COSC-111
Introduction to Computer Science |

Sections 2 & 3

Lee Spector



Registration

Sections 2 & 3: Same course

Section 1 (Matteo Riondato): Same core content, some
differences

Some lab switching possible, but can't mix Matteo/Lee

If not registered but want to be, request on ACData and
email me

You must sign sign-in sheet to remain registered



Introductions
Course information
Computation and programming

First programs



Introductions
Course information
Computation and programming

First programs



You

Name
Pronouns
Year

Major or primary interests



Thought Process

MUSIC

The Spector
Sound

This diagram is a composition
called "Geometric
Transformations (Nude
Brunch),” created in 1981 by
Lee Spector ‘84 in a TIMARA
class taught by Gary Lee
Nelson. In a windowless room
on the fourth floor of Mudd,
students in the class
composed music by creating
code on computer terminals
that were connected to a
mainframe computer (Spector,
a professor of computer
science at Hampshire College,
believes it was a Xerox Sigma
9) in the building's basement.
Composition’ was development
of the ideas and the code,” he
says, "and ‘performance’ was
getting the computer to
produce the sound.

“I happened to be a big
Buckminster Fuller fan at the
time,” Spector explains, “and
| decided to make a piece
that translated the geometric
obiects he described in his

"

/ - -
Aeformdion iy B be naw, ol

N

ten) O K@E;t (Do w_“)

¥
veeyass 241

& I
-

/[

Nt Yo 3 & ot it
% o
o :
e % : : o L
BN P b L 1 e
v - s
o s i v(_r..":’ ) ™
v 4’ ' s T
y ;
. ’,»- . o
BRSO
..—-‘. '



Pulitzer Prize=Winner
miversary Edition: With a new preface by the author

GODEL,ESCHER,BACH:

an Eternal Golden Braid

Hubert | .Dreytus

What
’ Computers
| Can’t Do

§ THELIMITSOF
ARTIFICIAL INTELLIGENCI

MARPER COLOPNON BOOKS ICN 610/ sa




Conventional

y 4

Causal

y 4

Temporal

y A
Spatial

y A

Perceptual/Manual
@

Figure 7. The specific levels of APE.

COGNITIVE D D

Trash-Ca Sink Frid,
SCIENCE e Caine

Stove

B
™V

ELSEVIER Cognitive Science 25 (2001) 941-975

http://www elsevier.com/locate/cogsci

Partial and total-order planning: evidence from normal -
and prefrontally dama lation
d prefrontally damaged populations = F
Mary Jo Rattermann®*, Lee Spector”, Jordan Grafman®, Harvey Levin®, HomeBot oo
Harriet Harwarde i Robot-Hutch Laundry-Machine

. Couch

®School of Cognitive Science, Hampshire College, Amherst, MA 01002, USA Closet-2 mW-A -
“National Institute of Neurological Disorders and Stroke, Building 10; Room 5C205; 10 Center Drive; oo
MSC 1440, Bethesda, MD 20892-1440, USA
9Department of Physical Medicine and Rehabilitation, Baylor University College of Medicine, 1333
Moursound Avenue, A 205, Houston, TX 77030, USA

“Callier Center for Communication Disorders, University of Texas at Dallas, 1966 Inwood Road, Py n

“Department of Psychology, Franklin & Marshall College, Lancaster, PA 17604, USA

Bathroom

Toilet

N n

Dallas TX 75235, USA

Figure 19. HomeBot’s domain.



