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Cluster Computing Facility

A mixed-architecture 100+ core high-performance
computer cluster

Available to both faculty and students for course
and project work

Hosts a wide range of research and application
software

Runs Linux and the open source ROCKS clustering
software package

Uses include research and development projects in
distributed computing, physical and ecological
simulation, quantum computing, evolutionary
algorithms, and applications of high-performance
computing to the arts







Evolutionary Algorithms

Random Generation

v

Assessment — = Solution

7N\

Selection ~ Variation
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Traditional Genetic
Algorithms

® |nteresting dynamics

® Rarely solve interesting hard problems




Evolution, the Designer

“Darwinian evolution is itself a designer

worthy of significant respect, if not religious
devotion.” Boston Globe OpEd, Aug 29,2005

WHAT WOULD DARWIN SAY? | LEE SPECTOR

e . The Boston Globe
And now, digital evolution

By Lee Spector | August 29, 2005

RECENT developments in computer science provide new perspective on
“intelligent design," the view that life's complexity could only have arisen
through the hand of an intelligent designer. These developments show that
complex and useful designs can indeed emerge from random Darwinian
processes.




Genetic Programming

® Evolutionary algorithm in which the candidate
solutions are executable computer programs.

® (Candidate solutions are assessed, at least in
part, by executing them.




Program Representations

Lisp-style symbolic expressions (Koza, ...).

Purely functional/lambda expressions (Walsh, Yy, ...).

Linear sequences of machine/byte code (Nordin et al,, ...).
Stack-based languages (Perkis, Spector, Stoffel, Tcherney, ...).
Graph-structured programs (Teller, Globus, ...).

Obiject hierarchies (Bruce,Abbott, Schmutter, Lucas, ...)
Fuzzy rule systems (Tunstel, Jamshidi, ...)

Logic programs (Osborn, Charif, Lamas, Dubossarsky, ...).

Strings, grammar-mapped to arbitrary languages (O’Neill, Ryan, ...).




Mutating Lisp

(+ (* X Y)
(+ 4 (- Z 23)))

(+ (* X Y)
(+ 4 (- Z 23)))

(+ (- (+ 2 2) 2)
(+ 4 (- 2 23)))




Recombining Lisp

Parent 1: (+ (* X Y)
(+ 4 (- Z2 23)))
Parent2: (- (* 17 (+ 2 X))
(* (- (* 2 2) 1)
(+ 14 (/ Y X))))

Child1: (+ (- (* 2 Z) 1)
(+ 4 (- Z2 23)))
Child2: (- (* 17 (+ 2 X))
(* (* X Y)
(+ 14 (/ Y X))))




Symbolic Regression

Given a set of data points, evolve a program
that produces y from x.

Primordial ooze: +, -, *, %, x, 0.

Fitness = error (smaller is better)




GP Parameters

Maximum number of Generations: 5|1

Size of Population: 1000

Maximum depth of new individuals: 6

Maximum depth of new subtrees for mutants: 4
Maximum depth of individuals after crossover: |7
Fitness-proportionate reproduction fraction: 0. |
Crossover at any point fraction: 0.3

Crossover at function points fraction: 0.5
Selection method: FITNESS-PROPORTIONATE

Generation method: RAMPED-HALF-AND-HALF
Randomizer seed: |.2
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Best Program, Gen O
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Best Program, Gen 5
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(* 0.1 X))
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Best Program, Gen |2

(+ (- (- 0.1
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(- (* X X) _
(+ 0.1 ] e O Generation 12
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0.1
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Best Program, Gen 22

(= (= (* X (* X X))
0.1)
0.1)
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Figure 8.7. A gate array diagram for an evolved version of Grover's database search
algorithm for a 4-item database. The full gate array is shown at the top, with M,
and M; standing for the smaller gate arrays shown at the bottom. A diagonal line
through a gate symbol indicates that the matrix for the gate is transposed. The “f"

gate is the oracle.

Humies 2004
GOLD MEDAL




Line-Drawing Mechanism

Without reference to an existing straight line.

Human-competitive results; challenged world’s greatest
inventors for a century (spanning 18th and 19th).
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Fig. 10. Two Evolved mechanisms and their tree representations (a) Linearity
1:12819; The simplified equivalent shown top right, and (b) Linearity 1:4979.

