Evolving the Future of
Mathematics

Lee Spector
Cognitive Science
Hampshire College
hampshire.edu/lspector

Qutline

Genetic programming

Human competitive genetic programming

An application to finite algebras

How to think about possible future applications

Autoconstructive evolution

NS

CS

Language
Animal Behavior Phonblogy Syntax

Semantics
Bioacoustics

Evolutionary Theory

Brain

Neuroscienge

Computer Modelling

Artificial Life

Internet

Children & TV

Creativity

Arts Technologies Computer Graphics

Sociolinguistics

Cluster Computing Facility

A mixed-architecture 100+ core high-performance
computer cluster

Available to both faculty and students for course
and project work

Hosts a wide range of research and application
software

Runs Linux and the open source ROCKS clustering
software package

Uses include research and development projects in
distributed computing, physical and ecological
simulation, quantum computing, evolutionary
algorithms, and applications of high-performance
computing to the arts

Evolutionary Algorithms

Random Generation

v

Assessment — = Solution

7N\

Selection ~ Variation

100100010101 001101001110

i

111110010001 010101010011

110000011111 000111010100

101111010110

L

110010110101
000111100011 010110001000

| ™~~~

111100100011 011000100110

—

100001101011 000001000011

e

010000100110 100101101010

100001010010 010111101111

100100101000

101101000101

110101011001

111101001011

111001001110

111001001110

101110101100

010111000100

101101110100

100111001011

v

100100011101

| |

111010001001 110100100110

/¢\

101101111010 000011100111

101010111111 011011011100

| ™~

001001101100 100100100000

100001110100 010011010101

| ™~

011101100101 000010011111

—

010111011001 011001010110

110111110111

110101010010

!

-

Traditional Genetic
Algorithms

® |nteresting dynamics

® Rarely solve interesting hard problems

Evolution, the Designer

“Darwinian evolution is itself a designer

worthy of significant respect, if not religious
devotion.” Boston Globe OpEd, Aug 29,2005

WHAT WOULD DARWIN SAY? | LEE SPECTOR

e . The Boston Globe
And now, digital evolution

By Lee Spector | August 29, 2005

RECENT developments in computer science provide new perspective on
“intelligent design," the view that life's complexity could only have arisen
through the hand of an intelligent designer. These developments show that
complex and useful designs can indeed emerge from random Darwinian
processes.

Genetic Programming

® Evolutionary algorithm in which the candidate
solutions are executable computer programs.

® (Candidate solutions are assessed, at least in
part, by executing them.

Program Representations

Lisp-style symbolic expressions (Koza, ...).

Purely functional/lambda expressions (Walsh, Yy, ...).

Linear sequences of machine/byte code (Nordin et al,, ...).
Stack-based languages (Perkis, Spector, Stoffel, Tcherney, ...).
Graph-structured programs (Teller, Globus, ...).

Obiject hierarchies (Bruce,Abbott, Schmutter, Lucas, ...)
Fuzzy rule systems (Tunstel, Jamshidi, ...)

Logic programs (Osborn, Charif, Lamas, Dubossarsky, ...).

Strings, grammar-mapped to arbitrary languages (O’Neill, Ryan, ...).

Mutating Lisp

(+ (* X Y)
(+ 4 (- Z 23)))

(+ (* X Y)
(+ 4 (- Z 23)))

(+ (- (+ 2 2) 2)
(+ 4 (- 2 23)))

Recombining Lisp

Parent 1: (+ (* X Y)
(+ 4 (- Z2 23)))
Parent2: (- (* 17 (+ 2 X))
(* (- (* 2 2) 1)
(+ 14 (/ Y X))))

Child1: (+ (- (* 2 Z) 1)
(+ 4 (- Z2 23)))
Child2: (- (* 17 (+ 2 X))
(* (* X Y)
(+ 14 (/ Y X))))

Symbolic Regression

Given a set of data points, evolve a program
that produces y from x.

Primordial ooze: +, -, *, %, x, 0.

