COSC-452
Evolutionary Computation

Lee Spector

Registration

* You must sign sign-in sheet to remain registered

* If not registered but want to be, email me

e Introductions
e Course information

e Evolutionary computation

e Introductions
e Course information

e Evolutionary computation

You

Name

Pronouns

Year

College if not Amherst
Major(s) or possible major(s)

Specific and/or non-computer-science interest(s)

Thought Process

MUSIC

The Spector
Sound

This diagram is a composition
called "Geometric
Transformations (Nude
Brunch),” created in 1981 by
Lee Spector ‘84 in a TIMARA
class taught by Gary Lee
Nelson. In a windowless room
on the fourth floor of Mudd,
students in the class
composed music by creating
code on computer terminals
that were connected to a
mainframe computer (Spector,
a professor of computer
science at Hampshire College,
believes it was a Xerox Sigma
9) in the building's basement.
Composition’ was development
of the ideas and the code,” he
says, "and ‘performance’ was
getting the computer to
produce the sound.

“I happened to be a big
Buckminster Fuller fan at the
time,” Spector explains, “and
| decided to make a piece
that translated the geometric
obiects he described in his

"

/ - -
Aeformdion iy B be naw, ol

N

ten) O K@E;t (Do w_“)

¥
veeyass 241

& I
-

/[

Nt Yo 3 & ot it
% o
o :
e % : : o L
BN P b L 1 e
v - s
o s i v(_r..":’) ™
v 4’ ' s T
y ;
. ’,»- . o
BRSO
..—-‘. '

Pulitzer Prize=Winner
miversary Edition: With a new preface by the author

GODEL,ESCHER,BACH:

an Eternal Golden Braid

Hubert | .Dreytus

What
’ Computers
| Can’t Do

§ THELIMITSOF
ARTIFICIAL INTELLIGENCI

MARPER COLOPNON BOOKS ICN 610/ sa

Conventional

y 4

Causal

y 4

Temporal

y A
Spatial

y A

Perceptual/Manual
@

Figure 7. The specific levels of APE.

COGNITIVE D D

Trash-Ca Sink Frid,
SCIENCE e Caine

Stove

B
™V

ELSEVIER Cognitive Science 25 (2001) 941-975

http://www elsevier.com/locate/cogsci

Partial and total-order planning: evidence from normal -
and prefrontally dama lation
d prefrontally damaged populations = F
Mary Jo Rattermann®*, Lee Spector”, Jordan Grafman®, Harvey Levin®, HomeBot oo
Harriet Harwarde i Robot-Hutch Laundry-Machine

. Couch

®School of Cognitive Science, Hampshire College, Amherst, MA 01002, USA Closet-2 mW-A -
“National Institute of Neurological Disorders and Stroke, Building 10; Room 5C205; 10 Center Drive; oo
MSC 1440, Bethesda, MD 20892-1440, USA
9Department of Physical Medicine and Rehabilitation, Baylor University College of Medicine, 1333
Moursound Avenue, A 205, Houston, TX 77030, USA

“Callier Center for Communication Disorders, University of Texas at Dallas, 1966 Inwood Road, Py n

“Department of Psychology, Franklin & Marshall College, Lancaster, PA 17604, USA

Bathroom

Toilet

N n

Dallas TX 75235, USA

Figure 19. HomeBot’s domain.

NS CSI
CS

Language

blogy Syntax
Semantics

Sociolinguistics

Animal Behavior Phon

Cognitive Psychology
Bioacoustics

Philosophy, of Language Developmental Psychology

Evolutionary Theory

Culture

Philosophy of Mind Education Ethics

Computer Modelling

Artificial Life

Internet

Children & TV

Creativity

Computer Graphics

Arts Technologies

Advanced Topics in Artificial Intelligence
Algorithmic Arts

Animals and Animats: Natural and Artificial Intelligence and Behavior Artificial Intelligence
Artificial Intelligence in 3D Virtual Worlds
Beginning Coding for Science

