Towards practical

autoconstructive evolution:
self-evolution of problem-solving

genetic programming systems

Lee Spector
Cognitive Science
Hampshire College
[+ adjunct at UMass Amherst]

Qutline

Ontogenetic programming: evolved
program self-modification

Push: evolved arbitrary, structured program
self-modification

Autoconstructive evolution: production of
offspring by arbitrary, structured program self-
modification

Pushpop and AutoPush

Results and prospects

Motivation

We have very little clue about the best way
to generate offspring in standard GP.

We have no clue whatsoever about the best
way to generate offspring in GP with the rich
program representations that will become
increasingly important.

Natural reproductive methods evolved.

Natural reproductive methods co-evolved with
the organisms that use them, in the environments
in which they use them.

Ontogenetic Programming
(1996)

® Phylogeny and Ontogeny
® Ontogenetic HiGP
® Examples:

® Binary Sequence Prediction

® Wumpus World

Phylogeny and Ontogeny

® Phylogeny = the developmental progression
of a population through evolutionary time.

® Ontogeny = the developmental progression
of an individual throughout its lifespan.

® GP uses biologically inspired phylogenetic
mechanisms.

® Through the addition of ontogenetic
mechanisms, GP can produce adaptive
programs that solve more difficult problemes.

Ontogeny and Morphology

® Morphology = the developmental progression
of an individual from genotype to
phenotype. (“growth phase”)

® Morphological components in GP include
Gruau’s encoding = network transforms,
Zomorodian’s tree = PDA transforms, and

Spector’s ADM expansions. See [Angeline
1995] for formal definitions and a survey.

Ontogeny and Morphology

® Ontogeny = the developmental progression

of an individual throughout its lifespan. Note
that this development may be guided by the
runtime environment.

® Morphology c Ontogeny.

Ontogenetic Mechanisms

Runtime memory mechanisms:
Indexed memory [Teller 1994]
Memory terminals [Iba et al. 1995]

Runtime “morphology” implemented via
program self-modification operators.VVe call
this strategy ontogenetic programming.

Program Representations

Lisp-style symbolic expressions (Koza,...).

Purely functional/lambda expressions (Walsh, Yy, ...).

Linear sequences of machine/byte code (Nordin et al,, ...).
Stack-based languages (Perkis, Spector, Stoffel, Tcherney, ...).
Graph-structured programs (Teller, Globus, ...).

Obiject hierarchies (Bruce,Abbott, Schmutter, Lucas, ...)

Fuzzy rule systems (Tunstel, Jamshidi, ...)

Logic programs (Osborn, Charif, Lamas, Dubossarsky, ...).

Strings, grammar-mapped to arbitrary languages (O’Neill, Ryan, ...).

HiGP

Virtual Stack Machine Example

push-x noop push-y * push-x
push-z noop - + noop noop

The noops have no effect and the remainder
is equivalent to the Lisp expression:

(+ (* xXy) (- x 2))

and to the C expression:

(x *y) + (X - 2)

Ontogenetic HiGP

® segment-copy copies a part of the linear program
over another part of the program. The function takes 3
arguments from the stack: the start position of the
segment to copy, the length of the segment, and the
position to which it should be copied.

shift-left rotates the program to the left. The call
takes one argument from the stack: the distance by
which the program is to be rotated.

shift-right rotates the program to the right. The call
takes one argument from the stack: the distance by
which the program is to be rotated.

Binary Sequence Prediction

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ..

® As in symbolic regression, attempt to evolve a function
of x that produces the corresponding y.

® Run programs on a sequence of x values (0—17 here),
always in the same order, for each fitness test “lifetime.”