Fitness = error (smaller is better)

GP Parameters

Maximum number of Generations: 5|1

Size of Population: 1000

Maximum depth of new individuals: 6

Maximum depth of new subtrees for mutants: 4
Maximum depth of individuals after crossover: |7
Fitness-proportionate reproduction fraction: 0. |
Crossover at any point fraction: 0.3

Crossover at function points fraction: 0.5
Selection method: FITNESS-PROPORTIONATE

Generation method: RAMPED-HALF-AND-HALF
Randomizer seed: |.2

3

Evolving y=x

-0.2

0.75

Best Program, Gen O

1
—o— Target

0754 ... O Generation 0

(* X X)) 05 -
(- (% 0.1 0.1)
(* X X))) 025
0.1)

Best Program, Gen 5

—o— Target

-------- o (Generation 5

(- (* (* (% X 0.1)
(* 0.1 X))
(_ X 0.25 -
(% 0.1 X)))
0.1)

Best Program, Gen |2

(+ (- (- 0.1
(- 0.1 —o— Target
(- (* X X) _
(+ 0.1] e O Generation 12
(- 0.1
(* 0.1
0.1))))))

0.1
(% (* (* (- 0.1 0.1)
(+ X
(- 0.1 0.1)))
X)
(+ X (+ (- X 0.1)
(* X X)))))
(+ 0.1 (+ 0.1 X)))))
(* X X))

Best Program, Gen 22

(= (= (* X (* X X))
0.1)
0.1)

A1 Ty ———

"'Q'f

RN R R 'N‘)-,-— roon

Al

Artificial Intelligence for Engineering Design,
Analysis and Manufacturing

VOLUME 22 SUMMER 2008 NUMBER 3

SPECIAL ISSUE

Genetic Programming
Jor Human-Competitive Designs

At rtaBigecss bor lngrmerong Svegn Anabyss and Mamdn: boring

Guest Editor e

LEE SPECTOR

J l ANEEED [£88] http: / /www.human-competitive.org/ "a-

THE 5" ANNUAL (2008) “HUMIES” AWARDS
FOR HUMAN-COMPETITIVE RESULTS
PRODUCED BY GENETIC AND EVOLUTIONARY COMPUTATION
HELD AT THE
GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE

U(1.234)

H uc19200 |-

1”2

Figure 8.7. A gate array diagram for an evolved version of Grover's database search
algorithm for a 4-item database. The full gate array is shown at the top, with M,
and M; standing for the smaller gate arrays shown at the bottom. A diagonal line
through a gate symbol indicates that the matrix for the gate is transposed. The “f"

gate is the oracle.

Humies 2004
GOLD MEDAL

Line-Drawing Mechanism

Without reference to an existing straight line.

Human-competitive results; challenged world’s greatest
inventors for a century (spanning 18th and 19th).

D
5

0.5
0.5
0.
5 T 0.

DY
D3s
D3
D %3
T
TDD.
|\ g
TS

()
Fig. 10. Two Evolved mechanisms and their tree representations (a) Linearity
1:12819; The simplified equivalent shown top right, and (b) Linearity 1:4979.

Lipson, H. 2004. How to Draw a Straight Line Using a GP: Benchmarking Evolutionary Design
Against 19th Century Kinematic Synthesis. GECCO-2004.

Evolved Antenna

® Human-competitive result.
® For NASA Space Technology 5 Mission.
® | ohn, Hornby, and Linden.

Everybody’s Favorite
Finite Algebra
Boolean algebra, B := ({0,1}, A,V,—)

0 1 V
0 0
1 1

A
0
1

0
0

Primal: every possible operation can be expressed by a
term using only (and not even) A, v,and -.

Bigger Finite Algebras

Have applications in many areas of science,
engineering, mathematics

Can be much harder to analyze/understand

Number of terms grows astronomically with
size of underlying set

Under active investigation for decades, with

major advances (cited fully in the paper) in
1939, 1954, 1970, 1975, 1979, 1991, 2008

Goal

Find terms that have certain special properties

Discriminator terms, determine primality

tA(:c,y, z) =

{:cif:z;;éy

zifx =y

Mal'cev, majority, and Pixley terms

For decades there was no way to produce these
terms in general, short of exhaustive search