Lipson, H. 2004. How to Draw a Straight Line Using a GP: Benchmarking Evolutionary Design
Against 19th Century Kinematic Synthesis. GECCO-2004.




Evolved Antenna

® Human-competitive result.
® For NASA Space Technology 5 Mission.
® | ohn, Hornby, and Linden.




Everybody’s Favorite
Finite Algebra
Boolean algebra, B := ({0,1}, A,V,—)

0 1 V
0 0
1 1

A
0
1

0
0

Primal: every possible operation can be expressed by a
term using only (and not even) A, v,and -.




Bigger Finite Algebras

Have applications in many areas of science,
engineering, mathematics

Can be much harder to analyze/understand

Number of terms grows astronomically with
size of underlying set

Under active investigation for decades, with

major advances (cited fully in the paper) in
1939, 1954, 1970, 1975, 1979, 1991, 2008




Goal

Find terms that have certain special properties

Discriminator terms, determine primality

tA(:c,y, z) =

{:cif:z;;éy

zifx =y

Mal'cev, majority, and Pixley terms

For decades there was no way to produce these
terms in general, short of exhaustive search

Current best methods produce enormous terms
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Methods

Traditional genetic programming with EC]J
Stack-based genetic programming with PushGP
Alternative random code generators
Asynchronous islands

Trivial geography

Parsimony-based selection

Alpha-inverted selection pressure

HAH = Historically Assessed Hardness




Results

Discriminators for Ay, Az, Az, A4, As
Mal’cev and majority terms for B
Parameter tables and result terms in paper

Example discriminator term for A;:

(OO (™))% ) ¥2)(27%) JF (x5 (2*
(X*(2%y))))*2))*2)*2) (2 ((((x*(((z*z)
“X)H(27x) X)) (((y*(2¥(z%y))*
(((Y*y)*x)*2)) (X (((2%2)*x) " (2 (x™
(2*y))))))




Assessing Significance

Relative to prior methods:
® Uninformed search:

— Exhaustive: analytical (expected value)
and empirical search time comparisons

— Random: analytical (expected value) and
empirical search time comparisons

® Primality method: empirical term size
comparisons




Expected Value Analysis

Since Exp(X) is the weighted sum of the values of X,

©.@)

B) = $om = 355 =S 5 )

We recapitulate this conclusion as follows.

The expected value Exp(X) of the number X of trials
required to find a term representing the function f is ap-
proximately the size n = |A|!B! of the search space AP of all
functions from B to A.

® Verified via empirical results with random
search and exhaustive search




Significance, Time

Uninformed Search
Expected Time (Trials)

3 element algebras
Mal’cev 5 seconds (31° ~ 107)
Pixley /majority 1 hour (3% ~ 1019)
discriminator 1 month (347 ~ 1013)

4 element algebras
Mal’cev 103 years (4%% ~ 1017)
Pixley /majority 1010 years (440 ~ 1024)
discriminator 1024 years (454 ~ 103%)




Significance, Time

Uninformed Search
Expected Time (Trials)

GP

Time

3 element algebras
Mal’cev
Pixley /majority
discriminator

5 seconds (31° ~ 107)
1 hour (3% ~ 1019)
1 month (347 ~ 1013)

1 minute
3 minutes
5 minutes

4 element algebras
Mal’cev
Pixley /majority
discriminator

103 years (4%% ~ 1017)
1010 years (440 ~ 1024)
1024 years (464 ~ 1038)

30 minutes

2 hours
?




Significance, Size

Term Type

Primality Theorem

Mal’cev
Majority
Pixley
Discriminator

10, 060, 219
6, 847, 499
1,257, 556, 499
12,575, 109

(for A))




Significance, Size

Term Type

Primality Theorem

Mal’cev
Majority
Pixley
Discriminator

10, 060, 219
6, 847, 499
1,257, 556, 499
12,575, 109

(for A))




Human Competitive?

® Rather: human-WHOMPING!