Generation
Non-ontogenetic Average Average
Non-ontogenetic Average Best
Ontogenetic Average Average
Ontogenetic Average Best
Indexed Memory Average Average

Indexed Memory Average Best

VWumpus World

Breeze

O

Pit

Breeze

Breeze

N

O

Breeze

Breeze

O

Pit

Breeze

Breeze

Breeze

O

Pit

$

Gold

Breeze
Stench

Wumpus

Stench

Breeze

Stench

Breeze

O

Generation

Non-ontogenetic Average Average
Non-ontogenetic Average Best

Ontogenetic Average Average

Ontogenetic Average Best

Ontogenetic Programming
with S-Expressions

® subtree-copy (from-index, to-index)

® between rather than during executions

® global indices not meaningful after crossover

® explosive ontogenetic growth
® structured-subtree copy (from-index, to-index, rpb)
® dynamic ADFs and ADMs

® versions of defun, funcall etc. in function set

® store functions/macros in indexed memory

® runtime self-modification via module redefinition

Expressive Languages

Strongly typed genetic programming
Automatically defined functions
Automatically defined macros
Architecture-altering operations

Development and self-modification

Expressive Languages

Strongly typed genetic programming
Automatically defined functions
Automatically defined macros
Architecture-altering operations
Development and self-modification

Push provides all of the above and more, all
without any mechanisms beyond the stack-
based execution architecture

Push

® A programming language designed for programs
that evolve

® Simplifies evolution of programs that may use:
* multiple data types
* subroutines (any architecture)
recursion and iteration
evolved control structures
evolved evolutionary mechanisms

Push

Stack-based postfix language with one stack per type

Turing complete

Types include: integer, float, Boolean, name, code,

exec, vector, matrix, quantum gate, [add more as
needed]

Missing argument! NOOP

Trivial syntax:
program — instruction | literal | (program*)

Sample Push Instructions

Stack manipulation POP, SWAP, YANK,
instructions DUP, STACKDEPTH,

(all types) SHOVE, FLUSH, =
Ma’th _|_7) /7 x, >7 <7
(INTEGER and FLOAT) MIN, MAX

Logic (BOOLEAN) AND, OR, NOT,
FROMINTEGER

Code manipulation QUOTE, CAR, CDR, CONS,
(CODE) INSERT, LENGTH, LIST,
MEMBER, NTH, EXTRACT
Control manipulation | DO*, DO*COUNT, DO*RANGE,
(CODE and EXEC) DO*TIMES, IF

Push(3) Semantics

e '[o execute program P:

1. Push P onto the EXEC stack.

2. While the EXEC stack is not empty, pop and pro-
cess the top element of the EXEC stack, E':

(a) If F is an instruction: execute E (accessing
whatever stacks are required).

(b) If E is a literal: push E onto the appropriate
stack.

(c) If E is a list: push each element of E onto
the EXEC stack, in reverse order.

(2 3 INTEGER.* 4.1 5.2 FLOAT.+
TRUE FALSE BOOLEAN.OR)

(2 3 INTEGER * 4.1 5.2 (23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE FLOAT.+ TRUE FALSE
BOOLEAN.OR) BOOLEAN.OR)

exec code bool int

INTEGER.*
4.1
52
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

INTEGER.*
4.1
52
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

INTEGER.*
4.1
52
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

4.1
52
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

5.2
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

4.1

float

FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

52

4.1

float

TRUE

FALSE

(23 INTEGER * 4.1 5.2
BOOLEAN.OR FLOAT.+ TRUE FALSE 9.3
BOOLEAN.OR)

exec code bool int float

FALSE

(23 INTEGER * 4.1 5.2
BOOLEAN.OR FLOAT.+ TRUE FALSE TRUE 9.3
BOOLEAN.OR)

exec code bool int float

FALSE

(23 INTEGER * 4.1 5.2
BOOLEAN.OR FLOAT.+ TRUE FALSE TRUE 9.3
BOOLEAN.OR)

exec code bool int float

(23 INTEGER * 4.1 5.2
FLOAT.+ TRUE FALSE TRUE 6 9.3
BOOLEAN.OR)

exec code bool int float

Same Results

(2 3 INTEGER.* 4.1 5.2 FLOAT.+
TRUE FALSE BOOLEAN.OR)

(2 BOOLEAN.AND 4.1 TRUE INTEGER./ FALSE
3 5.2 BOOLEAN.OR INTEGER.* FLOAT.+)

(3.14 CODE.REVERSE CODE.CDR IN IN 5.0
FLOAT.> (CODE.QUOTE FLOAT.*) CODE.IF)

