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Genomes = computer programs
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Human Finite Automaton

® Random word & target




Human Finite Automaton

® Random word & target

® Red & blue words & targets




Human Finite Automaton

® Random word & target
® Red & blue words & targets

® Choose which of 2 words based on what
you’ve heard




Human Finite Automaton

Random word & target
Red & blue words & targets

Choose which of 2 words based on what
you’ve heard

Choose any word based on what you've
heard




Evolutionary Computation
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Genetic Programming

® Evolutionary computing to produce
executable computer programs.

® Programs are tested by executing them.




“Gene’’tic Programming

Mapping between program elements
(“genes’”) and behavior can be complex

Some code elements may be “introns”

Some code elements may act conditionally

Some code elements may regulate the
action of other code elements
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Program Representations

Lisp-style symbolic expressions (Koza, ...).

Purely functional/lambda expressions (Walsh, Yy, ...).

Linear sequences of machine/byte code (Nordin et al,, ...).
Artificial assembly-like languages (Ray,Adami, ...).
Stack-based languages (Perkis, Spector, Stoffel, Tcherney, ...).
Graph-structured programs (Teller, Globus, ...).

Obiject hierarchies (Bruce,Abbott, Schmutter, Lucas, ...)
Fuzzy rule systems (Tunstel, Jamshidi, ...)

Logic programs (Osborn, Charif, Lamas, Dubossarsky, ...).

Strings, grammar-mapped to arbitrary languages (O’Neill, Ryan, ...).




Mutating Lisp

(+ (* X Y)
(+ 4 (- Z 23)))

(+ (* X Y)
(+ 4 (- Z 23)))

(+ (- (+ 2 2) 2)
(+ 4 (- 2 23)))




Recombining Lisp

Parent 1: (+ (* X Y)
(+ 4 (- Z2 23)))
Parent2: (- (* 17 (+ 2 X))
(* (- (* 2 2) 1)
(+ 14 (/ Y X))))

Child1: (+ (- (* 2 Z) 1)
(+ 4 (- Z2 23)))
Child2: (- (* 17 (+ 2 X))
(* (* X Y)
(+ 14 (/ Y X))))




Symbolic Regression

Given a set of data points, evolve a program
that produces y from x.

Primordial ooze: +, -, *, %, x, 0.

Fitness = error (smaller is better)




GP Parameters

Maximum number of Generations: 5|1

Size of Population: 1000

Maximum depth of new individuals: 6

Maximum depth of new subtrees for mutants: 4
Maximum depth of individuals after crossover: |7
Fitness-proportionate reproduction fraction: 0. |
Crossover at any point fraction: 0.3

Crossover at function points fraction: 0.5
Selection method: FITNESS-PROPORTIONATE

Generation method: RAMPED-HALF-AND-HALF
Randomizer seed: |.2
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Best Program, Gen O
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(* X X)) 05 -
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(* X X))) 025
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Best Program, Gen 5

—o— Target

........ o Generation 5

(- (* (* (% X 0.1)
(* 0.1 X))
(_ X 0.25 -
(% 0.1 X)))
0.1)




Best Program, Gen |2

(+ (- (- 0.1
(- 0.1 —o— Target
(- (* X X)
(+ 0.1 e o (Generation 12
(- 0.1 :
(* 0.1
0.1))))))
(* X
(* (% 0.1
(% (* (* (- 0.1 0.1)
(+ X
(- 0.1 0.1)))
X)
(+ X (+ (- X 0.1)
(* X X)))))
(+ 0.1 (+ 0.1 X)))))
(* X X))




Best Program, Gen 22

(- (- (* X (* X X))
0.1)
0.1)
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Goal

® Find finite algebra terms that have certain special
properties

® For decades there was no way to produce these
terms in general, short of exhaustive search

® Current best methods produce enormous terms




Significance, Time

Uninformed Search
Expected Time (Trials)

3 element algebras
Mal’cev 5 seconds (31° ~ 107)
Pixley /majority 1 hour (3% ~ 1019)
discriminator 1 month (347 ~ 1013)

4 element algebras
Mal’cev 103 years (4%% ~ 1017)
Pixley /majority 1010 years (440 ~ 1024)
discriminator 1024 years (454 ~ 103%)




Significance, Time

Uninformed Search
Expected Time (Trials)

GP

Time

3 element algebras
Mal’cev
Pixley /majority
discriminator

5 seconds (31° ~ 107)
1 hour (3% ~ 1019)
1 month (347 ~ 1013)

1 minute
3 minutes
5 minutes

4 element algebras
Mal’cev
Pixley /majority
discriminator

103 years (4%% ~ 1017)
1010 years (440 ~ 1024)
1024 years (464 ~ 1038)

30 minutes

2 hours
?




Significance, Size

Term Type

Primality Theorem

Mal’cev
Majority
Pixley
Discriminator

10, 060, 219
6, 847, 499
1,257, 556, 499
12,575, 109

(for A))
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Human Competitive!

® Rather: human-WHOMPING!

® QOutperforms humans and all other known methods on
significant problems, providing benefits of several
orders of magnitude with respect to search speed
and result size

Because there were no prior methods for
generating practical terms in practical amounts of
time, GP has provided the first solution to a
previously open problem in the field
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Figure 8.7. A gate array diagram for an evolved version of Grover's database search
algorithm for a 4-item database. The full gate array is shown at the top, with M,
and M; standing for the smaller gate arrays shown at the bottom. A diagonal line
through a gate symbol indicates that the matrix for the gate is transposed. The “f"

gate is the oracle.
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Evolution, the Designer

“Darwinian evolution is itself a designer

worthy of significant respect, if not religious
devotion.” Boston Globe OpEd, Aug 29,2005

WHAT WOULD DARWIN SAY? | LEE SPECTOR

- . The Boston Globe
And now, digital evolution

By Lee Spector | August 29, 2005

RECENT developments in computer science provide new perspective on
“intelligent design," the view that life's complexity could only have arisen
through the hand of an intelligent designer. These developments show that
complex and useful designs can indeed emerge from random Darwinian
processes.




Dirt-Sensing, Obstacle-
Avoiding Robot Problem




DSOAR Instructions

Condition

Instructions

Basic

if-dirty, if-obstacle, left, mop, v8a, frog, Rs

Tag

if-dirty, if-obstacle, left, mop, v8a, frog, R.s,
tag.exec.[1000], tagged.[1000]

if-dirty, if-obstacle, left, mop, v8a, frog, R.s,
exec.dup, exec.pop, exec.rot,
exec.swap, exec.k, exec.s, exec.y




DSOAR Effort
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Evolved DSOAR
Architecture (in one environment)

Module0 ! Module4 ) D38
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Evolved DSOAR
Architecture (in another environment)




Autoconstructive Evolution

Individual programs make their own children

Hence they control their genetic representations,
mutation rates, sexuality, reproductive timing, etc.

The machinery of reproduction and diversification
(i.e., the machinery of evolution) evolves

Selection may favor reactive and developmental
stability




SwarmeEvolve 2




Conclusions

® Genetic programming is a powerful problem-
solving technique based loosely on biological
evolution

In genetic programming the genome is a
reactive system with many features of
biological genetic systems that are only now
becoming well appreciated, including self
regulation and complex interactions between
the environment and elements of the genome