Biocomputational Developmental Ecology

Code Immersion

Cognitive Science Fiction

Computational Models of Biological Systems
Computer Science Projects

Computing Concepts: Creative Machines?
Creative Programming Workshop

Current Issues in Cognitive Science

Evolutionary Computation

Genetic Programming

Hypertext

Introduction to Artificial Intelligence

Introduction to Cognitive Science

Introduction to Computer Science

Programming Creativity

Programming for Science

Programming Game Theory

Programming Language Paradigms

Quantum Computing with No Prerequisites of Any Kind
Radical Innovation in Digital Arts

Reasoning About Action

Research in Artificial Intelligence

Unconventional Computing

What Computers Can’t Do (limits of computing)
When Machines Talk (natural language processing)

Integrated Teaching & Research

e Undergrad/grad/faculty collaboration
e \Wide range of project areas

e Five College research group focusing on evolutionary computing

u()

&
N
N

NOYERY
6 = 0.075

e Introductions
e Course information

e Evolutionary computation

Amherst College

Quicksets

Quickmail

Moodle Help ~ Accessibility Links ~ Q. Lee Spector »% b

Computer Science 452: Seminar in Computer Science: Evolutionary Computation

Dashboard » My courses » 1920S » Computer Science » Seminar in Computer Science: Evolutionary Computation (COSC-452-1920S)

NAVIGATION B

Dashboard
@ Site home
b Site pages
¥ My courses
¥ 1920S
¥ Computer Science
Data Structures 01
(COSC-211-01-1920S)
Data Structures
(COSC-211-19208)
Seminar in Computer
- Science: Evolutionary
Computation (COSC-
452-1920S)
b Participants
E Grades
b General
January 26 -
February 1

b

February 2 -
February 8

February 9 -
February 15

February 16 -
February 22

February 23 -
February 29

> March1-March7

L oaa A s ' 4o

Turn editing on

“L Syllabus

General course information and policies. Be sure to read all of this carefully.

=) Schedule

This is where you'll find detailed information about what we're doing each day, what you should read and
turnin, etc. It will be populated and adjusted incrementally as the course proceeds, so check back frequently.

‘D Clojure Resources

Links to Clojure texts, tools, tutorials, etc.

'. Announcements

(=] Anonymous Forum

January 26 - February 1

February 2 - February 8

_ | Week 1 Portfolio
NS
| Automatic Quantum Computer Programming: A Genetic Programming Approach

For this week, you should just read Chapter 4: "Genetic and Evolutionary Programming"

February 9 - February 15

Syllabus

Ambherst College, Spring 2020

COSC-452: Evolutionary Computation

Instructor: Professor Lee Spector (he/him), SCCE C211, Ispector@amherst.edu
Class Meetings: Tuesdays and Thursdays, 2:30-3:50, in SCCE A331

Office hours:
Sign up for regular slots (M 1:30-3:30 & 4:30-5:30, Tu 1:30-2:15, Th 12:30-2:15) here.
Other times can be arranged by email.

Description: Evolutionary computation techniques harness mechanisms of biological
evolution, including mutation, recombination, and selection, to build software systems
that solve difficult problems or shed light on the nature of evolutionary processes. In this
course students will explore several evolutionary computation techniques and apply
them to problems of their choosing. The technique of genetic programming, in which
populations of executable programs evolve through natural selection, will be
emphasized.

Objectives:

e Tounderstand and apply evolutionary computation methods.
e Todevelop skills in "functional"-style programming.
e To conduct independent and collaborative programming-based project work.

Overview: In the first part of the course we will survey the field of evolutionary
computation, develop functional programming skills in the Clojure programming
language, and use Clojure to begin implementing and experimenting with evolutionary
algorithms. Near the middle of the term we will pitch project ideas, vote on pitches, and
form project groups. For the remainder of the semester we will engage in project work
while also exploring advanced topics in evolutionary computation research. The last
week of the semester will be dedicated to project presentations.

Texts: All readings and other materials will be distributed on the class Moodle site.

Software: Java and IntelliJ IDEA with the Cursive plugin, or an acceptable alternative
Clojure IDE (as discussed in class).

Hardware: IntelliJ/Cursive is installed on Science Center computers, but it would be best
also to install it on a computer of your own if you are able to do so.