Current best methods produce enormous terms

V)
S
-
O
O
20
<
9
=
O
Q
o
7

Methods

Traditional genetic programming with EC]J
Stack-based genetic programming with PushGP
Alternative random code generators
Asynchronous islands

Trivial geography

Parsimony-based selection

Alpha-inverted selection pressure

HAH = Historically Assessed Hardness

Results

Discriminators for Ay, Az, Az, A4, As
Mal’cev and majority terms for B
Parameter tables and result terms in paper

Example discriminator term for A;:

(OO (™))%) ¥2)(27%) JF (x5 (2*
(X*(2%y))))*2))*2)*2) (2 ((((x*(((z*z)
“X)H(27x) X)) (((y*(2¥(z%y))*
(((Y*y)*x)*2)) (X (((2%2)*x) " (2 (x™
(2*y))))))

Assessing Significance

Relative to prior methods:
® Uninformed search:

— Exhaustive: analytical (expected value)
and empirical search time comparisons

— Random: analytical (expected value) and
empirical search time comparisons

® Primality method: empirical term size
comparisons

Expected Value Analysis

Since Exp(X) is the weighted sum of the values of X,

©.@)

B) = $om = 355 =S 5)

We recapitulate this conclusion as follows.

The expected value Exp(X) of the number X of trials
required to find a term representing the function f is ap-
proximately the size n = |A|!B! of the search space AP of all
functions from B to A.

® Verified via empirical results with random
search and exhaustive search

Significance, Time

Uninformed Search
Expected Time (Trials)

3 element algebras
Mal’cev 5 seconds (31° ~ 107)
Pixley /majority 1 hour (3% ~ 1019)
discriminator 1 month (347 ~ 1013)

4 element algebras
Mal’cev 103 years (4%% ~ 1017)
Pixley /majority 1010 years (440 ~ 1024)
discriminator 1024 years (454 ~ 103%)

Significance, Time

Uninformed Search
Expected Time (Trials)

GP

Time

3 element algebras
Mal’cev
Pixley /majority
discriminator

5 seconds (31° ~ 107)
1 hour (3% ~ 1019)
1 month (347 ~ 1013)

1 minute
3 minutes
5 minutes

4 element algebras
Mal’cev
Pixley /majority
discriminator

103 years (4%% ~ 1017)
1010 years (440 ~ 1024)
1024 years (464 ~ 1038)

30 minutes

2 hours
?

Significance, Size

Term Type

Primality Theorem

Mal’cev
Majority
Pixley
Discriminator

10, 060, 219
6, 847, 499
1,257, 556, 499
12,575, 109

(for A))

Significance, Size

Term Type

Primality Theorem

Mal’cev
Majority
Pixley
Discriminator

10, 060, 219
6, 847, 499
1,257, 556, 499
12,575, 109

(for A))

Human Competitive?

® Rather: human-WHOMPING!

® QOutperforms humans and all other known methods on
significant problems, providing benefits of several
orders of magnitude with respect to search speed
and result size

Because there were no prior methods for
generating practical terms in practical amounts of
time, GP has provided the first solution to a
previously open problem in the field

Potential Impact

These results are in an foundational area of
pure mathematics with:

® A long history

® Many outstanding problems of theoretical
significance and quantifiable difficulty

® Applications across the sciences

The case for the prize

® Using GP, we have improved significantly on
extensive past efforts of both humans and machines
to solve problems related to finite algebras

® This is an important and previously unexplored
application area for GP, with many open problems
and quantitative measures of success

Genetic Programming for Finite Algebras

Lee Spector David M. Clark lan Lindsay
Cognitive Science Mathematics Hampshire College

Hampshire College SUNY New Paltz ~ Ambherst, MA 01002
Amherst, MA 01002 New Paltz, NY 12561 iml04@hampshire.edu
Ispector@hampshire.edu clarkd@newpaltz.edu

Bradford Barr Jon Klein

Hampshire College Hampshire College
Amherst, MA 01002 Amherst, MA 01002
bradford.barr@gmail.com jk@artificial.com

Humies 2008
GOLD MEDAL!

Other applications in
mathematics!?