IN=4.0

(3.14 CODE.REVERSE (3.14 CODE.REVERSE
CODE.CDR ININ CODE.CDR IN IN
5.0 FLOAT.> 5.0 FLOAT.>

exec code bool int

3.14
SRS
CODE.CDR
IN
IN
5.0

FLOAT.>

(CODE.QUOTE FLOAT)

CODE.IF

exec

(3.14 CODE.REVERSE
CODE.CDR IN IN
5.0 FLOAT.>

code

bool

int

CODE.REVERSE

CODE.CDR
IN
IN
5.0

FLOAT.>

(CODE.QUOTE FLOAT)

CODE.IF

exec

(3.14 CODE.REVERSE
CODE.CDR IN IN
5.0 FLOAT.>

code

bool

int

3.14

float

CODE.CDR
IN
IN
5.0

FLOAT.>

(CODE.QUOTE FLOAT)

(CODE.IF (CODE.QUOTE

CODE.IF FLOAT*) FLOAT> 5.0 IN 314

IN CODE.CDR

exec code bool int float

IN
IN
5.0

FLOAT.>

(CODE.QUOTE FLOAT)

((CODE.QUOTE FLOAT)

CODE.IF FLOAT.> 5.0 IN IN 3.14

CODE.CDR

exec code bool int float

IN
5.0

FLOAT.>

(CODE.QUOTE FLOAT*) 4.0

((CODE.QUOTE FLOAT)

CODE.IF FLOAT.> 5.0 IN IN 3.14

CODE.CDR

exec code bool int float

5.0

FLOAT.>

(CODE.QUOTE FLOAT)

((CODE.QUOTE FLOAT)

CODE.IF FLOAT> 5.0 IN IN

CODE.CDR

exec code bool

FLOAT.>

(CODE.QUOTE FLOAT)

((CODE.QUOTE FLOAT)

CODE.IF FLOAT> 5.0 IN IN

CODE.CDR

exec code

(CODE.QUOTE FLOAT.¥) 4.0

((CODE.QUOTE FLOAT)

CODE.IF FLOAT.> 5.0 IN IN FALSE 3.14

CODE.CDR

exec code bool int float

CODE.QUQOTE

FLOAT.*

((CODE.QUOTE FLOAT)

CODE.IF FLOAT> 5.0 IN IN

CODE.CDR

exec code

FALSE

bool

int

4.0
3.14

float

FLOAT.* 4.0

((CODE.QUOTE FLOAT)

CODE.IF FLOAT.> 5.0 IN IN FALSE 3.14

CODE.CDR

exec code bool int float

4.0
FLOAT.* 3.14

exec code bool int float

12.56

exec code bool int float

(IN EXEC.DUP (3.13 FLOAT.¥*)
10.0 FLOAT./)

IN=4.0

(IN EXEC.DUP (3.13 (IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/) FLOAT*) 10.0 FLOAT/)

exec code bool int

IN

EXEC.DUP

(3.13 FLOAT*)

10.0
FLOAT./

exec

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/)

code

bool

int

EXEC.DUP

(3.13 FLOAT*)

10.0
FLOAT./

exec

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/)

code

bool

int

4.0

float

(3.13 FLOAT.*)

(3.13 FLOAT)

10.0
FLOAT./

exec

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/)

code

bool

int

4.0

float

3.13

FLOAT.*

(3.13 FLOAT*)

10.0
FLOAT./

exec

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/)

code

bool

int

4.0

float

FLOAT.*

(3.13 FLOAT*)

10.0
FLOAT./

exec

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/)

code

bool

int

4.0

float

(3.13 FLOAT*)

10.0

(IN EXEC.DUP (3.13
FLOAT./ FLOAT*) 10.0 FLOAT./) 12.52

exec code bool int float

3.13
FLOAT.*

10.0
FLOAT./

exec

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/)

code

bool

int

12.52

float

FLOAT.*

10.0 3.13

(IN EXEC.DUP (3.13
FLOAT./ FLOAT*) 10.0 FLOAT./) 12.52

exec code bool int float

10.0

FLOAT/ | 52550 R5%, 39.1876

exec code bool int float

10.0

FLOAT/ | 52550 R5%, 39.1876

exec code bool int float

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/) 3.91876

exec code bool int float

Combinators

® Standard K S, and Y combinators:

® EXEC.K removes the second item from the EXEC stack.