Expectations and Grading: You are expected to attend class, read the assigned readings,
participate in all class activities (except when you really can't or shouldn't, for example
because of illness), submit all assigned work on time, and respond appropriately to
feedback. You are also expected to demonstrate, through your submitted work and
participation, that you have engaged seriously with the course material and mastered it
to the extent that you are able. You will get an A if you meet these expectations, an A+

if you meet them and produce exceptionally strong work, and an A- if you fall short but
only in minor ways. You will get a B if you fall short in significant ways but nonetheless

demonstrate substantial engagement and learning, and you will get a lower grade for
weaker performance. | will provide feedback on your performance periodically. If you
have questions about your grade as the course progresses, then please check in with me.

Portfolios: Most of your work will be submitted as updates to a cumulative portfolio of
text and code that you will be building throughout the semester. You will submit an
update to your portfolio each week, each of which should have a name like "Week 1°,
"Week 2" etc., and each of which should contain:

e QOverview: A text file containing a brief description of the week's updates (max one
page). For collaborative work, each collaborator's contribution must be explicitly
noted.

e RICE Report: A text file containing a very brief (one or two sentence) report on the
week's RICE activity (see below).

e Text: A folder containing new notes on readings, ideas for project work, and other
reflections on the course material.

e Code: A folder containing new code developed for work in the course.

In general, you should be submitting only new materials in each update, since all of your
submissions taken together, over the course of the semester, will constitute your final
portfolio. In some cases, however, it may make sense to submit an updated version of an
item from a previous week. If you do this, then you should be sure to note that you are
doing so, and clearly describe what is new in your Overview.

RICE: Required Immersive Collaborative Experience: A Required Immersive
Collaborative Experience (RICE) session is an out-of-class activitiy in which you meet
with a randomly assigned partner and spend at least 30 minutes discussing and/or
collaboratively engaging in work for the course, with at most one screen between the
two of you. You will be assigned a RICE partner each week, and each week you should
include a report in your portfolio, with the following format:

Who: (partner name)

When: (when you met)

Where: (where you met)

What: (what you did, in just a sentence or maybe two)

If you are unable to meet with your RICE partner in a particular week, then you should
submit a description of the circumstances. If there is someone in the class with whom you
would prefer not to be paired, please send me an email about this, which | will treat as
confidential.

Demonic Coding: In some class sessions we will engage in Demonic Coding sessions:

e Theclassissplitinto "coders" and "demons," and each demon is paired with a coder.

e Coders begin coding on whatever they are working on for the course.

e Demons observe, ask questions, and make suggestions. Demons with fewer skills
than their coders can ask more questions, while those with more skills can make
more suggestions. Roughly 50% of a coder's time should be devoted to demonic
interactions, with the rest devoted to making progress on the code.

* From time to time, demons rotate to other coders.

e Halfway through the session, all coders become demons and all demons become
coders.

Demonic coding sessions may be started sometimes without warning, so you should
always have access to your code.

Moodle forum: You are strongly encouraged to submit questions and answers to the
class Moodle forum. Anonymity is the default, and you are welcome to remain
anonymous or to identify yourself depending on the situation. | will not look at identities
of anonymous posters unless it is necessary to deal with a problem.

Support: My goal is for you to succeed in this course, to learn a lot and to earn a good
grade. If you are having trouble, then | want to know about it and | want to help. Please
make proactive use of the support systems built into the course (the Moodle forum and
my office hours), and contact me if you may need additional support.

Phones and other devices: Feel free to use whatever devices you want if they help you to
engage with the class by taking notes, doing searches, executing code, etc., but you
should indeed be 100% engaged in the collective work of the class throughout every
class meeting.

Accommodations: If you have a documented disability that requires accommodations,
you will need to register with Accessibility Services for coordination of your academic
accommodations. You can reach them via email at accessibility@amherst.edu, or via
phone at 413-542-2337. Once you have your accommodations in place, | will be glad to

meet with you privately during my office hours or at another time to discuss the best
implementation of your accommodations.

Honor code: The Amherst College Honor Code applies to this course, as it does to all
other Amherst College courses.