Define representation

Define fithess measure (need not be
perfect)

Use/define mutation/crossover algorithms
that have sufficient likelihood of producing
Improvements

Towards practical

autoconstructive evolution:

self-evolution of problem-solving
genetic programming systems

Lee Spector
Cognitive Science
Hampshire College

To appear in Riolo, Rick L., McConaghy, Trent, and
Vladislavleva, Ekaterina, editors, Genetic Programming
Theory and Practice VIl. Springer. 2010.

Autoconstructive
Evolution

Individuals make their own children.

Agents thereby control their own mutation
rates, sexuality, and reproductive timing.

The machinery of reproduction and

diversification (i.e., the machinery of evolution)
evolves.

Radical self-adaptation.

Push

® A programming language designed for programs
that evolve

® Simplifies evolution of programs that may use:
* multiple data types
* subroutines (any architecture)
recursion and iteration
evolved control structures
evolved evolutionary mechanisms

Push

Stack-based postfix language with one stack per type

Turing complete

Types include: integer, float, Boolean, name, code,

exec, vector, matrix, quantum gate, [add more as
needed]

Missing argument! NOOP

Trivial syntax:
program — instruction | literal | (program*)

Sample Push Instructions

Stack manipulation POP, SWAP, YANK,
instructions DUP, STACKDEPTH,

(all types) SHOVE, FLUSH, =
Ma’th _|_7) /7 x, >7 <7
(INTEGER and FLDAT) MIN, MAX

Logic (BOOLEAN) AND, OR, NOT,
FROMINTEGER

Code manipulation QUOTE, CAR, CDR, CONS,
(CODE) INSERT, LENGTH, LIST,
MEMBER, NTH, EXTRACT
Control manipulation | DO*, DO*COUNT, DO*RANGE,
(CODE and EXEC) DO*TIMES, IF

Push(3) Semantics

e '[o execute program P:

1. Push P onto the EXEC stack.

2. While the EXEC stack is not empty, pop and pro-
cess the top element of the EXEC stack, E':

(a) If F is an instruction: execute E (accessing
whatever stacks are required).

(b) If E is a literal: push E onto the appropriate
stack.

(c) If E is a list: push each element of E onto
the EXEC stack, in reverse order.

(2 3 INTEGER.* 4.1 5.2 FLOAT.+
TRUE FALSE BOOLEAN.OR)

(2 3 INTEGER * 4.1 5.2 (23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE FLOAT.+ TRUE FALSE
BOOLEAN.OR) BOOLEAN.OR)

exec code bool int

INTEGER.*
4.1
52
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

INTEGER.*
4.1
52
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

INTEGER.*
4.1
52
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

4.1
52
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

5.2
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

4.1

float

FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

52

4.1

float

TRUE

FALSE

(23 INTEGER * 4.1 5.2
BOOLEAN.OR FLOAT.+ TRUE FALSE 9.3
BOOLEAN.OR)

exec code bool int float

FALSE

(23 INTEGER * 4.1 5.2
BOOLEAN.OR FLOAT.+ TRUE FALSE TRUE 9.3
BOOLEAN.OR)

exec code bool int float

FALSE

(23 INTEGER * 4.1 5.2
BOOLEAN.OR FLOAT.+ TRUE FALSE TRUE 9.3
BOOLEAN.OR)

exec code bool int float

(23 INTEGER * 4.1 5.2
FLOAT.+ TRUE FALSE TRUE 6 9.3
BOOLEAN.OR)

exec code bool int float

Same Results

(2 3 INTEGER.* 4.1 5.2 FLOAT.+
TRUE FALSE BOOLEAN.OR)

(2 BOOLEAN.AND 4.1 TRUE INTEGER./ FALSE
3 5.2 BOOLEAN.OR INTEGER.* FLOAT.+)

(3.14 CODE.REVERSE CODE.CDR IN IN 5.0
FLOAT.> (CODE.QUOTE FLOAT.*) CODE.IF)

IN=4.0

(3.14 CODE.REVERSE (3.14 CODE.REVERSE
CODE.CDR ININ CODE.CDR IN IN
5.0 FLOAT.> 5.0 FLOAT.>

exec code bool int

3.14
SRS
CODE.CDR
IN
IN
5.0

FLOAT.>

(CODE.QUOTE FLOAT)