® EXEC.S pops three items (call them A, B,and C) and
then pushes (B C), C,and then A.

® EXEC.Y inserts (EXEC.Y T) under the top item (T).

® A Y-based “while” loop:
(EXEC.Y
(<BODY/CONDITION> EXEC.IF
() EXEC.POP))

Iterators

CODE.DO*TIMES, CODE.DO*COUNT,
CODE . DO*RANGE

EXEC.DO*TIMES, EXEC.DO*COUNT,
EXEC.DO*RANGE

Additional forms of iteration are supported
through code manipulation (e.g. via
CODE.DUP CODE.APPEND CODE.DO)

Named Subroutines

(TIMESZ2 EXEC.DEFINE (2 INTEGER.*))

Auto-simplification

Loop:
Make it randomly simpler
If it’s as good or better: keep it

Otherwise: revert

Problems Solved by PushGP in the
GECCO-2005 Paper on Push3

® Reversing a list

® Factorial (many algorithms)

® Fibonacci (many algorithms)

® Parity (any size input)
Exponentiation

Sorting

Modularity
Ackley and Van Belle

200 IADFIF
Monolithic F

ADF F
Monollthlc F

'
T A . Vo
'.“A"y". o -""'

Fitness (Hits)

v 1‘\1
l ’c l‘ll‘ [I
l \

\
"""; N l‘.\.v.' P \se
' ',] x' ,\’n y

|
{

| | | | |
20 40 60 80 100 120 140 160 180 200
Epochs (5 Generations each)

Figure 2: Average fitness values at the start (F;) and end
(F,) of each epoch when regressing to y = Asin(Ax). A is
selected at the start of each epoch uniformly from the range
10,6).

Modularity via Push

?
<>.Q Q ::'
't <><§> 5% P

.-: Q} q}{}‘b <§> —{F— cpochstan

—
o
|

........ G...--.u epoch qnd

|
an
|

&verage hats of best-cf-generation program

U(1.234)

H uc19200 |-

1”2

Figure 8.7. A gate array diagram for an evolved version of Grover's database search
algorithm for a 4-item database. The full gate array is shown at the top, with M,
and M; standing for the smaller gate arrays shown at the bottom. A diagonal line
through a gate symbol indicates that the matrix for the gate is transposed. The “f"

gate is the oracle.

Humies 2004
GOLD MEDAL

Autoconstructive
Evolution

Individuals make their own children.

Agents thereby control their own mutation
rates, sexuality, and reproductive timing.

The machinery of reproduction and

diversification (i.e., the machinery of evolution)
evolves.

Radical self-adaptation.

Related VWork

® MetaGP: but (I) programs and reproductive
strategies dissociated and (2) generally restricted
reproductive strategies.

® Alife systems such as Tierra, Avida, SeMar: but (1)

hand-crafted ancestors, (2) reliance on cosmic ray
mutation, and (3) weak problem solving.

Evolved self-reproduction: but generally exact
reproduction, non-improving (exception: Koza,
but very limited tools for problem solving and for
construction of offspring).

Pushpop

® A soup of evolving Push programs.

® Reproductive procedures emerge ex nihilo:

No hand-designed “ancestor.”
Children constructed by any computable process.

No externally applied mutation procedure or rate.

Exact clones are prohibited, but near-clones are
permitted.

® Selection for problem-solving performance.

Population of randomly
generated organisms

Test problem-solving fithess
and produce children

Evaluated, pregnant
organisms

Fitness tournaments

Add random organisms
if too few

Child population

Species vs. Mother/Child Differences

Note distribution of “+” points: adaptive populations have many species and mother/daughter
differences in a relatively high, narrow range (above near-clone levels).