® QOutperforms humans and all other known methods on
significant problems, providing benefits of several
orders of magnitude with respect to search speed
and result size

Because there were no prior methods for
generating practical terms in practical amounts of
time, GP has provided the first solution to a
previously open problem in the field




Potential Impact

These results are in an foundational area of
pure mathematics with:

® A long history

® Many outstanding problems of theoretical
significance and quantifiable difficulty

® Applications across the sciences




The case for the prize

® Using GP, we have improved significantly on
extensive past efforts of both humans and machines
to solve problems related to finite algebras

® This is an important and previously unexplored
application area for GP, with many open problems
and quantitative measures of success




Genetic Programming for Finite Algebras

Lee Spector David M. Clark lan Lindsay
Cognitive Science Mathematics Hampshire College

Hampshire College SUNY New Paltz ~ Ambherst, MA 01002
Amherst, MA 01002 New Paltz, NY 12561 iml04@hampshire.edu
Ispector@hampshire.edu clarkd@newpaltz.edu

Bradford Barr Jon Klein

Hampshire College Hampshire College
Amherst, MA 01002 Amherst, MA 01002
bradford.barr@gmail.com jk@artificial.com

Humies 2008
GOLD MEDAL!




Other applications in
mathematics!?

Define representation

Define fithess measure (need not be
perfect)

Use/define mutation/crossover algorithms
that have sufficient likelihood of producing
Improvements




Towards practical

autoconstructive evolution:

self-evolution of problem-solving
genetic programming systems

Lee Spector
Cognitive Science
Hampshire College

To appear in Riolo, Rick L., McConaghy, Trent, and
Vladislavleva, Ekaterina, editors, Genetic Programming
Theory and Practice VIl. Springer. 2010.




Autoconstructive
Evolution

Individuals make their own children.

Agents thereby control their own mutation
rates, sexuality, and reproductive timing.

The machinery of reproduction and

diversification (i.e., the machinery of evolution)
evolves.

Radical self-adaptation.




Push

® A programming language designed for programs
that evolve

® Simplifies evolution of programs that may use:
* multiple data types
* subroutines (any architecture)
recursion and iteration
evolved control structures
evolved evolutionary mechanisms




Push

Stack-based postfix language with one stack per type

Turing complete

Types include: integer, float, Boolean, name, code,

exec, vector, matrix, quantum gate, [add more as
needed]

Missing argument! NOOP

Trivial syntax:
program — instruction | literal | ( program* )




Sample Push Instructions

Stack manipulation POP, SWAP, YANK,
instructions DUP, STACKDEPTH,

(all types) SHOVE, FLUSH, =
Ma’th _|_7 ) /7 x, >7 <7
(INTEGER and FLDAT) MIN, MAX

Logic (BOOLEAN) AND, OR, NOT,
FROMINTEGER

Code manipulation QUOTE, CAR, CDR, CONS,
(CODE) INSERT, LENGTH, LIST,
MEMBER, NTH, EXTRACT
Control manipulation | DO*, DO*COUNT, DO*RANGE,
(CODE and EXEC) DO*TIMES, IF




Push(3) Semantics

e '[o execute program P:

1. Push P onto the EXEC stack.

2. While the EXEC stack is not empty, pop and pro-
cess the top element of the EXEC stack, E':

(a) If F is an instruction: execute E (accessing
whatever stacks are required).

(b) If E is a literal: push E onto the appropriate
stack.

(c) If E is a list: push each element of E onto
the EXEC stack, in reverse order.




( 2 3 INTEGER.* 4.1 5.2 FLOAT.+
TRUE FALSE BOOLEAN.OR )

(2 3 INTEGER * 4.1 5.2 (23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE FLOAT.+ TRUE FALSE
BOOLEAN.OR ) BOOLEAN.OR )

exec code bool int




INTEGER.*
4.1
52
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR )

code

bool

int




INTEGER.*
4.1
52
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR )

code

bool

int




INTEGER.*
4.1
52
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR )

code

bool

int




4.1
52
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR )

code

bool

int




5.2
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR )

code

bool

int

4.1

float




FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR )

code

bool

int

52

4.1

float




TRUE

FALSE

(23 INTEGER * 4.1 5.2
BOOLEAN.OR FLOAT.+ TRUE FALSE 9.3
BOOLEAN.OR )

exec code bool int float




FALSE

(23 INTEGER * 4.1 5.2
BOOLEAN.OR FLOAT.+ TRUE FALSE TRUE 9.3
BOOLEAN.OR )

exec code bool int float




FALSE

(23 INTEGER * 4.1 5.2
BOOLEAN.OR FLOAT.+ TRUE FALSE TRUE 9.3
BOOLEAN.OR )

exec code bool int float




(23 INTEGER * 4.1 5.2
FLOAT.+ TRUE FALSE TRUE 6 9.3
BOOLEAN.OR )

exec code bool int float




Same Results

( 2 3 INTEGER.* 4.1 5.2 FLOAT.+
TRUE FALSE BOOLEAN.OR )