NS CSI
CS

Language

blogy Syntax
Semantics

Sociolinguistics

Animal Behavior Phon

Cognitive Psychology
Bioacoustics

Philosophy, of Language Developmental Psychology

Evolutionary Theory

Culture

Philosophy of Mind  Education Ethics

Computer Modelling

Artificial Life

Internet

Children & TV

Creativity

Computer Graphics

Arts Technologies




Advanced Topics in Artificial Intelligence
Algorithmic Arts

Animals and Animats: Natural and Artificial Intelligence and Behavior Artificial Intelligence
Artificial Intelligence in 3D Virtual Worlds
Beginning Coding for Science

Biocomputational Developmental Ecology

Code Immersion

Cognitive Science Fiction

Computational Models of Biological Systems
Computer Science Projects

Computing Concepts: Creative Machines?
Creative Programming Workshop

Current Issues in Cognitive Science

Evolutionary Computation

Genetic Programming

Hypertext

Introduction to Artificial Intelligence

Introduction to Cognitive Science

Introduction to Computer Science

Programming Creativity

Programming for Science

Programming Game Theory

Programming Language Paradigms

Quantum Computing with No Prerequisites of Any Kind
Radical Innovation in Digital Arts

Reasoning About Action

Research in Artificial Intelligence

Unconventional Computing

What Computers Can’t Do (limits of computing)
When Machines Talk (natural language processing)



Integrated Teaching & Research

e Undergrad/grad/faculty collaboration
e \Wide range of project areas

e Five College research group focusing on evolutionary computing

u()

&
N
N

NOYERY
6 = 0.075




Introductions
Course information
Computation and programming

First programs



Moodle Help Accessibility Links

Amherst College

Lee Spector a’ v

Computer Science 111-02: Introduction to Computer Science |

Dashboard » My courses » 1920F » Computer Science » Introduction to Computer Science | 02 (COSC-111-02-1920F) Turn editing on

NAVIGATION o)

Dashboard
4" Site home

ES
=l

Syllabus

General course information and policies. Be sure to read all of this carefully.

LATEST NEWS =
Add a new topic...

(No announcements have been posted yet.)

) Site pages ‘D Detailed Schedule
¥ My courses n o ) )
~ 1920F This is where you'll ﬁr.1d detailed information about that W(? re doing ea.ch day, what you QUICKSETS g
. should read and turn in, etc. Check back frequently since this may be adjusted as we
¥ Computer Science Yes | No
proceed.
- Introduction to Computer Science Py Students see course? o

102 (COSC-111-02-1920F) ‘® AAnnouncements

b Participants '. Anonymous Forum Grades visible? o
Ff Grades

) General Please post questions and answers to questions here. Update settings
) September 2 - September 8 =| Check for Print Reserves More settings

P September 9 - September 15 [ E-reserves "This block is not visible to students"

P September 16 - September 22 .

'S Textbook Code

P September 23 - September 29

P September 30 - October 6 This is the code distributed with our textbook. We will use little of it directly, but | have

b October 7 - October 13 posted it here for ease of access.

P October 14 - October 20

P October 21 - October 27

» October 28 - November 3 September 2- September 8

» November 4 - November 10

» November 11 - November 17 E5) Reminder regarding detailed schedule

» November 18 - November 24

5 Matteo's instructions for installing Java SDK and IntelliJ

» November 25 - December 1 L

» December 2 - December 8 + RollDie.java

» December 9 - December 15

» December 16 - December 22

Intvadiirtinn +A Camniibar Crinnan |



Ambherst College, Fall 2019

COSC-111: Introduction to Computer Science |

Instructor: Professor Lee Spector (he/him), SCCE C211, Ispector@amherst.edu

Class Meetings:
Section 02: MW 11:00-11:50 in SCCE A131, Lab F 10:00-10:50 or 11:00-11:50 in SCCE A331
Section 03: MW 2:00- 2:50 in SMUD 207, Lab F 1:00-1:50 or 2:00-2:50 in SCCE A331

Office hours:

Individual (sign up here): M 4:00-5:30, W 3:00-4:00

Open (group, no signup required): M 3:00-4:00, W 4:00-5:30
Additional times by appointment (email)

Teaching assistants:

Section 02: Ben Fleischman, in SCCS A131 Wednesday evenings, 7:00-9:00

Section 03: Caroline Shim, in SCCS A131 Sunday evenings, 7:00-9:00

Additional TA help available in SCCS A131 Sunday, Monday and Wednesday evenings, 7:00-9:00




Overview: This course is an introduction to computer science, designed
for students with no previous computer science or programming
experience. We will spend most of our time learning to write programs in
the Java programming language, but while doing so we will also engage
with a range of other topics including: techniques for designing step-by-
step processes to solve problems (algorithms); applications of
computers to the social sciences and the arts; fundamental concepts of
artificial intelligence and artifical life; ethical issues related to the
development and use of computer technology; alternative conceptions of
programming and programming languages; and the limits of
computation (complexity and computability theory).