I I I I I I I I I I
reproductively competent, unsolved phases: adoptive reproductively competent, unsolved phases: odaptive
reproductively competent, unsolwed phazes: non-adaptive reproductively campetent, unzolved phaszes: non-adaptive
reproductively incompetent phaszes reproductively incompetent phases

zalved phazes zalved phases

s
=

=)
=
=)
=

mn
=

mn
=

()
=

()
=

[
=
[
=

[i} [i}
[&] [&]
[[
(] (]
- -
[i] [i]
Yy Yy
Y Y
o o
= =
= =
= i3 - =
= a =
[} [}
5 5
Z24p Z24p
4+ 4+
o o
= =
[1i] [1i]
ch ch
[=] [=]
- -
[i] [i]
= =
[=] [=]
L] L]
cn cn
[n] [n]
- -
[i] [i]
= =
=] =]

iy
=

—near-clones—

A
e A

average count of diameter-16 species average count of diameter-16 species

Runs including Runs without
sexual instructions sexual instructions

Pushpop Results

® |n adaptive populations:

® Species are more numerous.

® Diversification processes are more reliable.
® Selection can promote diversity.

® Provides a possible explanation for the evolution
of diversifying reproductive systems.

® Weak problem-solving power.

e Difficult to analyze results.

SwarmkEvolve 2.0

Behavior (including reproduction) controlled
by evolved Push programes.

Color, color-based agent discrimination
controlled by agents.

Energy conservation.
Facilities for communication, energy sharing.

Ample user feedback (e.g. diversity metrics,
agent energy determines size).

SwarmkEvolve 2.0

AutoPush

Goals:
® Superior problem-solving performance.
® Tractable analysis.

Pus

n3.
Clojure (incidental, but fun!) ‘ ’

Asexual (for now).

Children produced on demand (not during
fitness testing).

Constraints on selection and birth.

Definitions

¢ Improvement: Recency-weighted average of

vector of improvements (1), declines (-1), and
repeats (0).

Discrepancy: Sum, over all unique expressions
in two programs, of the difference between the

numbers of occurrences of the expression in the
two programes.

Constraints on Selection

® Prefer reproductively competent parents.

® Prefer parents with non-stagnant lineages
(changed performance in the most recent half
of the lineage, after some threshold lineage
length).

® Prefer parents with good problem-solving
performance.

® (Possibly) Prefer parents from lineages with
better-improving problem-solving performance

Constraints on Birth

Prevent birth from lineages with insufficient
Improvement.

Prevent birth from lineages with constant
discrepancies.

Prevent birth from parents with fitness
penalties, e.g. for non-termination.

Prevent birth of children of illegal sizes.

Prevent birth of children identical to
ancestors or potential siblings.

Preliminary Results

® Simple symbolic regression successes
® y=x3-2x%-x
® y=x°-2x*+x3-2

® Prime-generating polynomials

® |nstructive lineage traces

Ancestor of Success

(for y=x3-2x°-x)

((code if (code noop) boolean fromfloat (2)
integer fromfloat) (code rand integer rot)
exec swap code append integer mult)

Produces children of the form:

(RANDOM-INSTRUCTION (code if (code noop)
boolean fromfloat (2) integer fromfloat)
(code rand integer rot) exec swap

code append integer mult)

Six Generations Later

A descendent of the form:

(SUB-EXPRESSION-1 SUB-EXPRESSION-2)

Produces children of the form:

((RANDOM-INSTRUCTION-1 (SUB-EXPRESSION-1))
(RANDOM-INSTRUCTION-2 (SUB-EXPRESSION-2)))

One Generation Later

A solution, which incidentally inherits the same
reproductive strategy:

((integer stackdepth (boolean and

code map)) (integer sub (integer stackdepth
(integer sub (1in (code wrap (code 1if

(code noop) boolean fromfloat (2)

integer fromfloat) (code rand integer rot)
exec swap code append integer mult))))))

Conclusions

® Autoconstructive evolution can solve problems.

® |t can be refined for broader applicability and
more tractable analysis.

e Bold (unsupported!) prediction: The most

bowerful, practical genetic programming systems of
the future will be autoconstructive.