CODE.IF

exec

(3.14 CODE.REVERSE
CODE.CDR IN IN
5.0 FLOAT.>

code

bool

int

CODE.REVERSE

CODE.CDR
IN
IN
5.0

FLOAT.>

(CODE.QUOTE FLOAT)

CODE.IF

exec

(3.14 CODE.REVERSE
CODE.CDR IN IN
5.0 FLOAT.>

code

bool

int

3.14

float

CODE.CDR
IN
IN
5.0

FLOAT.>

(CODE.QUOTE FLOAT)

(CODE.IF (CODE.QUOTE

CODE.IF FLOAT*) FLOAT> 5.0 IN 314

IN CODE.CDR

exec code bool int float

IN
IN
5.0

FLOAT.>

(CODE.QUOTE FLOAT)

((CODE.QUOTE FLOAT)

CODE.IF FLOAT.> 5.0 IN IN 3.14

CODE.CDR

exec code bool int float

IN
5.0

FLOAT.>

(CODE.QUOTE FLOAT*) 4.0

((CODE.QUOTE FLOAT)

CODE.IF FLOAT.> 5.0 IN IN 3.14

CODE.CDR

exec code bool int float

5.0

FLOAT.>

(CODE.QUOTE FLOAT)

((CODE.QUOTE FLOAT)

CODE.IF FLOAT> 5.0 IN IN

CODE.CDR

exec code bool

FLOAT.>

(CODE.QUOTE FLOAT)

((CODE.QUOTE FLOAT)

CODE.IF FLOAT> 5.0 IN IN

CODE.CDR

exec code

(CODE.QUOTE FLOAT.¥) 4.0

((CODE.QUOTE FLOAT)

CODE.IF FLOAT.> 5.0 IN IN FALSE 3.14

CODE.CDR

exec code bool int float

CODE.QUQOTE

FLOAT.*

((CODE.QUOTE FLOAT)

CODE.IF FLOAT> 5.0 IN IN

CODE.CDR

exec code

FALSE

bool

int

4.0
3.14

float

FLOAT.* 4.0

((CODE.QUOTE FLOAT)

CODE.IF FLOAT.> 5.0 IN IN FALSE 3.14

CODE.CDR

exec code bool int float

4.0
FLOAT.* 3.14

exec code bool int float

12.56

exec code bool int float

(IN EXEC.DUP (3.13 FLOAT.¥*)
10.0 FLOAT./)

IN=4.0

(IN EXEC.DUP (3.13 (IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/) FLOAT*) 10.0 FLOAT/)

exec code bool int

IN

EXEC.DUP

(3.13 FLOAT*)

10.0
FLOAT./

exec

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/)

code

bool

int

EXEC.DUP

(3.13 FLOAT*)

10.0
FLOAT./

exec

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/)

code

bool

int

4.0

float

(3.13 FLOAT.*)

(3.13 FLOAT)

10.0
FLOAT./

exec

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/)

code

bool

int

4.0

float

3.13

FLOAT.*

(3.13 FLOAT*)

10.0
FLOAT./

exec

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/)

code

bool

int

4.0

float

FLOAT.*

(3.13 FLOAT*)

10.0
FLOAT./

exec

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/)

code

bool

int

4.0

float

(3.13 FLOAT*)

10.0

(IN EXEC.DUP (3.13
FLOAT./ FLOAT*) 10.0 FLOAT./) 12.52

exec code bool int float

3.13
FLOAT.*

10.0
FLOAT./

exec

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/)

code

bool

int

12.52

float

FLOAT.*

10.0 3.13

(IN EXEC.DUP (3.13
FLOAT./ FLOAT*) 10.0 FLOAT./) 12.52

exec code bool int float

10.0

FLOAT/ | 52550 R5%, 39.1876

exec code bool int float

10.0

FLOAT/ | 52550 R5%, 39.1876

exec code bool int float

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/) 3.91876

exec code bool int float

Combinators

® Standard K S, and Y combinators:

® EXEC.K removes the second item from the EXEC stack.

® EXEC.S pops three items (call them A, B,and C) and
then pushes (B C), C,and then A.