Texts: We will read documents distributed on the class Moodle, along
with selected parts of:

e Introduction to Programming in Java: An Interdisciplinary Approach
(2nd Edition), by Robert Sedgewick and Kevin Wayne (S&W): You
may purchase this (for example from Amazon) or read the copies
on reserve at the library. This entire book is also the first half of
Computer Science: An Interdisciplinary Approach, by the same
authors. We will only be using material in the Introduction to
Programming in Java part, but you can read it just as well from the
Computer Science book if you want to get that instead (although it's
bigger and more expensive).

e Java Programming, by Lyle McGeoch (LM): Free online with
Ambherst login.

Software: |nielliJ IDEA




Support: My goal is for you to succeed in this course, to learn a lot and
to earn a good grade, regardless of your background and regardless of
whether or not your future academic plans involve more computer
science. If you are having trouble, then | want to know about it and |
want to help. Please make proactive use of the support systems built
into the course (scheduled Q&A sessions, the Moodle forum, TA office
hours, and my office hours), and contact me if you may need additional
support such as a peer tutor.

Accommodations: If you have a documented disability that requires
accommodations, you will need to register with Accessibility Services for
coordination of your academic accommodations. You can reach them
via email at accessibility@amherst.edu, or via phone at 413-542-2337.
Once you have your accommodations in place, | will be glad to meet
with you privately during my office hours or at another agreed upon time
to discuss the best implementation of your accommodations.



Attendance and participation: You are expected attend and participate
in all classes and labs, except when you really can't or shouldn't, for
example because of illness. While attendance will not be recorded and
will not contribute directly to your grade, it will nonetheless contribute
significantly, indirectly, by helping you to master the material, to
complete the exercises, and to do well on the exams.

Grading: Midterm exam: 20%, Final exam: 30%, Exercises: 50%, with
each week's exercises counting equally. The exercises for the last few
weeks of the semester all focus on the development of a final project, so
the final project will count as several weeks of exercises. Partial credit
will be awarded for incomplete submissions, but late submissions will
receive no credit at all (unless required by official accommodations or
requested by your class dean). So it is a good idea to plan to submit
everything at least a day or two before the deadline, and you should
always submit something on time even if it is not complete.



Exercises:

e Collaborative exercises: group work is encouraged. Work on collaborative
exercises starts in lab sessions, in groups. You will turn in your own answers, which
must be unique, but these exercises will generally be relatively open-ended so that
your own answers can naturally reflect your own interests and tastes. You should
discuss your ideas, get help from classmates, and help them too, both during lab
sessions and afterwards. Your answers can include code written by others
(classmates or websites, etc.) as long as you make the source of every piece of code
explicit.

e Individual exercises: group work is forbidden. You must not discuss or share
answers to individual exercises with anyone except the professor or TAs. Individual
exercises will usually involve re-using concepts from previous collaborative
exercises. Here you have to demonstrate your understanding of those concepts on
your own, and unless otherwise noted you can only include code that you have
written yourself from scratch.

e Practice exercises: optional, not to be submitted, discuss freely. Answers to
practice exercises will not be collected, but you are encouraged to complete them in
order to ensure that you understand the material, and in order to prepare for the
exams. You are also encouraged to ask about these in class Q&A sessions, on the
Moodle forum, and in TA hours, and to discuss them with classmates in lab sessions.
Practice exercises designated witha (!) are particularly recommended.



Labs: Lab sessions will be used primarily for starting work on newly
assigned collaborative exercises. Time permitting, they may also be
used to discuss and work on practice exercises.