Schedule

This schedule will be augmented and adjusted as the course proceeds.

Class 1 (Tuesday, January 28)

Before:
¢ Nothing

In class:

* Introductions
¢ What we will do in this course and why

Class 2 (Thursday, January 30)

Before:

e Read "And now, digital evolution," by Lee Spector

e Read "Evolution of artificial intelligence," by Lee Spector

¢ Read the "Getting Started" section of the Cursive User Guide

e Beginreading Chapter 3: "Do things: a Clojure Crash Course" of Clojure for the Brave and True

In class:

¢ |Installfest
e Clojinc

Class 3 (Tuesday, February 4)

Before:

e Submit Week 1 portfolio

e Read Chapter 4: "Genetic and Evolutionary Programming" of Automatic Quantum Computer Programming: A Genetic
Programming Approach, by Lee Spector
¢ Read "Beating the Averages,' by Paul Graham

¢ Finish reading Chapter 3: "Do things: a Clojure Crash Course" of Clojure for the Brave and True

In class:

e Clojestions
e EvolveSum

Class 4 (Thursday, February 6)

Before:

e Read "Analyzing a Decade of Human-Competitive ("HUMIE") Winners: What Can We Learn?," by Kannappan et al.
e Try4Clojure

In class:

e Humies
¢ Demonic coding

e Introductions
e Course information

e Evolutionary computation

Evolutionary Computation

Lee Spector
Amherst College, Hampshire College, UMass Amherst

This material is based upon work supported by the National Science Foundation under Grant No.
1617087. Any opinions, findings, and conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the views of the National Science Foundation.

\\\//
\\{}//
- L]
IR~ \ 2
TERRAS IRRADIENT

g
/&
)

\Ne

Outline

* What is evolutionary computation”
 What can it do?

e Improving it

* Connections

¢« COSC-452

Outline

* What is evolutionary computation?
e What can it do”

e Improving it

* Connections

¢« COSC-452

Ada
Lovelace

Charles
Darwin

B Lo

https://en.wikipedia.org/wiki/Charles_Darwin
https://www.cnn.com/ampstories/tech/meet-ada-lovelace-the-first-computer-programmer

https://www.britannica.com/biography/Alan-Turing

EvoBio & CompScl

Bioinformatics
Modeling & simulation
Artificial life

Evolutionary algorithms

EvoBio & CompScl

* Bioinformatics
* Modeling & simulation

 Artificial life

ccatgttgecactgetteatie™
agcgatticeatg ——

e Evolutionary algorithms

https://www.scripps.edu/science-and-medicine/cores-and-services/bioinformatics-core/index.html

EvoBio & CompScl

* Bioinformatics
* Modeling & simulation
e Artificial life

e Evolutionary algorithms

EvoBio & CompScl

Digital evolution: Avida

e Bioinformatics
* Modeling & simulation

* Artificial life

e Evolutionary algorithms s

Christoph Adami - Introduction to the digital evolution platform Avida

https://www.youtube.com/watch?v=0uF8wKxXWFQ

EvoBio & CompScl

 Bioinformatics
* Modeling & simulation
* Artificial life

e Evolutionary algorithms

Qs

EvoBio & CompScl

* Bioinformatics
* Modeling & simulation

* Artificial life

e Evolutionary algorithms

EvoBio & CompScl

* Bioinformatics
* Modeling & simulation

* Artificial life

e Evolutionary algorithms

EvoBio & CompScl

Random =3 Assessment =3 Solution

|

 Bioinformatics

* Modeling & simulation Se'ei“”‘
. Artificial life Variaior

* Evolutionary algorithms

Evolving LEGO bridges

Evolutionary Algorithms

Random =3 Assessment =3 Solution

!

Selection

!

Variation

Genetic Programming

Random

— Assessment =3 Software
Programs

!

Selection

!

Variation

Outline

* What is evolutionary computation”
* What can it do?

e Improving it

* Connections

¢« COSC-452

Annual "Humies" Awards
For Human-Competitive Results

Produced By Genetic And Evolutionary Computation

The result was paten ted aS an ln Venthn in the past is an improvement over a patented invention or would qualify today as a patentable new

invention.