® EXEC.Y inserts (EXEC.Y T) under the top item (T).

® A Y-based “while” loop:
(EXEC.Y
(<BODY/CONDITION> EXEC.IF
() EXEC.POP))

Iterators

CODE.DO*TIMES, CODE.DO*COUNT,
CODE . DO*RANGE

EXEC.DO*TIMES, EXEC.DO*COUNT,
EXEC.DO*RANGE

Additional forms of iteration are supported
through code manipulation (e.g. via
CODE.DUP CODE.APPEND CODE.DO)

Named Subroutines

(TIMESZ2 EXEC.DEFINE (2 INTEGER.*))

Auto-simplification

Loop:
Make it randomly simpler
If it’s as good or better: keep it

Otherwise: revert

Problems Solved by PushGP in the
GECCO-2005 Paper on Push3

® Reversing a list

® Factorial (many algorithms)

® Fibonacci (many algorithms)

® Parity (any size input)
Exponentiation

Sorting

Pushpop

® A soup of evolving Push programs.

® Reproductive procedures emerge ex nihilo:

No hand-designed “ancestor.”
Children constructed by any computable process.

No externally applied mutation procedure or rate.

Exact clones are prohibited, but near-clones are
permitted.

® Selection for problem-solving performance.

Species vs. Mother/Child Differences

Note distribution of “+” points: adaptive populations have many species and mother/daughter
differences in a relatively high, narrow range (above near-clone levels).

I I I I I I I I I I
reproductively competent, unsolved phases: adoptive reproductively competent, unsolved phases: odaptive
reproductively competent, unsolwed phazes: non-adaptive reproductively campetent, unzolved phaszes: non-adaptive
reproductively incompetent phaszes reproductively incompetent phases

zalved phazes zalved phases

s
=

=)
=
=)
=

mn
=

mn
=

()
=

()
=

[
=
[
=

[i} [i}
[&] [&]
[[
(] (]
- -
[i] [i]
Yy Yy
Y Y
o o
= =
= =
= i3 - =
= a =
[} [}
5 5
Z24p Z24p
4+ 4+
o o
= =
[1i] [1i]
ch ch
[=] [=]
- -
[i] [i]
= =
[=] [=]
L] L]
cn cn
[n] [n]
- -
[i] [i]
= =
=] =]

iy
=

—near-clones—

A
e A

average count of diameter-16 species average count of diameter-16 species

Runs including Runs without
sexual instructions sexual instructions

SwarmEvolve 2.0

Behavior (including reproduction) controlled
by evolved Push programes.

Color, color-based agent discrimination
controlled by agents.

Energy conservation.
Facilities for communication, energy sharing.

Ample user feedback (e.g. diversity metrics,
agent energy determines size).

SwarmkEvolve 2.0

AutoPush

Goals:
® Superior problem-solving performance.
® Tractable analysis.

Pus

n3.
Clojure (incidental, but fun!) ‘ ’

Asexual (for now).

Children produced on demand (not during
fitness testing).

Constraints on selection and birth.

Ancestor of Success

(for y=x3-2x°-x)

((code if (code noop) boolean fromfloat (2)
integer fromfloat) (code rand integer rot)
exec swap code append integer mult)

Produces children of the form:

(RANDOM-INSTRUCTION (code if (code noop)
boolean fromfloat (2) integer fromfloat)
(code rand integer rot) exec swap

code append integer mult)

Six Generations Later

A descendent of the form:

(SUB-EXPRESSION-1 SUB-EXPRESSION-2)

Produces children of the form:

((RANDOM-INSTRUCTION-1 (SUB-EXPRESSION-1))
(RANDOM-INSTRUCTION-2 (SUB-EXPRESSION-2)))

One Generation Later

A solution, which incidentally inherits the same
reproductive strategy:

((integer stackdepth (boolean and

code map)) (integer sub (integer stackdepth
(integer sub (1in (code wrap (code 1if

(code noop) boolean fromfloat (2)

integer fromfloat) (code rand integer rot)
exec swap code append integer mult))))))

Conclusion

Genetic programming systems have an important
role to play in the future of mathematics.