Moodle forum: You are strongly encouraged to submit questions and
answers to questions on the anonymous class Moodle forum, to which
you should all be subscribed. | will not look at identities of posters unless
this is necessary to deal with a problem, and identities will not be visible
to classmates. While participation on the forum will not contribute
directly to your grade, it is a valuable learning opportunity, whether you
are asking questions, answering questions, or both.



Laptops, phones, and other devices: You should feel free to use
whatever devices you want, but you should be 100% engaged with the
class throughout every class meeting. If it helps then you can use
devices to take notes, to look things up, maybe even to run small code
examples related to the topic under discussion, etc. But you should be
focused on the activity of the class at all times. No devices or other
materials are permitted during exams, unless required by official
accommodations.

Honor code: The Amherst College Honor Code applies to this course,
as it does to all other Amherst College courses. You should attend
carefully to the requirement for explicit attribution of sources for
collaborative exercises, and to the prohibition of discussions or sharing
of work on individual exercises. Sharing of exam questions or answers,

at any time, is prohibited.



Schedule Overview:

e Motivation and goals

e Getting started with Java programming

e ASCII art

e Types, variables, expressions, operators
e Command-line arguments

e Random numbers and text

e Simulating elections

e User input

e Defining functions (static methods)

e Grammatical sentence generators, Madlibs
e Shape-drawing library

e Loops( while and for )

e Drawing and animation generators

e Simulating voter preferences

e File input and output

e Midterm exam



Enhancing previously-written programs
Arrays

Cellular automata and the "game of life"
Defining Java classes and objects
Simulating instant-runoff elections and elections with primaries
Recursion

Fractal trees and ferns

Object-oriented programming concepts
Defining instance methods

Exceptions

Simulating antagonism across social groups
Other programming paradigms

Computing and social responsibility

Final project development

Computational complexity

Computability and unsolvable problems
Artificial intelligence

Final projects due

Final exam



Introductions
Course information
Computation and programming

First programs



Computation



Computation




Computation

(marble run gates)



Angewandte G DC h A Journal of the

German

International Edition Chemle S Chemical Society

Communication

A Molecular Circuit Regenerator to Implement Iterative
Strand Displacement Operations

Nicole V. DelRosso, Prof. Dr. Sarah Hews, Prof. Dr. Lee Spector, Prof. Dr. Nathan D. Derr

First published: 21 March 2017 | https://doi.org/10.1002/anie.201610890 | Cited by: 4

Read the full text > T PDF | TOOLS « SHARE

Abstract

The predictable chemistry of Watson-Crick base-pairing imparts a unique
structural programmability to DNA, enabling the facile design of molecular
reactions that perform computations. However, many of the current
architectures limit devices to a single operational cycle. Herein, we introduce
the design of the “regenerator”, a device based on coupled enthalpic and
entropic reactions that permits the regeneration of molecular circuit
components.