The result is equal to or better than a result that was accepted as a neW SClentlflC reSUItat the time when it was published in a peer-reviewed scientific

journal.

The result is equal to or better than a result that was placed into a database or archive of results maintained by an internationally recognized
panel of scientific experts.

The result is pUbIIShable ln ltS OW" r’ghtas a new scientific result independent of the fact that the result was mechanically created.

meresutis @qUal to or better than the most recent human-created solution ..

standing problem for which there has been a succession of increasingly better human-created solutions.

The result is equal to or better than a result that was considered an aChie Vement in itS field at the time it was first discovered.
meresut SOIVES @ problem of indisputable difficulty s

e resut hoas s own o WINS @ regulated competition involving human contestants . .

form of either live human players or human-written computer programs).

An Evolved Antenna for Deployment on NASA's Space Technology 5 Mission

Jason D. Lohn, Gregory S. Hornby, Derek S. Linden
NASA Ames Research Center

Humies Gold Medal, 2004

pnnnnn IIIIIIII1

2 D .
2R

1{uemaft < {H] A J U205 N
0 z

o{H | F Ofuooreenf:

LTI ITOT

mnnnnnn IIIIIIII‘

).

’ A

Figure 8.11. A gate array diagram for an evolved solution to the AND/OR oracle
problem. The gate marked “f” is the oracle. The sub-diagrams on the right represent
the possible execution paths following the intermediate measurements.

Lee Spector
Hampshire College

Humies Gold Medal, 2004

Genetic Programming for Finite Algebras

Lee Spector David M. Clark lan Lindsay
Cognitive Science Mathematics Hampshire College
Hampshire College SUNY New Paltz ~ Ambherst, MA 01002

Ambherst, MA 01002 New Paltz, NY 12561 iml04@hampshire.edu
Ispector@hampshire.edu clarkd@newpaltz.edu

Bradford Barr Jon Klein

Hampshire College Hampshire College
Ambherst, MA 01002 Ambherst, MA 01002
bradford.barr@gmail.com jk@artificial.com

((CCCCCOC (y X))) % 2) #(ZX)) ((X (2 (X %(Z Y)))) % 2)) %
2)x2)#(Z+(((X+(((2%2) £X)%(2X))) x) =y)+ (((y (2 =
) (YY) #x)%2)) (X (((Z2) X) «(Z(X(Z2xY)))))

Humies Gold Medal, 2008

International Journal of Algebra and Computation | Vol. 28, No. 05, pp. 759-790 (2018)

Evolution of algebraic terms 3: Term continuity and beam algorithms

David M. Clark =1 and Lee Spector

Fixing software bugs in 10 minutes or less
using evolutionary computation

University of New Mexico By THE UNIVERSITY of
Stephanie Forrest < 8 NEW MEXICO
ThanhVu Nguyen

University of Virginia
Claire Le Goues
Westley Weimer

Humies Gold Medal, 2009

Yavalath is an abstract board game for two or three players, invented by a computer
program called LuDI. It has an easy rule set that any player can pick up immediately,
but which produces surprisingly tricky emergent play.

Yavalath is available from nestorgames, making it the first — and still only —
computer-generated game to be commercially published, together with its sister
game Pentalath.

In October 2011, Yavalath was ranked in the top #100 abstract board games ever
invented on the BoardGameGeek database. This helped it win the GECCO "Humies"
gold medal for human-competitive results in evolutionary computation for 2012.

Here is a Yavalath article in the November 2013 issue of Bitcoin magazine.

Rules

The board starts empty.
Two players take turns adding a piece of their colour to an empty cell.

Win by making a line-of-4 (or more) pieces of your colour.
Lose by making a line-of-3 pieces of your colour beforehand.
Draw if the board otherwise fills up.

No, players are not allowed to pass.

Tactics and Strategy

The key tactical play in Yavalath is the forcing move, as shown below. White move 1 forces Black to lose with the blocking move 2.