( 2 BOOLEAN.AND 4.1 TRUE INTEGER./ FALSE
3 5.2 BOOLEAN.OR INTEGER.* FLOAT.+ )




( 3.14 CODE.REVERSE CODE.CDR IN IN 5.0
FLOAT.> (CODE.QUOTE FLOAT.*) CODE.IF )

IN=4.0

( 3.14 CODE.REVERSE ( 3.14 CODE.REVERSE
CODE.CDR ININ CODE.CDR IN IN
5.0 FLOAT.> 5.0 FLOAT.>

exec code bool int




3.14
SRS
CODE.CDR
IN
IN
5.0

FLOAT.>

(CODE.QUOTE FLOAT)

CODE.IF

exec

( 3.14 CODE.REVERSE
CODE.CDR IN IN
5.0 FLOAT.>

code

bool

int




CODE.REVERSE

CODE.CDR
IN
IN
5.0

FLOAT.>

(CODE.QUOTE FLOAT)

CODE.IF

exec

( 3.14 CODE.REVERSE
CODE.CDR IN IN
5.0 FLOAT.>

code

bool

int

3.14

float




CODE.CDR
IN
IN
5.0

FLOAT.>

(CODE.QUOTE FLOAT)

(CODE.IF (CODE.QUOTE

CODE.IF FLOAT*) FLOAT> 5.0 IN 314

IN CODE.CDR

exec code bool int float




IN
IN
5.0

FLOAT.>

(CODE.QUOTE FLOAT)

((CODE.QUOTE FLOAT)

CODE.IF FLOAT.> 5.0 IN IN 3.14

CODE.CDR

exec code bool int float




IN
5.0

FLOAT.>

(CODE.QUOTE FLOAT*) 4.0

((CODE.QUOTE FLOAT)

CODE.IF FLOAT.> 5.0 IN IN 3.14

CODE.CDR

exec code bool int float




5.0

FLOAT.>

(CODE.QUOTE FLOAT)

((CODE.QUOTE FLOAT)

CODE.IF FLOAT> 5.0 IN IN

CODE.CDR

exec code bool




FLOAT.>

(CODE.QUOTE FLOAT)

((CODE.QUOTE FLOAT)

CODE.IF FLOAT> 5.0 IN IN

CODE.CDR

exec code



(CODE.QUOTE FLOAT.¥) 4.0

((CODE.QUOTE FLOAT)

CODE.IF FLOAT.> 5.0 IN IN FALSE 3.14

CODE.CDR

exec code bool int float




CODE.QUQOTE

FLOAT.*

((CODE.QUOTE FLOAT)

CODE.IF FLOAT> 5.0 IN IN

CODE.CDR

exec code

FALSE

bool

int

4.0
3.14

float




FLOAT.* 4.0

((CODE.QUOTE FLOAT)

CODE.IF FLOAT.> 5.0 IN IN FALSE 3.14

CODE.CDR

exec code bool int float




4.0
FLOAT.* 3.14

exec code bool int float




12.56

exec code bool int float




(IN EXEC.DUP (3.13 FLOAT.¥*)
10.0 FLOAT./)

IN=4.0

(IN EXEC.DUP (3.13 (IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/) FLOAT*) 10.0 FLOAT/)

exec code bool int




IN

EXEC.DUP

(3.13 FLOAT*)

10.0
FLOAT./

exec

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/)

code

bool

int




EXEC.DUP

(3.13 FLOAT*)

10.0
FLOAT./

exec

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/)

code

bool

int

4.0

float




(3.13 FLOAT.*)

(3.13 FLOAT)

10.0
FLOAT./

exec

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/)

code

bool

int

4.0

float




3.13

FLOAT.*

(3.13 FLOAT*)

