨ x3 ∨ ¬x1)
and (x2 ∨ x1 ∨ ¬x0)

• Let’s assign to each variable a value. α = [1, 1, 1, 1]. In this case,
both the constraints evaluate to TRUE. Hence, α = [1, 1, 1, 1] is a
solution to the CSP.

• Correct assignment does not have to be unique. Another
assignment for this problem is β = [1, 1, 0, 0].
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Experiments and Results



Mapping Boolean CSP to GA

• We experiment on GA with different selection algorithms:
tournament selection (with replacement), roulette selection,
and lexicase selection

• (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x4 ∨ x5) ∧ (x3 ∨ x5 ∨ ¬x3) ∧ (x2 ∨ x4 ∨ x1)
• How would we encode this?
• Candidate solutions are binary vectors of fixed length
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Fitness Function

• Let’s come back to our example expression
• (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x4 ∨ x5) ∧ (x3 ∨ x5 ∨ ¬x3) ∧ (x2 ∨ x4 ∨ x1)
• Split the formula into pieces
• piece 1: (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x4 ∨ x5)
• piece 2: (x3 ∨ x5 ∨ ¬x3) ∧ (x2 ∨ x4 ∨ x1)
• Essentially, each constraint is a subformula of our original
expression

• We define our fitness function by the number of constraints our
solution satisfied. We can interpret this as error. An assignment
that solves a given problem then has a fitness value of 0.
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Why Boolean Constraints?

• Remember that Boolean CSPs are a proxy for real world
problems.

• Many real world problems have different components of error,
and this is what our constraints represent.
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Experimental Setup

• Tournament selection (various sizes)
• Lexicase selection
• Roulette (fitness proportionate) selection
• 15 different initializations
• 50 different runs for each initialization
• Hence, 750 runs for each parameter combination
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Tournament Selection

• For integer-valued size t, we first form a tournament set of t
individuals, each chosen with uniform probability (with
replacement) from the entire population. We then return, as the
selected parent, the individual in the set with the lowest total
error.

• For a non-integer-valued size t between 1 and 2 we use
tournament size 2 with probability t-1, and select a parent
entirely randomly otherwise.
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Roulette Selection

The probability of selection for an individual i that satisfies si
constraints is si divided by sum of sj for all individuals j across the
population. In the degenerate case of no individuals satisfying any
constraints, which would produce a denominator of zero, an
individual is selected at random.
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Parameters

Table 1: Problem parameters

Parameter Value
Number of variables (v) 20,30,40
Number of constraints (c) 8,12,16,32

Number of clauses per constraint (n) 20,25,30,35,40
Number of problems per combination of v, c, and n 15

Number of runs per method per problem 50
Total runs per method per combination of v, c, and n 750
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Parameters

Table 2: Genetic algorithm parameters

Parameter Value
Population size 200

Number of generations 500
Mutation operator bit-flip

Probability of Mutation 0.1
Crossover operator one-point

Probability of Crossover 0.9
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Error Profile
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Quality Measures

• Mean Least Error:

MLE = (1/N)
∑
i

error(best_progi)

• Success Generation: Number of generations the algorithm took
to find a solution

• Success Rate: Fraction of the total runs that succeeded
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Mean Least Error

(a) C = 8

(b) C = 12

(a) C = 16

(b) C = 32 28



Success Generation

(a) C = 8

(b) C = 12

(a) C = 16

(b) C = 32 29



Success Rates: different selection algorithms

Table 3: Success rates. Underlines indicate statistically significant
improvements, determined using a pairwise chi-square test with Holm
correction and p < 0.05.

Number of Number of Fitness Tournament Lexicase
Variables (v) Constraints (c) Proportionate (size 2)

20 8 0.835 0.867 0.992
20 12 0.940 0.954 1.000
20 16 0.980 0.987 1.000
20 32 0.999 1.000 1.000
30 8 0.415 0.475 0.889
30 12 0.614 0.697 0.995
30 16 0.815 0.869 1.000
30 32 0.983 0.995 1.000
40 8 0.205 0.257 0.689
40 12 0.224 0.310 0.927
40 16 0.433 0.576 0.993
40 32 0.861 0.944 1.000
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Success Rates: different tournament sizes

Table 4: Success rate for different tournament sizes. Boldfaced numbers
indicate the highest success rate in a particular row.

Number of Number of Tournament Tournament Tournament Tournament Tournament
Variables (v) Constraints (c) Size 1.25 Size 1.5 Size 2 Size 4 size 8

20 8 0.850 0.860 0.856 0.818 0.777
20 12 0.948 0.955 0.959 0.952 0.934
20 16 0.982 0.987 0.988 0.989 0.979
20 32 1.000 1.000 0.999 1.000 0.999
30 8 0.443 0.485 0.471 0.428 0.367
30 12 0.644 0.702 0.773 0.712 0.618
30 16 0.850 0.888 0.879 0.846 0.766
30 32 0.993 0.996 0.996 0.990 0.974
40 8 0.226 0.271 0.137 0.120 0.105
40 12 0.254 0.322 0.293 0.245 0.213
40 16 0.510 0.614 0.503 0.423 0.335
40 32 0.938 0.958 0.901 0.794 0.680
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Analysis and Discussion



Diversity Analysis

Average number of unique chromosomes (individuals) in the
population, over evolutionary time, under different conditions.
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Conclusions



Future Work

• Apply lexicase to problems that can be mapped to GA
• Lexicase is being used in GP and GA as a parent selection
algorithm. However, it really is just a selection algorithm for
optimization over many objectives

• Diversity analysis of error vectors. We only looked at the
structure of bit strings. Considering error distributions might be
interesting

• Study diversity of populations produced by other parent
selection algorithms
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Conclusions

• Lexicase is not necessarily unique to GP
• Lexicase outperforms tournament selection
• Lexicase maintains high genome diversity
• Studying where lexicase works and where it has difficulty in the
Boolean CSP domain may help us improve it
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