Cameron Browne
Imperial College London

Humies Gold Medal, 2012

https://www.human-competitive.org/awards

Automated Software Transplantation

Earl T. Barr, Mark Harman, Yue Jia, Alexandru Marginean, Justyna Petke
University College London

Humies Gold Medal, 2016

https://www.human-competitive.org/awards

Darwinian Data Structure Selection

Michail Basios Lingbo Li Fan Wu
University College London, UK University College London, UK University College London, UK
michail.basios@cs.ucl.ac.uk lingbo.li@cs.ucl.ac.uk fan.wu@cs.ucl.ac.uk

Leslie Kanthan Earl T. Barr
University College London, UK University College London, UK
L kanthan@cs.ucl.ac.uk e.barr@cs.ucl.ac.uk

Data Structure Selection/Optimisation Process

Hmmm, maybe just use
defaults that work in
most cases.

no

Traversals

vector
(sorted)

Allow
Duplicates

Allow
e Duplicates
ves
Separate
Key [Value,
yes
no

multimap ” multiset |

Separate
Key | Value

Separate
Key / Value

[

I unordered_multimap

unordered_map)|

https://www.human-competitive.org/sites/default/files/basiosslides.pptx

Humies Bronze Medal, 2019

https://www.human-competitive.org/awards

Check for BRACHYTHERAPY

updates

=2

e o
LSEVIER Brachytherapy 18 (2019) 396—403

Physics

Evaluation of bi-objective treatment planning for high-dose-rate prostate
brachytherapy—A retrospective observer study

Stefanus C. Mareel’*, Ngoc Hoang Luongz, Ernst S. Kooreman', Niek van Wieringen',
Arjan Bel', Karel A. Hinnen', Henrike Westerveld', Bradley R. Pieters', Peter A.N. Bosman’ ,
Tanja Alderliesten’

' Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
lefe Sciences and Health Research Group, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
3Algorithmics group, Department of Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of
Technology, Delft, The Netherlands

Expert planning time: 32:18 EA planning time: 00:30

Human competition

« 18 prostate cancer patients
» Blinded comparison between 6 plans
» 3 experienced radiation oncologists

Clinical Plan

o
c
=
]
o
@
c
©
=)
=
o
>
=
©
5]
T

85 90
Tumor coverage (%) —

Humies Silver Medal, 2019

https://www.human-competitive.org/awards

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019 419

Automated Self-Optimization in Heterogeneous
Wireless Communications Networks

David Lynch™, Michael Fenton, David Fagan, Stepan Kucera, Senior Member, IEEE,
Holger Claussen, Senior Member, IEEE, and Michael O’Neill

Adapting to Dynamic Traffic

Small Cells =<—_ |

Macro Cells

Humies Gold Medal, 2019

https://www.human-competitive.org/awards

Renewable Energy

Renewable Energy ——
Volume 87, Part 2, March 2016, Pages 892-902

ELSEVIER

Automatic identification of wind turbine models
using evolutionary multiobjective optimization

William La Cava & &, Kourosh Danai 2, Lee Spector °, Paul Fleming €, Alan Wright €, Matthew Lackner 2

Show more

https://doi.org/10.1016/j.renene.2015.09.068 Get rights and content

Highlights

« Accurate, succinct models of wind turbine dynamics are identified from
normal operating data.

« A novel evolutionary multi-objective optimization system is described.

« The proposed method produces physically meaningful models without
prior knowledge of the system.

« The method is bench-marked against other modeling techniques.

Swarm and Evolutionary Computation
Volume 44, February 2019, Pages 260-272

o

ELSEVIER

Multidimensional genetic programming for
multiclass classification

William La Cava ? & =, Sara Silva ® ¢ 4 Kourosh Danai €, Lee Spectorf, Leonardo Vanneschi €, Jason H. Moore 2

Show more

https://doi.org/10.1016/j.swevo.2018.03.015 Get rights and content

Abstract

We describe a new multiclass classification method that learns multidimensional
feature transformations using genetic programming. This method optimizes
models by first performing a transformation of the feature space into a new space of
potentially different dimensionality, and then performing classification using a
distance function in the transformed space. We analyze a novel program
representation for using genetic programming to represent multidimensional
features and compare it to other approaches. Similarly, we analyze the use of'a
distance metric for classification in comparison to simpler techniques more
commonly used when applying genetic programming to multiclass classification.
Finally, we compare this method to several state-of-the-art classification techniques
across a broad set of problems and show that this technique achieves competitive
test accuracies while also producing concise models. We also quantify the scalability
of the method on problems of varying dimensionality, sample size, and difficulty.
The results suggest the proposed method scales well to large feature spaces.