10.0
FLOAT./

exec

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/)

code

bool

int

4.0

float




FLOAT.*

(3.13 FLOAT*)

10.0
FLOAT./

exec

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/)

code

bool

int

4.0

float




(3.13 FLOAT*)

10.0

(IN EXEC.DUP (3.13
FLOAT./ FLOAT*) 10.0 FLOAT./) 12.52

exec code bool int float




3.13
FLOAT.*

10.0
FLOAT./

exec

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/)

code

bool

int

12.52

float




FLOAT.*

10.0 3.13

(IN EXEC.DUP (3.13
FLOAT./ FLOAT*) 10.0 FLOAT./) 12.52

exec code bool int float




10.0

FLOAT/ | 52550 R5%, 39.1876

exec code bool int float




10.0

FLOAT/ | 52550 R5%, 39.1876

exec code bool int float




(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/) 3.91876

exec code bool int float




Combinators

® Standard K S, and Y combinators:

® EXEC.K removes the second item from the EXEC stack.

® EXEC.S pops three items (call them A, B,and C) and
then pushes (B C), C,and then A.

® EXEC.Y inserts (EXEC.Y T) under the top item (T).

® A Y-based “while” loop:
( EXEC.Y
( <BODY/CONDITION> EXEC.IF
( ) EXEC.POP ) )




Iterators

CODE.DO*TIMES, CODE.DO*COUNT,
CODE . DO*RANGE

EXEC.DO*TIMES, EXEC.DO*COUNT,
EXEC.DO*RANGE

Additional forms of iteration are supported
through code manipulation (e.g. via
CODE.DUP CODE.APPEND CODE.DO)




Named Subroutines

( TIMESZ2 EXEC.DEFINE ( 2 INTEGER.* ) )




Auto-simplification

Loop:
Make it randomly simpler
If it’s as good or better: keep it

Otherwise: revert




Problems Solved by PushGP in the
GECCO-2005 Paper on Push3

® Reversing a list

® Factorial (many algorithms)

® Fibonacci (many algorithms)

® Parity (any size input)
Exponentiation

Sorting




Pushpop

® A soup of evolving Push programs.

® Reproductive procedures emerge ex nihilo:

No hand-designed “ancestor.”
Children constructed by any computable process.

No externally applied mutation procedure or rate.

Exact clones are prohibited, but near-clones are
permitted.

® Selection for problem-solving performance.




# Species vs. Mother/Child Differences

Note distribution of “+” points: adaptive populations have many species and mother/daughter
differences in a relatively high, narrow range (above near-clone levels).
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SwarmEvolve 2.0

Behavior (including reproduction) controlled
by evolved Push programes.

Color, color-based agent discrimination
controlled by agents.

Energy conservation.
Facilities for communication, energy sharing.

Ample user feedback (e.g. diversity metrics,
agent energy determines size).




SwarmkEvolve 2.0




AutoPush

Goals:
® Superior problem-solving performance.
® Tractable analysis.

Pus

n3.
Clojure (incidental, but fun!) ‘ ’

Asexual (for now).

Children produced on demand (not during
fitness testing).

Constraints on selection and birth.




Ancestor of Success

(for y=x3-2x°-x)

((code if (code noop) boolean fromfloat (2)
integer fromfloat) (code rand integer rot)
exec swap code append integer mult)

Produces children of the form:

(RANDOM-INSTRUCTION (code if (code noop)
boolean fromfloat (2) integer fromfloat)
(code rand integer rot) exec swap

code append integer mult)




Six Generations Later

A descendent of the form:

(SUB-EXPRESSION-1 SUB-EXPRESSION-2)

Produces children of the form:

( (RANDOM-INSTRUCTION-1 (SUB-EXPRESSION-1))
(RANDOM-INSTRUCTION-2 (SUB-EXPRESSION-2)))




One Generation Later

A solution, which incidentally inherits the same
reproductive strategy:

((integer stackdepth (boolean and

code map)) (integer sub (integer stackdepth
(integer sub (1in (code wrap (code 1if

(code noop) boolean fromfloat (2)

integer fromfloat) (code rand integer rot)
exec swap code append integer mult))))))




Conclusion

Genetic programming systems have an important
role to play in the future of mathematics.