Bit
_ /I
0O 1
off on

Can be used to represent any information



Binary Numbers

=N

10
11
100
101
110
111
1000
1001
1010
1011
1100
1101
1110
1111



Dec Bin Hex Char |Dec Bin Hex Char |Dec Bin Hex Char |Dec Bin Hex Char
0 0000 0000 OO0 [NUL] |32 00100000 20 space|64 01000000 40 @ 96 0110 0000 60 ~
1 0000 0001 01 [sOH] |33 00100001 21 ' 65 01000001 41 A 97 01100001 61 a
2 0000 0010 02 [SsTX]|34 00100010 22 v 66 01000010 42 B 98 01100010 62 b
3 0000 0011 03 [ETX] |35 00100011 23 # 67 01000011 43 <cC 99 01100011 63 <c¢
4 0000 0100 04 [EOT] |36 00100100 24 $ 68 01000100 44 D 100 01100100 64 d
5 0000 0101 05 [ENQ] |37 00100101 25 % 69 01000101 45 E 101 01100101 65 e
6 0000 0110 06 [ACK] |38 00100110 26 & 70 01000110 46 F 102 01100110 66 £
7 0000 0111 07 [BEL]|39 00100111 27 71 01000111 47 G 103 01100111 67 g
8 0000 1000 08 [BS] |40 00101000 28 ( 72 01001000 48 H 104 01101000 68 h
9 0000 1001 09 [TaB] |41 00101001 29 ) 73 01001001 49 I 105 01101001 69 i
10 00001010 OA |[LF] |42 00101010 2a ~* 74 01001010 4a J 106 0110 1010 6A j
11 00001011 OB [VT] |43 00101011 2B + 75 01001011 4B K 107 01101011 6B k
12 00001100 OC [FF] |44 00101100 2Cc , 76 01001100 4C L 108 01101100 6C 1
13 00001101 OD |[CR] |45 00101101 2D - 77 01001101 4D M 109 01101101 6D m
14 00001110 OE [SO] |46 00101110 2E . 78 01001110 4E N 110 01101110 6E n
15 00001111 OF ([SI] |47 00101111 2Fr / 79 01001111 4F O 111 01101111 6F o
16 0001 0000 10 [DLE] |48 00110000 30 O 80 01010000 50 P 112 0111 0000 70 p
17 00010001 11 [DC1l]1(|49 00110001 31 1 81 01010001 51 Q 113 01110001 71 g
18 00010010 12 [DC2]|50 00110010 32 2 82 01010010 52 R 114 01110010 72 r
19 00010011 13 [DC3]|51 00110011 33 3 83 01010011 53 s 115 0111 0011 73 s
20 0001 0100 14 [Dc4]1|52 00110100 34 4 84 01010100 54 T 116 0111 0100 74 t
21 00010101 15 [NAK] |53 00110101 35 5 85 01010101 55 U© 117 01110101 75 u
22 0001 0110 16 [SYN]|54 00110110 36 6 86 01010110 56 V 118 0111 0110 76 v
23 00010111 17 [ETB] |55 00110111 37 7 87 01010111 57 W 119 01110111 77 w
24 00011000 18 |[CAN] |56 00111000 38 8 88 01011000 58 X 120 01111000 78 x
25 00011001 19 [EM] |57 00111001 39 9 89 01011001 59 Y 121 01111001 79 vy
26 00011010 1A [sUuB] |58 00111010 3A 90 01011010 5A Z 122 01111010 7A =z
27 00011011 1B [ESC]|59 00111011 3B ; 91 01011011 5B [ 123 01111011 7B {
28 00011100 1c [Fs] 60 00111100 3Cc < 92 01011100 5c \ 124 01111100 7C |
29 00011101 1D [GS] 61 00111101 3D = 93 01011101 5D ] 125 01111101 7D }
30 00011110 1E [RS] 62 00111110 3E > 94 01011110 5 ~ 126 01111110 7E ~
31 00011111 1F [Us] 63 00111111 3Fr ? 95 01011111 5F 127 01111111 7F [DEL]







<
T
a 3 3
5
o
< <
e g <
o m <
™ w (o))
<
» b -
2 2
3 3 2
>
(@]
< <
A_ r - _8 <
m m A_
N (Te] ¢ o]
® ] 2 3
< S ] 5
- - M_/ S
s
< <
<d ko A_ <
m o

S0DIAGAAM



Program in a high-level language

'

Compiler

'

Logic gates operating on bits



Program in Java

¢

Compiler
Java bytecode

Java Virtual Machine (JVM)

¢

Logic gates operating on bits



i1 MITCSAIL &
oL @MIT_CSAIL

Describe programming in only six words.
We'll RT all the best ones.

Ours:

Turning ideas and caffeine into code.