Software Synthesis

29 benchmark problems taken from intro CS
textbooks

Require multiple data types and control structures
Driven by software tests, input/output pairs

Used for studies of program synthesis, by us and
by others

7. Replace Space with Newline (P 4.3) Given a
string input, print the string, replacing spaces with
newlines. Also, return the integer count of the non-
whitespace characters. The input string will not have
tabs or newlines.

8. String Differences (P 4.4) Given 2 strings (with-
out whitespace) as input, find the indices at which the
strings have different characters, stopping at the end
of the shorter one. For each such index, print a line
containing the index as well as the character in each
string. For example, if the strings are “dealer” and
“dollars”, the program should print:

leo
2al
4 e a

B umAD [Prior Best Operators

100

75

o Lo
Lo N

21y SS200NS

Application Count Application Category

Problem Type Count

Antennas 1 Engineering (19)

Biology 2 Science (7) : :

Chemistry 1 Science (7) ClaS SlﬁCathIl 5
Computer vision 2 Computer science (7) .

Electrical engineering 1 Engineering (19) Clu Stenng 1
Electronics 5 Engineering (19)

Games 6 Games (6) .

Image processing 3 Computer science (7) DeSIgn 20
Mathematics 2 Mathematics (3) . . .

Mechanical engineering 4 Engineering (19) OptlmlzatIOH 8
Medicine 2 Medicine (2) .

Operations research 1 Engineering (19) Pl annlng 1
Optics 2 Engineering (19)

Optimization 1 Mathematics (3) .

Photonics 1 Engineering (19) Pr Ogr ammimi ng 4
Physics 1 Science (7) .

Planning 1 Computer science (7) RegreSSIOH 3
Polymers 1 Engineering (19)

Quantum 3 Science (7)

Security 1 Computer science (7)

Software engineering 3 Engineering (19)

Kannappan, K., L. Spector, M. Sipper, T. Helmuth, W. La Cava, J. Wisdom, and O. Bernstein. 2015. Analyzing
a decade of Human-competitive ("HUMIE") winners -- what can we learn? In Genetic Programming Theory
and Practice XII. New York: Springer.

Evolution, the Designer

WHAT WOULD DARWIN SAY? | LEE SPECTCR

. . . The Boston Globe
And now, digital evolution

By Lee Spector | August 29, 2005

RECENT developments in computer science provide new perspective on
“intelligent design," the view that life's complexity could only have arisen
through the hand of an intelligent designer. These developments show that

complex and useful designs can indeed emerge from random Darwinian
processes.

‘Darwinian evolution is itself a designer worthy of
significant respect, if not religious devotion.”

What it is Not Good For

e Quite a lot

* |tis solving "problems beyond the reach ot other
forms of Al”

e But also not solving problems within the reach of
other forms of Al

Outline

* What is evolutionary computation”
 What can it do?

* Improving it

* Connections

¢« COSC-452

Areas for Improvement

 Representation
e Variation

e Selection

Areas for Improvement

 Representation
e Variation

* Selection

Parent Selection

« Jraditionally based on overall scores
* Roulette wheels or tournaments

* Unbalanced, qualitatively diverse test sets

SPL-110

Biological Selection

e Survive challenges that you happen to face
e Until you can reproduce

* Each challenge may be competitive

| exicase Selection

e Don't use overall scores

* To select single parent:
1. Shuftle test cases
2. First test case — keep best™ individuals
3. Repeat with next test case, etc.
Until one individual remains

e Selected parent may be specialist, not great on
average, but lead to generalists later

Problem name

Lexicase Tournament

Replace Space With Newline
Syllables

String Lengths Backwards
Negative To Zero

Double Letters

Scrabble Score

Checksum

Count Odds

57
24
75
72

O O W

13

1
18
15

o O OO

Diversity

1.00
0.75 -
=
2 -@- lexicase
e
0 0.507 . tourney
5 .
L0 == ifs
0.25 -
0.00
100 =
B 75-
2 75
g 50- o -—o - -———
> -
i _‘/_/.f——"'/‘
0- : *#ﬂﬂl i ll — i |
0 100 200 300
Generation

Fig. 1 Replace Space With Newline — error diversity G PT P_ 2 O 1 5

Why Does it Work??

* Prior results: Diversity alone is not the answer
e Hypothesis: Selecting specialists is important

e Jest by only allowing programs with good overall
scores (good non-specialists) to be selected

 Degraded performance would suggest that
specialists are important

Specialists Help

Solution Rate

last-index—of-zero

mirror-image

negative—to—zero

replace—space—-with—-newline

1.00 - —B2—0—0—g—0—0—0—0—9
]
M ®
0.504 PS ® ®
WH
0.25+
%
e e . ,_,_.-0—0-0'“7"._‘ o
0.00+
string—lengths—-backwards syllables vector—average x—-word-lines

1.00 -

0.75+

0.50

0.25+

0.00 -

1.0

0.2

06 0.8

0.4

04 06 08 1.0

02 04 06

Elitist Survival Rate

Problem

lexicase =@= |exicase—-umad =@= tournament

(General Lessons?

In what ways might specialists be important in:
e Other forms of machine learning?

e Biological evolution?

* Engineering teams?

e Educational communities?

Outline

* What is evolutionary computation”
 What can it do?

e Improving it

* Connections

¢« COSC-452

Connections

 Machine learning

e Software engineering

* Programming languages
e Theory

e Evolutionary biology

* Applications

Outline

* What is evolutionary computation”
 What can it do?

e Improving it

* Connections

* COSC-452

AIIlherSt CO]_lege Arts & Museums Athletics Library News&Events Visit Give

THE AMHERST STORY THE ACADEMIC EXPERIENCE ADMISSION & FINANCIAL AID LIFE AT AMHERST

A Home » Academics » Majors » Computer Science » Sem: Evolutionary Comp

@ Note: thisis preliminary information about this course. Final course information will be published shortly before the start of
the semester.

Sem: Evolutionary Comp

© SEM: EVOLUTIONARY COMP SPRING 2020

Seminar in Computer Science: Evolutionary
Computation

Listed in: Computer Science, as COSC-452

Formerly listed as: COSC-40

Faculty

Lee Spector (Section 01)

Description

Evolutionary computation techniques harness the mechanisms of biological evolution, including mutation,
recombination, and selection, to build software systems that solve difficult problems or shed light on the nature of
evolutionary processes. In this course students will explore several evolutionary computation techniques and apply
them to problems of their choosing. The technique of genetic programming, in which populations of executable
programs evolve through natural selection, will be emphasized.

Requisite: COSC 112. Limited to 20 students. Preference given to Computer Science majors. Spring semester. Professor
Spector.

COSC-452

Projects applying and/or improving EC
First half of course: preparing to do this

First weeks of course: learning Clojure, a
language in which progress will be faster:
e Child of Java and Lisp
* Functional, high level, concise
e Full GP system in a few hundred lines

Prerequisite: COSC-112

https://insights.stackovertflow.com/survey/2017

@ Top Paying Technologies

Top Paying Technologies by Region

Worldwide usS UK Germany India France

Clojure $72,000
Rust $65,714
Elixir $65,000
F# $64,516
Go $64,516
Perl $63,068
Groovy $61,809
Ruby $60,000

Scala $60,000

Takeaways

 Many EvoBio/CompSci intersections

e Evolutionary algorithms use variation and selection to
solve hard, interesting, and important problems

 Ample opportunities for improvement and application
e Specialists appear to be important

e CS-452 will be fun

Questions?

Reminders

Read "And now, digital evolution," by Lee Spector

Read "Evolution of artificial intelligence," by Lee Spector

Read the "Getting Started" section of the Cursive User Guide

Begin reading Chapter 3: "Do things: a Clojure Crash Course" of Clojure for the Brave and True