#Programmingln6Words #wednesdaywisdom

11:00 AM - Jun 26, 2019 - TweetDeck

401 Retweets 1.1K Likes



Crafting instructions to do important things. @JeffDean

Build. Deploy. Test. Debug. Debug. Debug. @ StackOverflow
It’s a feature, not a bug @leslieasheppard

Making complex things appear simple. @Grady_Booch
Being forced to think very clearly @erikbryn

Try it. Get feedback. Learn. Repeat. @PragmaticAndy
Writing code to write less code @alhuelamo

Turning confused computers into helpful friends @ossia
The computer cooks. I write recipes. @marcorobotics

It ran on my machine yesterday @unrahul
Why is this still not working?! @ ASpittel

Did you remember to clear your cache? @aburke626
Oh WOW, it’s working — but how? @codeorg

Who wrote this garbage? Oh, me. @Fobwashed

Hello, world. All are welcome here. @megahoch



Carol Willing
@WillingCarol
Replying to @MIT_CSAIL

Turning bits into works of wonder

11:09 PM - Jun 26, 2019 - Twitter for Android



. Lee Spector
| @leespector
Replying to @MIT_CSAIL

Orchestrating the flow of the universe

1:48 PM - Jun 26, 2019 - Twitter for iPad



M Plummer Fernandez
@M_PF

Replying to @prehensile @stephenfortune and @MIT_CSAIL
undo undo undo, phew, works again

5:52 PM - Jun 26, 2019 - Twitter Web Client



Maria Skoularidou
, @skoularidou
Replying to @MIT_CSAIL

Commands are literal, your assumptions aren't.

6:03 PM - Jun 26, 2019 - Twitter Web Client



f Tejas Jain
"\ @jaintj95

Replying to @MIT_CSAIL
Pretend you know, secretly Stack Overflow.
#Programmingln6Words

12:50 PM - Jun 26, 2019 - Twitter for Android



Leto Peel
@PiratePeel
Replying to @MIT_CSAIL

It almost never runs first time

5:08 AM - Jun 27, 2019 - Twitter for Android



@ Moshe Sipper
P ¥ @moshesipper

—

Replying to @MIT_CSAIL
lgnoring the spec and using seven words

4:04 PM - Jun 26, 2019 - Twitter Web App



: 6 Carrie Cai v
@Carryveggies

Replying to @MIT_CSAIL
A means for improving human lives.

(I'm disappointed but not surprised that so few of these 6-
word phrases have mentioned humans anywhere in them.)

2:15 AM - Jun 27, 2019 - Twitter Web App



»  fi @thatlilfkr-1d

@ it's the beginning of the school year so i just want to remind new
computer science majors that struggling to install/figure out software
for classes is no indication of your programming potential! the first time
| tried to install python i cried for 3 hours and i'm still here.

O 24 1195 ¥ 551 T




Embrace Mystery

Selectively, temporarily

Really okay for all but one line of HelloWorld.java to make
absolutely no sense until later in the course

Same for almost all fancy features of Intellid software

Blocked? ASK!

Play



Introductions
Course information
Computation and programming

First programs



111171777777 77777777777777777777777777777777777777777777777777777777777777777777
// froggy

public class Main {
public static void main(String[] args) {
System.out.println("I had a little froggy.");
}

J11117777077777707777777777777777777777777777777777777777777777777777777777777777
// froggy in parts

public class Main {
public static void main(String[] args) {
System.out.print ("I had");
System.out.print(" a little");
System.out.println(" froggy.");

[11117777777 7770707777 7777777777777777777777777777777777777777777777777777777777

// froggy in parts in one line

public class Main {
public static void main(String[] args) {
System.out.println("I had" + " a little" + " froggy.");
}
}

1117777777777 7777777777777777777777777777777777777777777777777777777777777/777777
// froggy hopping across lines

public class Main {
public static void main(String[] args) {
System.out.println("My little froggy hopped \nand hopped \nand hopped.");
}
}

117777777 77777777777777777777777777777777777777777777777777777777777777777777777
// froggy hopping across lines with tabs

public class Main {
public static void main(String[] args) {
System.out.println("My little froggy hopped \n\tand hopped \n\t\tand hopped.");
}



Reminders

* Read the section of the detailed schedule for Friday to
know what to do to prepare for lab

 Email and/or come to office hours with questions or
comments



Questions?



